文档库 最新最全的文档下载
当前位置:文档库 › 第六章 滤波技术

第六章 滤波技术

滤波技术

干扰滤波在EMC设计中作用 差模干扰和共模干扰

常用滤波电路

怎样制作有效的滤波器

正确使用滤波器

滤波器的作用

切断干扰沿信号线或电源线传播的路径,与屏蔽共同构成完善的干扰防护。

满足电源线干扰发射和抗扰度要求

满足抗扰度及设备辐射发射要求

滤波器类型

1、按滤波原理分:

反射式、吸收式

2、按结构分:

有源滤波器、无源滤波器

3、按频率特性分:

低通、高通、带通、带阻

4、按用途分:

信号选择滤波器、电磁干扰滤波器

滤波器特性

插入损耗:

频率特性

插入损耗随频率变化(通带、阻带)

阻抗特性

滤波器输入输出阻抗直接影响插入损耗特性(失配、匹配)

额定电压

额定电流

安全性能

耐压、漏电流、绝缘、温升等

2

1

20

U

U

lg

IL=

无滤波器时信号源在负载侧产生的电压

接滤波器时信号源在负载侧产生的电压

滤波器频率特性衰减

衰减衰减

3dB

低通滤波器类型

C

电路与插入损耗的关系20

40

60

80

100

dB

确定滤波器阶数

滤波器类型

根据阻抗选用滤波电路

源阻抗电路结构负载阻抗高C、π、多级π高

高Γ、多级Γ低

低反Γ、多级反Γ高

低L、多级L低

规律:电容对高阻,电感对低阻

插入损耗的估算

Fco

= 1/(2πRp C)

Z L

Zs、Z并联

Fco= Rs/(2πL)

Zs、Z串联

Zs

Zs

Z L

损耗滤波器

选用具有高损耗系数或高损耗角

正切的材料,把高频电磁能量通

过涡流转换成热能。例如:

铁氧体管,铁氧体磁环,磁环扼

流圈等。

1、铁氧体管,如图把铁氧体管

套在信号线或电源线上,衰减

高频干扰信号。

损耗滤波器

2、电缆滤波器:在导线外

包一层高频损耗材料(如

铁氧体,或含铁粉的环氧

树脂)。

损耗滤波器

3、磁环扼流圈,如图(a)所示,在导线上套一个圆环状铁氧体磁环,阻抗随导线中电流频率的升高而增大,可以抑制高频干扰分量。应用:电源线,数字信号线。

4、穿心电容,外形如图(b)所示,原理如图(c)。一个端片接导线,另一个通过外壳接地,用于高频滤波。

(a) (b) (c)

实际电容器的特性

Z

引线长1.6mm的陶瓷电容器

电容量谐振频率(MHZ)

1 μF 1.7

0.1 μF4

0.01μF12.6

3300 pF19.3

1100 pF33

680 pF42.5

330 pF60

实际电感器的特性

Z

f

电感量

(μH)

谐振频率

(MHZ)

3.445

8.828

68 5.7

125 2.6

500 1.2

绕在铁粉芯上的电感C

电感寄生电容的来源

每圈之间的电容C TT

导线与磁芯之间的电容C TC

磁芯为导体时,C TC为主要因素,

磁芯为非导体时,C TT为主要因素。

克服电容非理想性的方法

衰减

电容并联LC并联电感并联

频率大容量小容量

数字滤波算法

几种简单的数字滤波 假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad(); 1、限副滤波 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } }

return value_buf[(N-1)/2]; } 3、算术平均滤波法 /* */ #define N 12 char filter() { int sum = 0; for ( count=0;count

