文档库 最新最全的文档下载
当前位置:文档库 › 小型无人机飞控系统介绍与工作原理

小型无人机飞控系统介绍与工作原理

小型无人机飞控系统介绍与工作原理
小型无人机飞控系统介绍与工作原理

飞控系统是无人机的核心控制装置,相当于无人机的大脑,是否装有飞控系统也是无人机区别于普通航空模型的重要标志。在经历了早期的遥控飞行后,目前其导航控制方式已经发展为自主飞行和智能飞行。导航方式的改变对飞行控制计算机的精度提出了更高的要求;随着小型无人机执行任务复杂程度的增加,对飞控计算机运算速度的要求也更高;而小型化的要求对飞控计算机的功耗和体积也提出了很高的要求。高精度不仅要求计算机的控制精度高,而且要求能够运行复杂的控制算法,小型化则要求无人机的体积小,机动性好,进而要求控制计算机的体积越小越好。

在众多处理器芯片中,最适合小型飞控计算机CPU的芯片当属TI公司的TMS320LF2407,其运算速度以及众多的外围接口电路很适合用来完成对小型无人机的实时控制功能。它采用哈佛结构、多级流水线操作,对数据和指令同时进行读取,片内自带资源包括16路10位A /D转换器且带自动排序功能,保证最多16路有转换在同一转换期间进行,而不会增加CPU 的开销;40路可单独编程或复用的通用输入/输出通道;5个外部中断;集成的串行通信接口(SCI),可使其具备与系统内其他控制器进行异步(RS 485)通信的能力;16位同步串行外围接口(SPI)能方便地用来与其他的外围设备通信;还提供看门狗定时器模块(WDT)和CAN通信模块。

飞控系统组成模块

飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。按照功能划分,该飞控系统的硬件包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。

模块功能

各个功能模块组合在一起,构成飞行控制系统的核心,而主控制模块是飞控系统核心,它与信号调理模块、接口模块和舵机驱动模块相组合,在只需要修改软件和简单改动外围电路的基础上可以满足一系列小型无人机的飞行控制和飞行管理功能要求,从而实现一次开发,多型号使用,降低系统开发成本的目的。系统主要完成如下功能:

(1)完成多路模拟信号的高精度采集,包括陀螺信号、航向信号、舵偏角信号、发动机转速、缸温信号、动静压传感器信号、电源电压信号等。由于CPU自带A/D的精度和通道数有限,所以使用了另外的数据采集电路,其片选和控制信号是通过EPLD中译码电路产生的。

(2)输出开关量信号、模拟信号和PWM脉冲信号等能适应不同执行机构(如方向舵机、副翼舵机、升降舵机、气道和风门舵机等)的控制要求。

(3)利用多个通信信道,分别实现与机载数据终端、GPS信号、数字量传感器以及相关任务设备的通信。由于CPU自身的SCI通道配置的串口不能满足系统要求,设计中使用多串口扩展芯片28C94来扩展8个串口。

系统软件设计

该系统的软件设计分为2部分,即逻辑电路芯片EPLD译码电路的程序设计和飞控系统的应用程序设计。

逻辑电路程序设计

EPLD 用来构成数字逻辑控制电路,完成译码和隔离以及为A/D,D/A,28C94提供片选信号和读/写控制信号的功能。该软件的设计采用原理图输入和 VERILOG HDL语言编程的混合设计方式,遵循设计输入→设计实现→设计校验→器件编程的流程。系统使用了两片ispLSI1048芯片,分别用来实现对 A/D,D/A的控制和对串口扩展芯片28C94的控制,参数来源于翼趣无人机网。

系统应用程序设计

由于C语言不但能够编写应用程序、系统程序,还能像汇编语言一样直接对计算机硬件进行控制,编写的程序可移植性强。由于以DSP为核心设计的系统中涉及到大量对外设端口的操作,以及考虑后续程序移植的工作,所以飞控系统的应用程序选用BC 3.1来设计,分别实现飞行控制和飞行管理功能。

软件按照功能划分为4个模块:时间管理模块、数据采集与处理模块、通信模块、控制律解算模块。通过时间管理模块在毫秒级时间内对无人机进行实时控制;数据采集模块采集无人机的飞行状态、姿态参数以及飞行参数、飞行状态及飞行参数进行遥测编码并通过串行接口传送至机载数据终端,通过无线数据信道发送到地面控制站进行飞行监控;姿态参数通过软件内部接口送控制律解算模块进行解算,并将结果通过D/A通道送机载伺服系统,控制舵机运行,达到调整、飞机飞行姿态的目的;通信模块完成飞控计算机与其他机载外设之间的数据交换功能。

