文档库 最新最全的文档下载
当前位置:文档库 › 概率论第二章(2014)

概率论第二章(2014)

概率论第二章(2014)
概率论第二章(2014)

第二章 随机变量及其分布

一、分布律、概率密度和分布函数的性质

1. 下列函数中,可作为某一随机变量的分布函数是

A )21()1F x x =+

B ) x x F arctan 1

21)(π+=

C )=)(x F 1(1),0

20,0x

e x x -?->???≤?

D ) ()()x F x f t dt -∞=?,其中()1f t dt +∞-∞

=?

2. 设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A =______________

3. 已知随机变量X 的密度为()f x =?

??<<+其它,01

0,x b ax ,且{1/2}5/8P x >=,则a =___ b =_____

4. 设连续型随机变量X 的密度函数为0()0x x A

f x <

其他, 则常数A =( ).

A .1 B

C .2

D .4

5. 设随机变量X 的分布函数为:F (x )=A+Barctanx,(-x ∞<<+∞).求系数A 与B

6. 设随机变量X 的分布函数为0

01()01211x

x F x x e

x -

=≤

?-≥?,则{1}P X ==_________

二、分布函数与分布律、概率密度之间的转化 1.设离散型随机变量X

求⑴( 1.50.6)P X -≤<;⑵X 的分布函数. 2.设随机变量X 概率密度函数为

,04

()0,X kx x f x <

其他

⑴求常数k ;⑵X 的分布函数.

3.设随机变量X 的密度函数为()x

f x Ae -= ()x -∞<<+∞,

求 ⑴系数A , ⑵{01}P x ≤≤;⑶分布函数)(x F 。

4.设随机变量X 的分布函数为:F (x )=A+Barctanx,(-x ∞<<+∞).

求⑴系数A 与B ;⑵X 落在(-1,1)内的概率;⑶X 的概率密度。

三、利用分布律、概率密度求概率

1. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80

81

,则该射手的命中率为_____

2. 若随机变量ξ在(1,6)上服从均匀分布,则方程x 2

+ξx +1=0有实根的概率是 3. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________

4. 设随机变量Y 服从参数为1的指数分布,a 为参数且大于零,则{1|}P Y a Y a ≤+>=

5. 设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<=

A )增大

B )减少

C )不变

D )增减不定。

6. 已知随机变量X 的密度函数f (x )=,0,x Ae x x λ

λ-?≥?0,A 为常数),则概率P {X a λλ<<+}(a > 0)的

A )与a 无关,随λ的增大而增大

B )与a 无关,随λ的增大而减小

C )与λ无关,随a 的增大而增大

D )与λ无关,随a 的增大而减小

7. 某人射击中靶的概率为(01)p p <<,则在第2次中靶之前已经失败3次的概率为( ). A .234(1)p p - B .34(1)p p - C .2310(1)p p - D .23(1)p p -

8. 设 123,,X X X 是随机变量,且22123(0,1),(0,2),(5,3)X N X N X N ,

{22}(1,2,3)j j P P X j =-≤≤=,则( )

A .123P P P >>

B .213P P P >>

C .312P P P >>

D .132P P P >>

9. 设随机变量(2,5)X U ,现对X 进行三次独立观测,求至少有两次观察值大于3的概率。

10. 假设一电源的电压

2

(220,5)U N 为正态分布。现在利用该电源给一个电器供电,已知当电压210U <时,电器损坏的概率是0.2;当电压210230U ≤≤时,电器损坏的概率是0.01;当电压230

U >时,电器损坏的概率是0. 3,求⑴{210}P U <、{210230}P U ≤≤;⑵电器损坏的概率.

四、随机变量函数的分布

1.设离散型随机变量X

⑴求常数a ; ⑵设Y X =,求Y 的分布律;

2.已知随机变量X 服从[0,2]上的均匀分布,求31Y X =-的概率密度函数

3.对球的直径作测量,设其值均匀地分布在[b a ,]内。求体积的密度函数。

4.已知随机变量X 的概率密度为

22,0()0,X x

x f x π

π?≤≤?=???其它

求sin Y X =的概率密度.