数字滤波器总结

1数字滤波器的应用领域 在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。 (1) 语音处理 语音处理是最早应用数字滤波器的领域之一,也是最早推动数字信号处理理论发展的领域之一。该领域主要包括5个方面的内容:第一,语音信号分析。即对语音信号的波形特征、统计特性、模型参数等进行分析计算;第二,语音合成。即利用专用数字硬件或在通用计算机上运行软件来产生语音;第三,语音识别。即用专用硬件或计算机识别人讲的话,或者识别说话的人;第四,语音增强。即从噪音或干扰中提取被掩盖的语音信号。第五,语音编码。主要用于语音数据压缩,目前已经建立了一系列语音编码的国际标准,大量用于通信和音频处理。近年来,这5个方面都取得了不少研究成果,并且,在市场上已出现了一些相关的软件和硬件产品,例如,盲人阅读机、哑人语音合成器、口授打印机、语音应答机,各种会说话的仪器和玩具,以及通信和视听产品大量使用的音频压缩编码技术。 (2) 图像处理 数字滤波技术以成功地应用于静止图像和活动图像的恢复和增强、数据压缩、去噪音和干扰、图像识别以及层析X射线摄影,还成功地应用于雷达、声纳、超声波和红外信号的可见图像成像。 (3) 通信 在现代通信技术领域内,几乎没有一个分支不受到数字滤波技术的影响。信源编码、信道编码、调制、多路复用、数据压缩以及自适应信道均衡等,都广泛地采用数字滤波器,特别是在数字通信、网络通信、图像通信、多媒体通信等应用中,离开了数字滤波器,几乎是寸步难行。其中,被认为是通信技术未来发展方向的软件无线电技术,更是以数字滤波技术为基础。 (4) 电视 数字电视取代模拟电视已是必然趋势。高清晰度电视的普及指日可待,与之配套的视频光盘技术已形成具有巨大市场的产业;可视电话和会议电视产品不断更新换代。视频压缩和音频压缩技术所取得的成就和标准化工作,促成了电视领域产业的蓬勃发展,而数字滤波器及其相关技术是视频压缩和音频压缩技术的重要基础。 (5) 雷达 雷达信号占有的频带非常宽,数据传输速率也非常高,因而压缩数据量和降低数据传输速率是雷达信号数字处理面临的首要问题。高速数字器件的出现促进了雷达信号处理技术的进步。在现代雷达系统中,数字信号处理部分是不可缺少的,因为从信号的产生、滤波、加工到目标参数的估计和目标成像显示都离不开数字滤波技术。雷达信号的数字滤波器是当今十分活跃的研究领域之一。 (6) 声纳

基于相关滤波器的目标跟踪方法综述

0引言 视觉跟踪是计算机视觉中引人瞩目且快速发展的领域,主要用于获取运动目标的位置、姿态、轨迹等基本运动信息,是理解服务对象或对目标实施控制的前提和基础。其涉及许多具有挑战性的研究热点并常和其他计算机视觉问题结合出现,如导航制导、事件检测、行为识 别、视频监控、自动驾驶、移动机器人等[1-4]。虽然跟踪方法取得了长足进展,但由于遮挡、目标的平面内/外旋 转、快速运动、模糊、光照及变形等因素的存在使其仍然是非常具有挑战性的工作。 近年来,基于相关滤波器CF(Correlation Filter)的跟踪 方法得到了极大关注[5-9]。CF 最大的优点是计算效率高,这归结于其假设训练数据的循环结构,因为目标和候选 区域能在频域进行表示并通过快速傅里叶变换(FFT)操作。Bolme [6]等首次将CF 应用于跟踪提出MOSSE 算法,其利用FFT 的快速性使跟踪速度达到了600-700fps 。瑞典林雪平大学的Martin Danelljan 在2016年ECCV 上提出的相关滤波器跟踪算法C -COT [7]取得了VOT2016竞赛冠军,2017年其提出的改进算法ECO [8]在取得非常好的精度和鲁棒性的同时,显著提高运算速度至C-COT 的6倍之多。 基于CF 的跟踪算法如此优秀,已然成为研究热点。近年和相关滤波有关的论文层出不穷,很有必要对这些论文及相关滤波的发展等进行一个归纳和总结,以推动该方向的发展。文献[9]虽已做过综述并取得了一定效果,但有两点不足:(1)过多介绍现有几种方法的具体细节,没有对更多文献进行对比分析;(2)缺乏对基于相关滤波器跟踪方法的分类对比分析。基于此,本文的不同 ?基金项目:陕西理工大学科研项目资助(SLGKY16-03) 基于相关滤波器的目标跟踪方法综述? 马晓虹1,尹向雷 2 (1.陕西理工大学电工电子实验中心,陕西汉中723000;2.陕西理工大学电气工程学院,陕西汉中723000) 摘要:目标跟踪是计算机视觉中的重要组成部分,广泛应用于军事、医学、安防、自动驾驶等领域。虽然取得了很大进展,但由于遮挡、快速运动、模糊、光照及变形等因素存在,其仍是具有挑战性的研究领域。近年来,属于判别式类型的相关滤波器跟踪方法由于具有非常高的处理速度备受关注。首先介绍了目标跟踪和相关滤波器的基本知识,之后对相关滤波器方法在朴素阶段、循环结构和核技巧、多特征通道、与深度特征的结合、尺度研究、边界效应以及其他信息的利用方面进行了详述,最后对基于相关滤波器方法的研究方向和发展趋势给出了几点看法。关键词:计算机视觉;目标跟踪;相关滤波器中图分类号:TP391 文献标识码:A DOI :10.16157/j.issn.0258-7998.174811 中文引用格式:马晓虹,尹向雷.基于相关滤波器的目标跟踪方法综述[J].电子技术应用,2018,44(6):3-7,14. 英文引用格式:Ma Xiaohong ,Yin Xianglei.Method of object tracking based on correlation filters :a survey[J].Application of Elec-tronic Technique ,2018,44(6):3-7,14. Method of object tracking based on correlation filters :a survey Ma Xiaohong 1,Yin Xianglei 2 (1.Electrical and Electronic Experiment Teaching Center ,Shannxi University of Technology ,Hanzhong 723000,China ; 2.School of Electrical Engineering ,Shannxi University of Technology ,Hanzhong 723000,China) Abstract :Object tracking is an important part in computer vision and is widely used in military,medical,security and autonomous driving.Although great progress has been made,it is still a challenging research field due to the factors such as occlusion,rapid speed,motion blur,illumination and deformation.In recent years,the correlation filter tracking method,one of discriminant type,has attracted much attention due to its higher processing speed.We first introduces the basic knowledge of the object tracking and the correlation filter tracking,and the correlation filter tracking methods in simple stage,we also discussed the circular structure and the kernel trick,the combination of multiple feature channels and deep feature,scale research,boundary effect and the use of other information.Finally,the research direction and development trend of the method based on the correlation filter is given.Key words :computer vision ;object tracking ;correlation filter