利用高速DSP控制芯片在控制律计算和数据处理方面的优势及其丰富的外部资源,配合大规模可编程逻辑器件CPLD以及串行接口扩展芯片28C94设计小型机载飞控计算机,以其为核心设计的小型无人机飞控系统具有功能全,体积小,重量轻,功耗低的特点,很好地满

足了小型无人机对飞控计算机高精度、小型化、低成本的要求。该设计已成功应用于某验证无人机系统。

大疆无人机飞控系统的秘密就靠它们了

大疆无人机飞控系统的秘密就靠它们了 飞行控制系统的主要功能是控制飞机达到期望姿态和空间位置,所以这部分的感知技术主要测量飞机运动状态相关的物理量,涉及的模块包括陀螺仪、加速度计、磁罗盘、气压计、GNSS模块以及光流模块等。另一个用途是提供给无人机的自主导航系统,也就是路径和避障规划系统,所以需要感知周围环境状态,比如障碍物的位置,相关的模块包括测距模块以及物体检测、追踪模块等。 陀螺仪目前商用无人机普遍使用的是MEMS技术的陀螺仪,因为它的体积小,价格便宜,可以封装为IC的形式。MEMS式陀螺仪常用来测量机体绕自身轴旋转的角速率,常用的型号有6050A(Invensense),ADXRS290(ADI),衡量陀螺仪性能的指标包括测量范围(量程)、灵敏度、稳定性(漂移)以及信噪比等。 上面是一个陀螺仪温度漂移测试结果图,测试的环境是从25℃升温至50℃,整个过程保持陀螺仪静止不动,陀螺仪的准确输出应该是一个固定的数值。但从结果来看,两款传感器的实际输出都受到温度变化影响。相比而言,ADXRS290(ADI)的输出数值变化幅度较小,基本上在0.5左右。 加速度计加速度计测量的是机体运动的线加速度,但由于地球引力,测量值中还会包含重力加速度分量,在某些使用情况下需要把这部分减去。常用的MEMS加速度计传感器型号有6050A(Invensense)和ADXL350(ADI)。部分传感器生产商为了提高芯片集成度,会将陀螺仪和加速度计封装在一起,称为六轴传感器,例如6050A(Invensense)。 磁罗盘磁罗盘测量的物理量是地球磁场强度沿机体轴的分量,并依此计算出机体的航向角。常用的MEMS磁罗盘传感器型号有HMC5983L(Honeywell)和QMC5883L(矽睿),两者性能相近,其中前者目前已经停产。磁罗盘主要的性能参数包括灵敏度、稳定性(漂移)等。 气压计气压计测量的物理量是大气压值,根据该数值可计算出绝对海拔高度。常用的气压

小型无人机飞控系统介绍与工作原理

飞控系统是无人机的核心控制装置,相当于无人机的大脑,是否装有飞控系统也是无人机区别于普通航空模型的重要标志。在经历了早期的遥控飞行后,目前其导航控制方式已经发展为自主飞行和智能飞行。导航方式的改变对飞行控制计算机的精度提出了更高的要求;随着小型无人机执行任务复杂程度的增加,对飞控计算机运算速度的要求也更高;而小型化的要求对飞控计算机的功耗和体积也提出了很高的要求。高精度不仅要求计算机的控制精度高,而且要求能够运行复杂的控制算法,小型化则要求无人机的体积小,机动性好,进而要求控制计算机的体积越小越好。 在众多处理器芯片中,最适合小型飞控计算机CPU的芯片当属TI公司的TMS320LF2407,其运算速度以及众多的外围接口电路很适合用来完成对小型无人机的实时控制功能。它采用哈佛结构、多级流水线操作,对数据和指令同时进行读取,片内自带资源包括16路10位A /D转换器且带自动排序功能,保证最多16路有转换在同一转换期间进行,而不会增加CPU 的开销;40路可单独编程或复用的通用输入/输出通道;5个外部中断;集成的串行通信接口(SCI),可使其具备与系统内其他控制器进行异步(RS 485)通信的能力;16位同步串行外围接口(SPI)能方便地用来与其他的外围设备通信;还提供看门狗定时器模块(WDT)和CAN通信模块。 飞控系统组成模块 飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。按照功能划分,该飞控系统的硬件包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。 模块功能 各个功能模块组合在一起,构成飞行控制系统的核心,而主控制模块是飞控系统核心,它与信号调理模块、接口模块和舵机驱动模块相组合,在只需要修改软件和简单改动外围电路的基础上可以满足一系列小型无人机的飞行控制和飞行管理功能要求,从而实现一次开发,多型号使用,降低系统开发成本的目的。系统主要完成如下功能: (1)完成多路模拟信号的高精度采集,包括陀螺信号、航向信号、舵偏角信号、发动机转速、缸温信号、动静压传感器信号、电源电压信号等。由于CPU自带A/D的精度和通道数有限,所以使用了另外的数据采集电路,其片选和控制信号是通过EPLD中译码电路产生的。