概率论与数理统计第四版第二章习题答案

概率论与数理统计 第二章习题 1 考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。 解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010; 2.(1)一袋中装有5只球,编号为1,2,3,4,5。在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律 (2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。 解 (1)在袋中同时取3个球,最大的号码是3,4,5。每次取3个球,其总取法: 3554 1021 C ?= =?,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。因而其概率为 2 2335511 {3}10 C P X C C ==== 若最大号码为4,则号码为有1,2,4;1,3,4; 2,3,4共3种取法, 其概率为23335533 {4}10 C P X C C ==== 若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法 其概率为 25335566 {5}10 C P X C C ==== 一般地 3 5 21 )(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为

(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,则样本点为S={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件, X的取值为1,2,3,4,5,6, 最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11 {1} 36 P X==; 最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3), 9 {2} 36 P X==; 最小点数为3的共有7种, 7 {3} 36 P X==; 最小点数为4的共有5种, 5 {4} 36 P X==; 最小点数为5的共有3种, 3 {5} 36 P X==; 最小点数为6的共有1种, 1 {6} 36 P X== 于是其分布律为 3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品的次数, (1)求X的分布律; (2)画出分布律的图形。 解从15只产品中取3次每次任取1只,取到次品的次数为0,1,2。在不放回的情形下, 从15只产品中每次任取一只取3次,其总的取法为:3 15151413 P=??,其概率为 若取到的次品数为0,即3次取到的都是正品,其取法为3 13131211 P=?? 其概率为 13121122 {0} 15141335 p X ?? === ??

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征 习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的). 解:设表示一次抽检的10件产品的次品数为ξ P =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)] 查二项分布表 1-=. 因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=??? ? ??04×× =. P (X =1)=???? ??14××=, P (X =2)= ???? ??24××=. P (X =3)=???? ??34××=, P (X =4)= ??? ? ??44××=. 从而 E (X )=np =4×= 习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==???? ??-=+j j X P j j j ,说明X 的数学期望不存在. 解: 由于 1 11 1133322(1) ((1))3j j j j j j j j j P X j j j j ∞ ∞∞++===-=-==∑∑∑,而级数1 12j j ∞ =∑发散,故级数1 11 33(1) ((1))j j j j j P X j j ∞ ++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X -2 0 2 k p 求)53(),(),(2 2 +X E X E X E . 解 E (X )=(-2)+0+2= 由关于随机变量函数的数学期望的定理,知 E (X 2)=(-2)2+02+22= E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[3 22 +5] = 如利用数学期望的性质,则有 E (3X 2+5)=3E (X 2)+5=3+5=

概率论第二章练习答案

《概率论》第二章练习答案 一、填空题: ”2x c S 1 1.设随机变量X的密度函数为f(x)= 则用丫表示对X的3次独立重复的 0 其匕 '- 观察中事件(X< -)出现的次数,则P (丫= 2)= ___________________ 。 2 2.设连续型随机变量的概率密度函数为: ax+b 0

4. 设为随机变量,E =3, E 2=11,则 E (4 10) = 4E TO =22 5. 已知X的密度为(x)二ax?"b Y 01 0 . x :: 1 1 1 (x ) =P(X?),则 3 3 6. 7. 1 1 (X〈一)= P ( X〉一)一 1 (ax b)dxjQx b) 联立解得: dx 若f(x)为连续型随机变量X的分布密度,则J[f(x)dx= ________ 1 ——'J 设连续型随机变量汕分布函数F(x)=x2/:, 丨1, x :: 0 0 岂 x ::: 1,则 P ( E =0.8 ) = _0_; P(0.2 :::: 6) = 0.99 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度:(x)二 x _100 x2,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不0(其他) 需要更换的概率为_____ 厂100 8/27 _________ x> 100

2013年1-4-7-10月自考概率论与数理统计(经管类)答案详解

全国2013年1月自考概率论与数理统计(经管类)试题 课程代码:04183 一、单项选择题(本大题共10 小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 解:本题考查的是和事件的概率公式,答案为C. 解:()() (|)1()() P B AB P AB P B AB P AB P AB ?= == ()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --= ====- ()()0.15 (|)0.3()()()0.5P B AB P AB P AB B P A P B P B ?===== ()() (|)1()() P A AB P AB P A AB P AB P AB ?=== 故选B. 解:本题考查的是分布函数的性质。 由()1F +∞=可知,A 、B 不能作为分布函数。 再由分布函数的单调不减性,可知D 不是分布函数。 所以答案为C 。 解: {||2}{2}{2} 1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 故选A 。