常用的8种数字滤波算法

常用的8种数字滤波算法 摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。 关键词:数字滤波;控制系统;随机干扰;数字滤波算法 1 引言 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。 数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点: (1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。 (2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。 (3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。 2 常用数字滤波算法 数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为: 其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也

十种数字滤波方法

1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 自动化科协 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果

N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 自动化科协 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点:

用脉冲响应不变法设计数字滤波器.

皖西学院 《数字信号处理》课程设计报告题目用脉冲响应不变法设计数字滤波器 学院信息工程学院 专业通信工程专业 班级(*** )班 学生姓名陈* 孙** 指导教师吴** 二0一二年十二月

《数字信号处理》课程设计是在学生完成数字信号处理和MATLAB结合后的基本实验后开设的,本课程设计的目的是为了让学生综合数字信号处理和MATLAB并实现一个较为完整的小型滤波系统。这一点与验证性的基本实验有本质性的区别。开设课程设计环节的主要目的是通过系统设计、软件仿真、程序安排与调试、写实习报告等步骤,使学生初步掌握工程设计的具体步骤和方法,提高分析问题和解决问题的能力,提高实际应用水平。 IIR数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以IIR滤波器的设计可以采用在模拟滤波器设计的基础上进一步变换的方法。其设计方法主要有间接设计法、直接设计法和最大平滑滤波器设计方法。间接法是借助于模拟滤波器的设计方法进行的。其设计步骤是:先设计过度模拟滤波器得到系统函数,然后将其按某种方法转换成数字滤波器的系统函数。这是因为模拟滤波器的设计方法已经成熟,不仅有完整的设计公式,还有完善的图表和曲线供查阅;另外还有一些优良的滤波器可供我们使用。直接法直接在频域或者时域中设计数字滤波器,由于要解联立方程,设计时需要计算机辅助设计。FIR数字滤波器的单位脉冲响应应是有限长序列。它的设计问题实质上是确定能满足要求的转移序列或脉冲响应的常数问题,它不能采用间接法,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。

第1章绪论 (3) 1.1课程设计的目的及意义 (3) 1.2课程设计题目描述及要求 (3) 1.3数字滤波器的概述 (3) 1.4数字滤波器的分类 (3) 1.5数字滤波器的技术指标 (4) 1.6数字滤波器的设计原理 (5) 第2章MATLAB介绍 (6) 2.1 MATLAB的简介 (6) 2.2 MATLAB的优势和特点 (6) 第3章IIR数字滤波器的设计 (7) 3.1 IIR数字滤波器的设计概述 (7) 3.2 IIR数字滤波器的设计思想: (7) 3.3脉冲响应不变法设计数字滤波器 (7) 3.4 巴特沃斯滤波器的设计原理 (11) 第4章利用脉冲响应不变法设计数字滤波器的过程 (16) 4.1课程设计的解题思路及过程 (16) 4.2 MATLAB程序及仿真 (17) 第5章总结 (20) 参考文献 (21)