无人机飞控系统的原理、组成及作用详解

无人机飞控系统的原理、组成及作用详解 无人机已经广泛应用于警力、城市管理、农业、地质、气象、电力等领域,无人机的飞控系统、云台、图像传输系统都是关键部分。无人机飞控系统作为其大脑具体的作用是什么?由哪些部分组成?在设计时应该注意哪些问题? 无人机飞控的作用无人机飞行控制系统是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统,是无人机的大脑,也是区别于航模的最主要标志,简称飞控。 固定翼无人机飞行的控制通常包括方向、副翼、升降、油门、襟翼等控制舵面,通过舵机改变飞机的翼面,产生相应的扭矩,控制飞机转弯、爬升、俯冲、横滚等动作。不过随着智能化的发展,无人机已经涌现出四轴、六轴、单轴、矢量控制等多种形式。 传统直升机形式的无人机通过控制直升机的倾斜盘、油门、尾舵等,控制飞机转弯、爬升、俯冲、横滚等动作。多轴形式的无人机一般通过控制各轴桨叶的转速来控制无人机的姿态,以实现转弯、爬升、俯冲、横滚等动作。飞控的作用就是通过飞控板上的陀螺仪对无人机进行控制,具体来说,要对四轴飞行状态进行快速调整,如发现右边力量大,向左倾斜,那么就减弱右边电流输出,电机变慢、升力变小,自然就不再向左倾斜。如果没有飞控系统,四轴飞行器就会因为安装、外界干扰、零件之间的不一致等原因形成飞行力量不平衡,后果就是左右、上下地胡乱翻滚,根本无法飞行。 无人机飞控的工作过程飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任