解:因为(2)0.20.16P Y c ===+,所以0.04c = 又(2)10.80.20.02P X c d ==-==++ ,所以10.020.040d =--= 故选D 。 解:若~()X P λ,则()()E X D X λ==,故 D 。 解:由方差的性质和二项分布的期望和方差: 1512 (1)()()3695276633 D X Y D X D Y -+=+=??+??=+= 选A 。 解:由切比雪夫不等式2 () {|()|}1D X P X E X εε-<>- ,可得 2 1600 {78008200}{|8000|200}10.96200 P X P X <<=-<>- = 选C 。 解:由方差的计算公式22 ()()()D X E X E X =-, 可得2 2 2 2()()()E X D X E X n σμ=+=+ 选B 。 解:置信度表达了置信区间的可靠度,选D 。 二、填空题(本大题共15小题,每小题2分,共30分)

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

第二章_概率论解析答案习题解答

第二章 随机变量及其分布 I 教学基本要求 1、了解随机变量的概念以及它与事件的联系; 2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质; 3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用; 4、会求简单随机变量函数的分布. II 习题解答 A 组 1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为 1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω= 以X 表示两个产品中的合格品数. (1) 写出X 与样本点之间的对应关系; (2) 若此产品的合格品率为p ,求(1)p X =? 解:(1) 10ω→、21ω→、31ω→、42ω→; (2) 1 2(1)(1)2(1)p X C p p p p ==-=-. 2、下列函数是否是某个随机变量的分布函数? (1) 021()2021 x F x x x <-??? =-≤

求常数A 及(13)p X <≤? 解:由()1F +∞=和lim (1)x x A e A -→+∞ -=得 1A =; (13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-. 4、设随机变量X 的分布函数为 2 00()0111 x F x Ax x x ≤??=<≤??>? 求常数A 及(0.50.8)p X <≤? 解:由(10)(1)F F +=得 1A =; (0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=. 5、设随机变量X 的分布列为 ()a p X k N == (1,2,,)k N =L 求常数a ? 解:由 1 1i i p +∞ ==∑得 1 1N k a N ==∑ 1a ?=. 6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列? 解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、 5,且 0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、321090 5100 (3)C C p X C ==、 4110905100(4)C C p X C ==、50 1090 5100 (5)C C p X C == 于是X 的分布列为

概率论与数理统计第二章答案

第二章 随机变量及其分布 1、解: 设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 435 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :10 6, 103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 35 22 )0(315313= ==C C X P 3512)1(3 15213 12=?==C C C X P 35 1)2(3 15 113 22= ?= =C C C X P 再列为下表 X : 0, 1, 2 P : 35 1, 3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

10年10月份自考概率论与数理统计试卷及答案

2010年10月高等教育自学考试全国统一命题考试 概率论与数理统计(经管类)试题 课程代码:04183 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A 与B 互不相容,且P (A )>0,P (B )>0,则( ) A.P (B |A )=0 B.P (A |B )>0 C.P (A |B )=P (A ) D.P (AB )=P (A )P (B ) 2.设随机变量X ~N (1,4),F (x )为X 的分布函数,Φ(x )为标准正态分布函数,则F (3)=( ) A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 3.设随机变量X 的概率密度为f (x )=???≤≤, ,0,10 ,2其他x x 则P {0≤X ≤}21=( ) A.41 B.31 C. 2 1 D. 4 3 4.设随机变量X 的概率密度为f (x )=????? ≤≤-+, ,0 , 01,2 1其他x cx 则常数c =( ) A.-3 B.-1 C.-2 1 D.1 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是( ) A. f (x )=-e -x B. f (x )=e -x C. f (x )=||-e 2 1 x D. f (x )=||-e x 6.设二维随机变量(X ,Y )~N (μ1,μ2,ρσσ,,222 1),则Y ~( ) A.N (211,σμ) B.N (221,σμ) C.N (212,σμ) D.N (222,σμ) 7.已知随机变量X 的概率密度为f (x )=?? ???<<, ,0, 42,21 其他x 则E (X )=( )

概率论与数理统计2.第二章练习题(答案)