强跟踪滤波器(STF)进行信号处理及信号参数估计

%% 强跟踪滤波器 function test3_STF close all; clc; tic; %计时 %模型:y=A0+A1*cos(omega*t+phy1) %离散化:y(k)=A0(k)+A1(k)*cos(omega(k)*k*Ts+phy1(k)) %状态变量:x1(k)=A0(k),x2(k)=omega(k),x3(k)=A1(k)*cos(omega(k)*k*Ts+phy1(k) ),x4(k)=A1(k)*sin(omega(k)*k*Ts+phy1(k)) %下一时刻状态变量为(假设状态不突变):A0(k+1)=A0(k),A1(k+1)=A1(k),omega(k+1)=omega(k),phy1(k+1)=phy1 (k); %则对应状态为:x1(k+1)=x1(k),x2(k+1)=x2(k),x3(k+1)=x3(k)*cos(x2(k)*Ts)- x4(k)*sin(x(2)*Ts),x4(k+1)=x3(k)*sin(x2(k)*Ts)+x4(k)*cos(x(2)*Ts); %状态空间描述:X(k+1)=f(X(k))+W(k);y(k)=H*X(k)+v(k) %f(X(k))=[x1(k);x2(k);x3(k)*cos(x2(k)*Ts)- x4(k)*sin(x(2)*Ts);x3(k)*sin(x2(k)*Ts)+x4(k)*cos(x(2)*Ts)] %偏导(只求了三个):f`(X(k))=[1,0,0;0,1,0;0,-x3(k)*Ts*sin(x2(k)*Ts)-x4(k)*Ts*cos(x2(k)*Ts),cos(x2(k)*Ts);0,x3(k)*Ts*cos(x2(k)*Ts)- x4(k)*Ts*sin(x2(k)*Ts),sin(x2(k)*Ts)]

单片机数字滤波算法

单片机主要作用是控制外围的器件,并实现一定的通信和数据处理。 但在某些特定场合,不可避免地要用到数学运算,尽管单片机并不擅长实现算法和进行复杂的运算。下面主要是介绍如何用单片机实现数字滤波。 在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。 1采用数字滤波算法克服随机干扰的误差具有以下优点: 1.数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻 抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。 2.数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统 开支。 3.只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这 对于滤除低频干扰和随机信号会有较大的效果。 4.在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤 波法、加权平均滤波法、滑动平均滤波等。 2限幅滤波算法 该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则取上次采样值作为本次数据的样本。 算法的程序代码如下: #define A //允许的最大差值 char data; //上一次的数据 char filter() { char datanew; //新数据变量 datanew=get_data(); //获得新数据变量 if((datanew-data)>A||(data-datanew>A)) return data; else return datanew; }

跟踪滤波与自适应技术

第二章跟踪滤波与自适应技术 2.1 卡尔曼滤波与预测 所谓卡尔曼滤波就是从混合在一起的诸多信号中提取出所需要的信号。 卡尔曼滤波从被提取信号有关的量测量中通过算法估计出所需信号。其中被估计信号是由白噪声激励所引起的随机响应,激励源与响应之间的传递结构(系统方程)已知,量测量与被估计量之间的函数关系(量测方程)也已知。估计过程中利用了如下信息:系统方程、量测方程、白噪声激励的统计特性、量测误差的统计特性。由于所用信息都是时域内的量,所以卡尔曼滤波是在时域内设计的,且适用于多维情况,这就完全避免了维纳滤波器在频域内设计遇到的限制和障碍,适用范围远比维纳滤波器广泛。 卡尔曼滤波有如下特点: (1)卡尔曼滤波处理的对象是随机信号; (2)被处理信号无有用和干扰之分,滤波的目的是要估计出所有被处理信号; (3)系统的白噪声激励和量测噪声并不是需要滤除的对象,它们的统计特性正是估计过程中需要利用的信息。 所以确切的说,卡尔曼滤波应称作最优估计理论,此处所谓的滤波与常规滤波具有完全不同的概念和含义。 随着现代微处理技术的发展,卡尔曼滤波的计算要求与复杂性已不再成为其应用的障碍,并且越来越受到人们的青睐,尤其在机动目标跟踪系统中更显出其独特的优点。 对于单机动目标跟踪情形,其跟踪的基本原理如图2.1所示。图中目标跟踪动态特性由包含位置、速度和加速度的状态向量X表示,量测(观测)Y被假定为含有量测噪声V的状态向量的线性组合(HX+V);残差(新息)向量d为量测(Y)与状态预测量) X k H+)之差。 (? /1 (k 一般情况下,单机动目标跟踪为一自适应滤波过程。首先由量测量Y和状态预测量) X H+构成残差(新息)向量d,然后根据d的变化进行机动检测或者机k (k /1 (? 动辨识,其次按照某一准则或逻辑调整滤波增益与协方差矩阵或者实时辨识出目标机动特性,最后由滤波算法得到目标的状态估计值和预测值,从而完成单机动目标跟踪功能。

数据处理中的几种常用数字滤波算法

数据处理中的几种常用数字滤波算法 王庆河王庆山 (济钢集团计量管理处,济南250101) (济钢集团中厚板厂,济南250101) 摘要随着数字化技术的发展,数字滤波技术成为数字化仪表和计算机在数据采集中的关键性技术,本文对常用的几种数字滤波算法的原理进行描述,并给出必要的数学模型。 关键词:数据采样噪声滤波移动滤波 一、引言 在仪表自动化工作中,经常需要对大量的数据进行处理,这些数据往往是一个时间序列或空间序列,这时常会用到数字滤波技术对数据进行预处理。数字滤波是指利用数学的方法对原始数据进行处理,去掉原始数据中掺杂的噪声数据,获得最具有代表性的数据集合。 数据采样是一种通过间接方法取得事物状态的技术如将事物的温度、压力、流量等属性通过一定的转换技术将其转换为电信号,然后再将电信号转换为数字化的数据。在多次转换中由于转换技术客观原因或主观原因造成采样数据中掺杂少量的噪声数据,影响了最终数据的准确性。 为了防止噪声对数据结果的影响,除了采用更加科学的采样技术外,我们还要采用一些必要的技术手段对原始数据进行整理、统计,数字滤波技术是最基本的处理方法,它可以剔除数据中的噪声,提高数据的代表性。 二、几种常用的数据处理方法 在实际应用中我们所用的数据滤波方法很多,在计算机应用高度普及的今天更有许多新的方法出现,如逻辑判断滤波、中值滤波、均值滤波、加权平均 2中值滤波 中值滤波是对采样序列按大小排滤波、众数滤波、一阶滞后滤波、移动滤波、复合滤波 等。 假设我们采用前端仪表采集了一组采样周期为1s的温度数据的时间序列 T0为第0s 采集的温度值,Ti为第is采集的温度值。下面介绍如何应用几种不同滤波算法来计算结果温度T。 1.程序判断滤波 当采样信号由于随机干扰、误检测或变送器不稳定引起严重失真时,可采用程序判断滤波算法,该算法的基本原理是根据生产经验,确定出相邻采样输入信号可能的最大偏差△T,若超过此偏差值,则表明该输入信号是干扰信号,应该去掉,若小于偏差值则作为此次采样值。 (1)限幅滤波 限幅滤波是把两次相邻的采集值进行相减,取其差值的绝对值△T作为比较依据,如果小于或等于△T,则取此次采样值,如果大于△T,则取前次采样值,如式(1)所示:

基于切比雪夫I型的高通滤波器设计Matlab

设计题目基于切比雪夫I型的数字高通滤波器的设计 设计要求 设计一个9阶切比雪夫I型高通滤波器,通带纹波为10dB,下边界频率为400 / rad s ,并绘出其幅频响应曲线 设计过程1.系统设计方案 1.1 Matlab的简介和主要功能: 简介:MATLAB 是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。使用 MATLAB,您可以较使用传统的编程语言(如 C、C++ 和 Fortran)更快地解决技术计算问题。 MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用 MATLAB 函数集)扩展了 MATLAB 环境,以解决这些应用领域内特定类型的问题。 MATLAB 提供了很多用于记录和分享工作成果的功能。可以将您的 MATLAB 代码与其他语言和应用程序集成,来分发您的 MATLAB 算法和应用。 主要功能:1.此高级语言可用于技术计算 2.此开发环境可对代码、文件和数据进行管理 3.交互式工具可以按迭代的方式探查、设计及求解问题 4.数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数值 积分等 5.二维和三维图形函数可用于可视化数据 6.各种工具可用于构建自定义的图形用户界面 7.各种函数可将基于 MATLAB 的算法与外部应用程序和语言(如 C、 C++、Fortran、Java、COM 以及 Microsoft Excel)集成 1.2 开发算法和应用程序 开发算法和应用程序 MATLAB 提供了一种高级语言和开发工具,使您可以迅速地开发并分析算法和应用程序。

滤波器的基本技术指标与设计方法

对于滤波器的幅频响应,通常把能通过的信号频率范围定义为通带,而把受阻或衰减的信号频率范围称为阻带,通带和阻带之间的界限频率称为截止频率。对于理想的滤波器在通带内具有零衰减的幅频响应,而在阻带内具有无限大的衰减,这种突变的衰减在物理上是不可实现的,实际的滤波器通常在通带和阻带之间有一个过渡带,而且在通带内无法实现没有衰减,在阻带内无法实现无限大衰减,通常有一个容限。图3.25给出了四种滤波器参数的含义https://www.wendangku.net/doc/2b15939238.html,/article/show-2280.htm 图中δ1和δ2分别为通带和阻带的容限,在设计时通常给出通带允许的最大衰减αp和阻带应达到的最小衰减αs。滤波器的衰减定义为 FIR数字滤波器可以根据要求直接设计,但是对于模拟滤波器和IIR数字滤波器的设计都是基于模拟低通滤波器的基础上进行设计。模拟滤波器的设计流程如图3.26所示。 其中有两个关键的设计步骤,一个就是原型变换,将其他类型的滤波器技术指标转换成模拟低通滤波器的技术指标;另外一个就是模拟低通滤波器设计。 IIR滤波器通常借助模拟滤波器的设计方法来设计。因为在数字滤波器之前,模拟滤波器在设计、应用方面已经有了很长时间,形成了完善的设计理论,并有丰富的设计数据积累和设计表格可以查询,所以在设计数字滤波器时借助模拟滤波器的设计方法是比较经济的。图3.27是IIR数字滤波器的设计流程图。