第二章练习题(答案) 一、单项选择题 1. 已知连续型随机变量X 的分布函数为 3.若函数f(x)是某随机变量X 的概率密度函数,则一定成立的是(C ) A. f(x)的定义域是[0, 1] B. f(x)的值域为[0,1] 4.设X - N(l,l),密度函数为f(x),则有(C ) 5.设随机变量X ~ N (/M6), Y ?N 仏25),记 P1 = P (X “ + 5), 则正确的是 (A)对任意“,均有Pi = p 2 (B)对任意“,均有Pi v p? (c)对任意〃,均有Pl > Pi (D )只对“的个别值有P1 = P2 6.设随机变量x ?N(10^s 2) 9 则随着s 的增加 P{|X- 10|< s} ( C ) F(x) = o, kx+b 、 x<0 0 < x< x> 则常数&和〃分别为 (A) k = —b = 0 龙, (B) k = 0,b 丄 (C) k = —,b = 0 (D) k = 0,b= 1 n In In 2.下列函数哪个是某随机变量的分布函数 (A ) z 7 fl -cosx ; 2 0, f sinx, A. f(x)』沁,xnO C. f (x)= a (a>0); B. f (x) 1, x < 0 [cosx, — - < X < - 1 2 2 D. f (x) 其他 0, 0 < X < 7T 其他 —-< x < - 2 2 其他 C- f(x)非负 D. f (x)在(-叫+00)内连续 A. P {X O } B. f(x)= f(-x) C. p{xl} D ? F(x) = l-F(-x) A.递增 B.递减 C.不变 D.不能确定

概率论第三版第2章答案详解

两人各投中两次的概率为: P(A ^ A 2B 1B 2^0.0784O 所以: 作业题解: 2.1掷一颗匀称的骰子两次,以X 表示前后两次出现的点数之和 ,求X 的概率分布,并验 证其满足(222) 式. 解: Q Q Q Q 根据 v P(X = k) =1,得 k =0 故 a 二 e 「1 2.3 甲、乙两人投篮时,命中率分别为0.7和0.4 ,今甲、乙各投篮两次,求下列事件的 概率: (1)两人投中的次数相同;(2) 甲比乙投中的次数多. 解:分别用A ,B j (i =1,2)表示甲乙第一、二次投中,则 P(A) = P(A 2)=0.7,P(A) = P(A 2)=0.3,P(B 1)= P(B 2)=0.4,P(B 1)= P(D) =0.6, 两人两次都未投中的概率为: P(A A 2 B^! B 2) = 0.3 0.3 0.6 0.6二0.0324, 两人各投中一次的概率为: 并且,P(X P(X P(X P(X = 12) = 1 36 =10) 煤 =8) 嗥; =k)=( =2) =P(X =4) =P(X =6) =P(X 2.2 2 P(X =3) =P(X =11)= ; 36 4 P(X =5) =P(X =9)= p (X =7)」。 36 k =2,3,4,5,6,7,8,9,10,11,12) P{X =k}二ae°,k =1,2…,试确定常数 解: k ae ae = 1 ,即 1=1。 k -0 1 - e

P(AA2BB2)P(AA2B2B1)P(A2AB1B2)P(AA2B2B1)= 4 0.7 0.3 0.4 0.6 = 0.2016两人各投中两次的概率为:P(A^ A2B1B2^0.0784O所以:

2016年10月自考概率论与数理统计(二)(02197)试题及答案解析

2016年10月高等教育自学考试全国统一命题考试 概率论与数理统计(二) 试卷 (课程代码 02197) 本试卷共4页,满分l00分,考试时间l50分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。4.合理安排答题空间,超出答题区域无效。 第一部分选择题(共20分) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 卡”的相应代码涂黑。错涂、多涂或未涂均无分。 1.设A与B是两个随机事件,则P(A-B)= 2.设随机变量石的分布律为 A.O.1 B.O.2 C.O.3 D.0.6 3.设二维随机变量∽,n的分布律为 且X与y相互独立,则下列结论正确的是 A.d=0.2,b=0,2 B.a=0-3,b=0.3 C.a=0.4,b=0.2 D.a=0.2,b=0.4 4.设二维随机变量(x,D的概率密度为 5.设随机变量X~N(0,9),Y~N(0,4),且X与Y相互独立,记Z=X-Y,则Z~

6.设随机变量x服从参数为jl的指数分布,贝JJ D(X)= 7.设随机变量2服从二项分布召(10,0.6),Y服从均匀分布U(0.2),则E(X-2Y)= A.4 B.5 C.8 D.10 8.设(X,Y)为二维随机变量,且D(.固>0,D(功>0,为X与y的相关系数,则 第二部分非选择题(共80分) 二、填空题(本大题共l5小题,每小题2分,共30分) 11.设随机事件A,B互不相容,P(A)=0.6,P(B)=0.4,则P(AB)=_______。 12.设随机事件A,B相互独立,且P(A)=0.5,P(B)=0.6,则=________。13.已知10件产品中有1件次品,从中任取2件,则末取到次品的概率为_____.14.设随机变量x的分布律为,则常数a=_______. 15.设随机变量石的概率密度,X的分布函数 F(x)=_________. 16.设随机变量,则_______. 17.设二维随机变量(X,Y)的分布律为 18.设二维随机变量(X,Y)的概率密度为分布函数f(x,y),

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所 以 151115()234988884 E X =?+?+?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21 {2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故

112314673 ()234915215103015 E Y =? +?+?+?== 。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。 2 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸产品是否为次品是相互独立的。) 解 (1)求每次检验时产品出现次品的概率 因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为,设出现次品的件数为 Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)k k k P Y k C -== (2 )一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律

概率统计第二章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第二章 随机变量及其分布 教学要求: 一、理解随机变量的概念;理解离散型随机变量及其分布律的定义,理解分布律的性质;掌 握(0-1)分布、二项分布、Poisson 分布的概念、性质;会计算随机变量的分布律. 二、理解分布函数的概念及其性质;理解连续型随机变量的定义、概率密度函数的基本性质, 并熟练掌握有关的计算;会由分布律计算分布函数,会由分布函数计算密度函数,由密度函数计算分布函数. 三、掌握均匀分布、正态分布和指数分布的概念、性质. 一、掌握一维随机变量函数的分布. 重点:二项分布、正态分布,随机变量的概率分布. 难点:正态分布,随机变量函数的分布. 练习一 随机变量、离散型随机变量及其分布律 1.填空、选择 (1)抛一枚质地均匀的硬币,设随机变量?? ?=,,出现正面 ,,出现反面H T X 10 则随机变量X 在区间 ]22 1 ,(上取值的概率为21. (2)一射击运动员对同一目标独立地进行4次射击,以X 表示命中的次数,如果 {}81 80 1= ≥X P ,则{}==1X P 8. (3)设离散型随机变量X 的概率分布为{},,2,1, ===i cp i X P i 其中0>c 是常数, 则( B ) (A )11-=c p ; (B )1 1 +=c p ; (C )1+=c p ; (D )0>p 为任意常数 2.一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取出3只球,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 解:从1~5中随机取3个共有103 5=C 种取法. 以X 表示3个中的最大值.X 的所有可能取值为;5,4,3 {}3=X 表示取出的3个数以3为最大值,其余两个数是1,2,仅有这一种情况,则

概率论第二章练习答案概要

《概率论》第二章 练习答案 一、填空题: 1.设随机变量X 的密度函数为f(x)=?? ?0 2x 其它1???o 则用Y 表示对X 的3次独立重复 的观察中事件(X≤ 2 1 )出现的次数,则P (Y =2)= 。 ?==≤4120 21)21(xdx X P 64 9 )43()41()2(1223===C Y p 2. 设连续型随机变量的概率密度函数为: ax+b 03 1 ) , 则a = , b = ??? +=+?==+∞ ∞ -101 33 1 3 1311 dx b ax dx b ax x P x P dx x )()()〉()〈()(?联立解得: 4 723=-=b a ,

6.若f(x)为连续型随机变量X 的分布密度,则 ? +∞ ∞ -=dx x f )(__1____。 7. 设连续型随机变量ξ的分布函数?? ???≥<≤<=2,110, 4/0, 0)(2 x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ?= ()?????≥) (0100100 2其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。 2100 x x≥100 ∴ ?(x)= 0 其它 P (ξ≥150)=1-F(150)=1-??=-+=+=150 10015010023 2 132********x dx x [P(ξ≥150)]3=(32)3=27 8 9. 设随机变量X 服从B (n, p )分布,已知EX =1.6,DX =1.28,则参数n =___________, P =_________________。 EX = np = 1.6 DX = npq = 1.28 ,解之得:n = 8 ,p = 0.2 10. 设随机变量x 服从参数为(2,p )的二项分布,Y 服从参数为(4,p )的二项分布,若P (X ≥1)=9 5 ,则P (Y ≥1)=_65/81______。 解: 11. 随机变量X ~N (2, σ2) ,且P (2<X <4)=0.3,则P (X <0)=__0.2___ % 2.8081 65 811614014==-=-=q p C o ) 0(1)1(=-=≥Y P Y p 31,3294)0(94 )1(95)1(2 = =?=∴===??= ≥p q q X p X p X p