图中也有两个关键步骤,一个就是从数字域到模拟域的变换,这个变换实现了数字滤波器技术到模拟滤波器技术指标的转换,同样也实现了模拟滤波器系统函数到数字滤波器系统函数的转换;另外一个就是从模拟滤波器技术指标到相应的模拟滤波器的设计。 本资料属于购线网所有,如需转载,请注明出处,更多资料查看,请前往购线网!

数字滤波器原理

4.2经典数字滤波器原理 数字滤波是数字信号分析中最重要的组成部分之一,与模拟滤波相比,它具有精度和稳定性高、系统函数容易改变、灵活性强、便于大规模集成和可实现多维滤波等优点。在信号的过滤、检测和参数的估计等方面,经典数字滤波器是使用最广泛的一种线性系统。 数字滤波器的作用是利用离散时间系统的特性对输入信号波形(或频谱)进行加工处理,或者说利用数字方法按预定的要求对信号进行变换。 4.2.1数字滤波器的概念 若滤波器的输入、输出都是离散时间信号,那么该滤波器的单位冲激响应h(n)也必然是离散的,这种滤波器称为数字滤波器。当用硬件实现一个DF时,所需的元件是乘法器、延时器和相加器;而用MATLAB软件实现时,它仅仅需要线性卷积程序就可以实现。众所周知,模拟滤波器(Analog Filter,AF)只能用硬件来实现,其元件有电阻R,电感L,电容C及运算放大器等。因此,DF的实现要比AF容易得多,并且更容易获得较理想的滤波性能。 数字滤波器的作用是对输入信号进行滤波,就如同信号通过系统一样。对于线性时不变系统,其时域输入输出关系是: (4-1)若y(n)、x(n)的傅里叶变化存在,则输入输出的频域关系是: (4-2) 当输入信号x(n)通过滤波器h(n)后,其输出y(n)中不再含有的频率成分,仅使的信号成分通过,其中是滤波器的转折频率。 4.2.2经典数字滤波器的分类 经典数字滤波器按照单位取样响应h(n)的时域特性可分为无限冲激响应(IIR,I nfinite Impulse Response)系统和有限冲激响应(FIR,Finite Impulse Respo nse)系统。如果单位取样响应是时宽无限的h(n),则称之为IIR系统;而如果单位取样响应是时宽有限的h(n),,则称之为FIR系统。