2009年10月自考《概率论与数理统计》(经管类)试题

全国2009年10月高等教育自学考试 概率论与数理统计(经管类)试题 课程代码:04183 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( ) A .A 1A 2 B .21A A C .21A A D .21A A 2.某人每次射击命中目标的概率为p (0

100,0,100,1002x x x B .?????≤>0 ,0,0,10x x x C .? ??≤≤-其他,0,20,1x D .?????≤≤其他,0,232121x , 7.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6, 21),则E(X-Y)=( ) A .25- B . 21 C .2 D .5 8.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=6 1,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( )

概率论和数理统计第二章课后习题答案解析

概率论与数理统计课后习题答案 第二章 1.一袋中有5 只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最 大号码,写出随机变量X 的分布律. 【解】 35 35 24 35 3,4,51 (3)0.1C 3(4)0.3C C (5)0.6 C X P X P X P X ====== ==== 2.设在15只同 类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分 布律; (2) X 的分 布函数并作图; (3) — 133{},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 31331512213 3151133 150,1,2. C 22 (0). C 35 C C 12(1). C 35 C 1 (2).C 35 X P X P X P X ========== 故X 的分布律为

(2) 当x <0时, F (x )=P (X ≤x )=0 当0≤x <1时 ,F (x )=P (X ≤x )=P (X =0)= 2235 当1≤x <2时 ,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时, F (x )=P (X ≤x )=1 故X 的分布函 数 0, 022 ,0135 ()34,12351,2x x F x x x

2014年10月全国自考概率论与数理统计

2014年10月全国自考概率论与数理统计(经管类)试题 课程代码 04183 一、单项选择题(本大题共10小题,每小题2分,共20分)BCACD BBACB 二、填空题(本大题共15小题,每小题2分,共30分) 11.1/2 12.0 13.0.5 14. P(A)+P(B)-2P(AB) 15. b=6或 16. 17.N(1, 0.8) 18. 19. 20. 21. 22.掷三次,至少出现一个正面 23.5 24. 25.2 三、计算题(本大题共2小题,每小题8分,共16分)

26.解:因为X服从区间[0,1]上的均匀分布,所以, 又Y服从参数为1的指数分布,所以, 由协方差性质知,当X与Y相互独立时,cov(X,Y)=0, 又cov(X,Y)=E(XY)-E(X)E(Y), 所以,。 27. 已知样本容量n=9,1-σ=95%,σ=0.05,所以 , 将样本容量n=9,代入上式,得 所以,该项指标均值的所求置信区间为 [56.93-0.715,56.93+0.715]=[56.215,57.645] 四、综合题(本大题共2小题,每小题12分,共24分) 28.设随机事件A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.7. 求:(1)A1,A2,A3恰有一个发生的概率; (2)A1,A2,A3至少有一个发生的概率. 『正确答案』分析:本题考察事件的概率的求法。 解:(1)事件“A1,A2,A3恰有一个发生”表示为

又事件A1,A2,A3相互独立,则所求概率为 =0.4(1-0.5)(1-0.7)+(1-0.4)0.5(1-0.7)+(1-0.4)(1-0.5)0.7 =0.36 所以,A1,A2,A3恰有一个发生的概率为0.36. (2)事件“A1,A2,A3至少有一个发生”的对立事件是“A1,A2,A3全不发生” 所以,P(“A1,A2,A3至少有一个发生”)=1-P(A1,A2,A3全不发生) =1-(1-0.4)(1-0.5)(1-0.7)=0.91 所以,A1,A2,A3至少有一个发生的概率为0.91 解:(1)由二维随机变量(X,Y)的分布律得 X的边缘分布律为 Y的边缘分布律为

概率论与数理统计总结之第四章

第四章 数学期望和方差 数学期望: 设离散型随机变量X 的分布律为,2,1,}{===k p x X P k k … 若级数k k k p x ∑∞=1绝对收敛,则称级数k k k p x ∑∞ =1的和为随机变量X 的数学期望,记为 E(X),即E(X)=k k k p x ∑∞ =1 设连续型随机变量X 的概率密度为f(x), 若积分?∞∞-dx x xf )(绝对收敛,则称积分?∞ ∞-dx x xf )(的值为随机变量X 的数学期望,记为E(X),即E(X)=?∞ ∞-dx x xf )( 数学期望简称期望,又称为均值 数学期望E(X)完全由随机变量X 的概率分布所确定,若X 服从某一分布也称E(X)是这一分布的数学期望 定理 设Y 是随机变量X 的函数:Y=g(X)(g 是连续函数) 1)X 是离散型随机变量,它的分布律为,2,1,}{===k p x X P k k …,若k k k p x g )(1∑∞ =绝对收敛,则有[]==)(()(X g E Y E k k k p x g )(1∑∞ = 2)X 是连续型随机变量,它的概率密度为f(x )。若?∞ ∞-dx x f x g )()(绝对收敛,则有E(Y)=E[g(X)]=?∞ ∞-dx x f x g )()( 数学期望的几个重要性质:

1.设C 是常数,则有E(C)=C 2.设X 是一个随机变量,C 是常数,则有E(CX)=CE(X) 若A,B 相互独立,则有E(AB)=E(A)E(B) 3.设X,Y 是两个随机变量,则有E(X+Y)=E(X)+E(Y) 方差 设X 是一个随机变量,若})]({[2X E X E -存在,则称})]({[2X E X E -为X 的方差,记为D(X)或Var(X),即D(X)=Var(X)=})]({[2X E X E - )(X D ,记为σ(X),称为标准差或均方差 对于离散型随机变量,k k k p X E x X D ∑∞=-=1 2)]([)( 对于连续型随机变量,dx x f X E x X D )()]([)(2?∞∞ --= 随机变量X 的方差计算公式:22)]([)()(X E X E X D -= 方差的几个重要性质: 1.设C 是常数,则D(C)=0 2.设X 是随机变量,C 是常数,则有)()(2X D C CX D = 3.设X,Y 是两个随机变量,则有 ))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+ 特别地,若X,Y 相互独立,则有 D(X+Y)=D(X)+D(Y) 4.D(X)=0的充要条件是X 以概率1取常数C ,即P{X=C}=1,显然这里C=E(X)

自考概率论与数理统计(二)2017年10月真题及答案解析第1套试卷

概率论与数理统计(二) 20XX年10月真题及答案解析单项选择题:本大题共10小题,每小题2分,共20分。 1. 设随机事件 A. 0.1 B. 0.2 C. 0.3 D. 0.5 答案:A 解析: 选A. 2. 盒中有7个球,编号为1至7号,随机取2个,取出球的最小号码是3的概率为() A. 2/21 B. 3/21 C. 4/21 D. 5/21 答案:C 解析:本题为古典概型,所求概率为,选C。 3. 设随机变量() A. 0 B. 0.25 C. 0.5

答案:A 解析:因为是连续型随机变量,所以 4. 设随机变量X的分布律为且 X与Y 相互独立,则() A. 0.0375 B. 0.3 C. 0.5 D. 0.7 答案:A 解析:因为X 与Y 相互独立,所以 5. 设随机变量X服从参数为5的指数分布,则() A. A.-15 B. B.-13 C. C. D. D. 答案:D 解析:X 服从参数为5的指数分布,,选D 6. 设随机变量X与Y相互独立,且X~B(16,0.5),Y服从参数为9的泊松分布,则D(X-2Y+1)=()

B. 14 C. 40 D. 41 答案:C 解析:,选C。 7. 设X1,X2,…,X50相互独立,且 令为标准正态分布函数,则由中心极限定理知Y的分布函数近似等于() A. A. B. B. C. C. D. D. 答案:C 解析:由中心极限定理, 8. 设总体为来自X的样本,则下列结论正确的是() A. A.

B. B. C. C. D. D. 答案:B 解析:因为为来自总体的简单随机样本,所以 9. 设总体X的概率密度为为来自x的样本,为样本均值,则未知参数θ的无偏估计为() A. A. B. B. C. C. D. D. 答案:D 解析:由题可知, X服从参数为的指数分布,则,故为θ 的无偏估计,选D 10. 设x1,x2,…,xn为来自正态总体N(μ,32)的样本,为样本均值.对于检验假设,则采用的检验统计量应为() A. A.

相关文档
相关文档 最新文档