用强跟踪滤波器的方法解决一类传感器故障

用强跟踪滤波器的方法解决一类传感器故障 于凤满,周玉国,徐志超 (青岛理工大学自动化工程学院,山东青岛266033) 摘要:针对一种常见的传感器恒偏差故障问题,提出一种基于强跟踪卡尔曼滤波传感器故障诊断的方法。仿真实验表明,强跟踪卡尔曼滤波算法是一种较好的非线性系统传感器故障诊断方法。 关键词:故障诊断;强跟踪滤波器;传感器;恒偏差;仿真 中图分类号:TP273文献标识码:A文章编号:1674-7720(2011)01-0066-03 Using strong tracking filter for solving a class of sensor fault Yu Fengman,Zhou Yuguo,Xu Zhichao (School of Automation,Qingdao Technological University,Qingdao266033,China) Abstract:In this paper,a common constant discrepancy sensor failure problem,the method of fault diagnosis based-on a strong tracking Kalman filter has been proposed.Finally,it was verified that,the algorithm of the strong tracking Kalman filter is a better method of nonlinear system fault diagnosis with simulation results. Key words:fault diagnosis;strong tracking filter;sensor;constant discrepancy;simulation 目前,对线性系统的参数估计技术已经比较成熟,可以采用传统的卡尔曼估计、最小二乘估计等方法来实现。而对复杂的时变、强耦合非线性系统,传统的扩展卡尔曼滤波器EKF(Extended Kalman Filter)由于其对系统参数变化不具有鲁棒性,在系统参数突变的情况下容易出现滤波误差增大(甚至发散)现象。另外,当扩展卡尔曼滤波器达到平稳的状态下,滤波增益阵会变得很小。当系统参数突变后,由于滤波增益阵不能迅速增大,所以会导致滤波器对状态突变跟踪能力极差,不能用于非线性系统参数估计。为了增强卡尔曼滤波器在参数突变情况下的鲁棒性和跟踪能力,清华大学的周东华教授等人提出了强跟踪滤波器STF(Strong Tracking Filter)的理论[1]。基于这种理论,本文提出一类关于非线性系统传感器恒偏差故障问题的检测与诊断方法,可用于估计故障的幅值。 实际控制系统的典型故障有:(1)执行机构及输出传感器的增益逐渐衰减或突然衰减,导致超出允许范围; (2)执行机构及输出传感器出现超限的阶跃型或缓变型输出偏差等。 1传感器恒偏差失效故障 考虑如下一大类离散非线性系统的状态估计问题: x(k+1)=f(k,u(k),x(k))+Γ(k)ν(k) y(k+1)=h(k+1,x(k+1))+e(k+1 ) (1) 其中:整数k≥0为离散时间变量;x∈R n为状态向量;u∈R q为确定性的输入量;y∈R m为输出向量;非线性函数f:R n×R q→R n,h:R n→R m具有关于状态的一阶连续偏导数;Γ∈R n×p为已知的矩阵;f,h关于状态连续可微;系统噪声ν(k)、测量噪声e(k)分别为高斯白噪声向量。 针对这一种传感器恒偏差故障建立其数学模型如下: x(k+1)=f(k,u(k),x(k))+Γ(k)ν(k) y(k+1)=h(k+1,x(k+1))+g(k+1)+e(k+1) g(k+1)=g(k),g(0)= → → → → → → → → →0 (2) 只有第J1,J2,…,J m1,J m1∈{1,2,…,m}输出传感器可能发生故障时,可得到下面的简化模型: x(k+1)=f(k,u(k),x(k))+Γ(k)ν(k) y(k+1)=h(k+1,x(k+1))+Dg(k+1)+e(k+1) g(k+1)=g(k),g(0)= → → → →→ → → → → → →0 (3) 其中:g(k)=[g J 1 (k),g J 2 (k),…,g Jm1(k)]T,D∈R m×m1,其第J i行、第i列元素为1,其余为零。 令:x e= x(k+1) g(k+1 →→ ) Γe(k)= Γ(k) →→ 66 《微型机与应用》2011年第30卷第1期

正弦跟踪滤波的原理以及它的作用

通过运行正弦跟踪滤波测试,可使数字信号分析(DSA)与振动控制系统(VCS)同步。这样做,正弦跟踪滤波系统可以具备更多的测量通道,与正弦扫频测试同步进行。COLA (恒定输出电平适配器)信号对这类测试至关重要。两台仪器通过振动控制器的 COLA 输出信号同步。在正弦控制试验中,该信号是一种恒压正弦波,其频率保持与驱动信号相同。正弦跟踪滤波测试被广泛应用于卫星测试,通常需要数百个输入通道。 ★报警/中止和数据记录 正弦跟踪滤波系统提供了额外的安全与限制功能。可以在需要监测振动水平的位置为特定的输入通道设置报警和中止限制。有了这个特性,可以设置更多的通道,并在任何通道超过指定的限制时用于启动警报或中止事件。通过正弦扫频跟踪系统对正弦控制测试进行监控,可以在屏幕上以可视和音频的方式显示告警,并显示相应的通道id信息。将配备的数字输出通道连接到控制器的紧急停止开关上,正弦控制测试可在任何通道超过其中止限制时自动停止。 当进行正弦扫频跟踪测试时,可以记录时间流数据。这对卫星测试至关重要。记录的数据可以用正弦扫频跟踪或其他分析模块进行重新分析,以便了解被测设备的振动情况。

★典型测试 如下图所示,一个典型的正弦扫频跟踪测试系统由一个振动控制器和一个动态信号分析仪组成。Spider-81振动台控制仪为VCS提供8个输入通道来运行正弦控制。通过将其输出2(与COLA信号) 连接到运行正弦扫频跟踪的Spider-80X 动态信号分析仪DSA模块的输入通道1,组合的系统提供了15个使用相同跟踪滤波器且完美同步的输入通道。随着更多的模块运用到Spider-80X,输入通道数将根据用户需求增加。 ★EDM配置 若要在Spider正弦控制器上配置COLA输出通道,请转到Config -> Miscellaneous -> Second Output选项卡,并将其设置为COLA Type 1:恒幅正弦;将幅值设为1 V。如果使用其他供应商的振动控制器,请确保它的COLA通道被设置为在恒定电压电平下扫描驱动频率。 要在分析器端设置正弦扫频跟踪测试,首先使用EDM创建一个测试。进入输入通道表,将通道1的通道类型设置为COLA。每个正弦扫频跟踪测试需要一个COLA通道。在本例中,第一个输入通道设置为COLA通道。当然,任何一个输入都可以是COLA输入通道。在Test Configuration下的Test parameters 选项卡中可以找到正弦扫频跟踪参数。所有的参数都应该匹配正弦控制器的设置。COLA的振幅由正弦控制器的COLA输出设置决定。低频和高频参数必须与正弦控制器的测试目标谱相匹配。 ★“数据复制功能”的历史及其变化 过去数据跟踪技术曾被广泛的应用,当时振动控制器只拥有很少的输入通道,但需要对数百个通道进行数据采集和分析。20年前,大多数振动控制器只

AD转换中常用的十种数字滤波法

在AD采集中经常要用到数字滤波,而不同情况下又有不同的滤波需求,下面是10种经典的软件滤波方法的程序和优缺点分析: 1、限幅滤波法(又称程序判断滤波法) 2、中位值滤波法 3、算术平均滤波法 4、递推平均滤波法(又称滑动平均滤波法) 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) 6、限幅平均滤波法 7、一阶滞后滤波法 8、加权递推平均滤波法 9、消抖滤波法 10、限幅消抖滤波法 1、限副滤波 A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 程序: /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) ) return value; else return new_value; } 2、中位值滤波法 A、方法:

连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 程序: /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } } return value_buf[(N-1)/2]; } 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点:

滤波器设计技术方案(DOC)

技术方案总体说明 宁夏佳盛远达铝镁新材料有限公司整流机组滤波补偿装置是依据招标文件提供的技术参数,并且参考了同等规模、同类负荷项目的基础上经进一步优化得出,主要参考工程如下: 一、本技术方案的特点 (1)无功补偿量的确定参考了上述项目的经验,确保不欠补也不过补。本方案设计单机组总安装容量26000kvar,基波补偿容量19700kvar。 (2)滤波装置设5次、7次以及11次高通滤波支路,其中5、7次单调谐支路以补偿为主,同时防止11次以下非特征谐波放大,11次(高通)作为主滤波通道,以滤除12脉特征谐波。 (3)滤波装置采用双星型中性点不平衡电流保护,该保护方式可以很灵敏地检测出电容器内部故障。同时在滤波支路中加装避雷器和中性点避雷器,以消除由于电容器投切过程中产生的过电压,保护第三绕组系统及电容器装置使其免受到过电压的冲击。 (4)装设滤波补偿成套装置后,公共考核点电能质量能够达到如下指标:滤波补偿装置在电解系列电流500 KA运行时,以及在8台机组和7台机组运行,以及全系列和半系列运行时,整流机组注入电网的谐波电流及谐波电压畸变率应满足GB/T14549-93国家标准的要求。电压总谐波畸变率THDu≤1%。 允许注入公共联接点的谐波电流允许值按国家标准要求考核。 在8套机组运行时,整流装置的总功率因数为≥0.95,任何运行情况下总功率因数≯1;在7套机组运行时,整流装置的总功率因数为≥0.90,在任何情况下运行均不会产生谐振。不损坏电容器等设备。 滤波通道设置5次、7次、11次共3个滤波通道,满足在任何运行方式(8套

机组运行或7套机组运行)时,供电系统均不发生谐振,且谐波含量均满足本技术要求中“允许注入公共联接点的谐波电流允许值”要求。 二、本次方案针对铝厂的特殊考虑 1、针对国内电解铝行业整流变第三绕组发生事故较多的现象,本方案采取以下措施来保证第三绕组的安全性。 装设谐波保护单元,当检测谐波电流超过设计整定值时跳开电容器。 安装PT柜,设相对地接地保护,发生相对地接地故障时先跳开电容器装置,如果故障未消除再跳开主变开关。 在滤波装置各支路中装设避雷器及中性点避雷器,消除投切电容器时作用在整个第三绕组系统的操作过电压。 2、关于电压升高对第三绕组的影响 考虑装入补偿装置后第三绕组电压的抬升,若投入26000kvar后,在额定档位时变压器计算得短路阻抗X13=0.356。 I c=26000/24/1.732=625A; △U= Ic*X13=0.356 *625≈223V; 所以,第三绕组实际电压按24.23kV考虑,本次方案设计的仿真计算均按照24.23的系统电压进行。 3、关于强磁场对设备的影响 由于距电容器较近处有500kA直流强磁场电源,我公司提供设备采取如下措施: 电容器采用不锈钢外壳,电容器框架、围栏及其附件采用低导磁材质,避免形成电磁环流。在二次回路中增加屏蔽线,我公司为设备配套的开关柜及PT柜均采用磁屏蔽措施,保护模块单独置于保护屏体内。

相关文档
相关文档 最新文档