基于实时操作系统的无人机飞行控制系统设计综述

电子电路设计与方案 0 引言 无人机是一种由动力驱动,无人驾驶且重复使用的航空器简称。其体积小、成本低,可装配制导系统、机载雷达系统、传感器及摄像机等设备,用途广泛并且不易造成人员伤亡[1]。无人机飞行控制系统是一个多任务系统, 要求不仅能够采集传感器数据、进行飞控/导航计算、驱动执行机构等, 还要求可靠性高、实时性强[2]。由于传统无人机所运用的数据复杂且繁多,使其在操作上灵活度不高,不具有实时性。实时操作系统会简化复杂的数据,将数据集合化,条理化。如将实时操作系统应用于无人机中,能够完善功能检查,功能维护,做到实时性,高灵活性,并延长无人机的使用寿命。近年来学术界在性能、应用等方面对搭载了实时操作系统的无人机进行了深入研究,极大地推动了无人机的发展。文献[4]从机构设计和飞行控制两方面介绍了微小型四旋翼飞行器的发展现状,叙述了小型四旋翼飞行器的发展技术路线。在飞控系统的原理和功能层面,文献[3]主要利用UML例图来系统地描述了飞控系统的构造,并从整体、静态、动态角度刻画飞控系统的性能指标;文献[5]阐述了飞控系统的基本原理并引入实时内核,对调度管理和通信机制给出了详细设计和分析。本文将回顾并总结在无人机领域的发展问题,并对无人机的飞控系统设计进行综述。 1 无人机整体概述 ■1.1 发展背景及发展历程 无人驾驶飞机是一种有动力、可控制、能携带多种任务设备、执行多种任务,并能重复使用的无人驾驶航空器,简称无人机,英文上常用unmanned aerial vehicle表示,缩写为UAN。早在1907年,Bruet—Richet就让世界上第一架四旋翼飞行器“Gyroplane No.1”升上了天空[6]。但由于构造复杂、不易操纵等原因,大型四旋翼飞行器的发展一直都比较缓慢。20世纪60、70年代,随着美苏之间冷战形式的加剧,无人机得到了广泛应用。美国将无人机用语军事侦察,情报获取,无线电干扰等军用属性。近年来,随着新型材料以及飞行控制等技术的进步,无人机逐渐向微小型、实时性、可操作性强的方向过渡。微小型四旋翼飞行器的迅速发展,逐渐成为人们关注的焦点。 ■1.2 无人机应用领域 无人机在军用领域及民用领域都得到广泛应用。在军用领域,可用作战术无人侦察机执行侦察搜索[7]、无人战斗机、训练飞行员的靶机等。在民用领域,利用它易操作、实时性好等特点,广泛运用于农业、种植业、林牧业、旅游业、拯救濒危物种等各个领域。 2 无人机硬件结构 ■2.1 无人机结构 无人机的动力组成主要为无刷电机、螺旋桨、电子调速器等,控制系统主要由飞行控制器、遥控器等组成,动力储 备由电池、充电器等组成。其结构组成示意图如图1所示。 图1 ■2.2 飞行控制系统 无人机飞行控制系统是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统。 无人机飞控主要由陀螺仪,加速计,地磁感应,气压传感器,超声波传感器,光流传感器,GPS模块,以及控制电路组成[9]。无人机飞控内含测量飞行控制所需的测量元件及利用输出信号驱动旋翼转动的执行机构等。 无人机飞控可将遥控器的输入命令对应电机动力的输出大小,并将飞控感知量与期望姿态产生误差进行对比,通过PID进行调节。利用地面站查看实时飞行数据,实现控制参数的在线修改。根据飞行的指令和要求,结合空置率给 基于实时操作系统的无人机飞行控制系统设计综述 崔圣钊 (山东省青州第一中学,山东青州,262500) 摘要:小型四旋翼无人机广泛应用在专业级航拍、农业植保、军事侦察、设备巡检等领域。目前飞行控制系统多采用前后台系统来实现,当系统规模较大,处理模块增多时,实时性很难得到保障。本文首先对无人机领域发展情况进行概述,其次详细阐述了无人机的外部结构、部件功能等硬件组成,最后对无人机通过实时操作系统设计后的飞控系统控进行分析。通过分析可知,经过实时操作系统设计的飞行控制系统能够满足飞行要求,并具有一定的实时性、可靠性。 关键词:无人机;飞行控制系统;实时操作系统;四旋翼飞行器 www?ele169?com | 23

(完整版)无人机飞行控制系统仿真研究本科生毕业论文

1 绪论 本章先主要介绍了无人机进无人机的特点,国内外研究现状和发展趋势及这篇文章的主要内容安排。 1.1无人机概述 无人机即无人驾驶飞机,也称为遥控驾驶飞行器,是机上没有驾驶员,靠自身程序控制装置操纵,自动飞行或者由人在地面或母机上进行遥控的无人驾驶飞行器,在它上面装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统实现远距离控制飞行。无人机大体上由无人机载体、地面站设备(无线电控制、任务控制、发射回收等起降装置)以及有效负荷三部分组成。 无人机在航空业已有一百年的历史了。第一驾遥控航模飞机于1909年在美国试飞成功。1915年10月德国西门子公司研制成功采用伺服控制装置和指令制导的滑翔炸弹,它被公认为有控的无人机的先驱。世界上第一架无人机是英国人于1917年研制的。这是一架无线电操纵的小型单翼机,由于当时的许多技术问题,所以试验失败。一直到1921年英国才研制成可付诸实用的第一驾靶机。1918年德国也研制成第一驾无人驾驶的遥控飞机。1920年简氏《世界各地飞机》首次提到无人机。20世纪30年代初无线电操纵的无人靶机研制成功。在20世纪40至50年代,无人机逐渐得到了广泛使用,但这时主要是作为靶机使用。世界各国空军于20世纪50年代大量装备了无人驾驶飞机作为空靶。进入20世纪60年代后,美国出于冷战需要,将无人机研究重点放在侦察用途方面,这标志着无人机技术开始进入了以应用需求为牵引的快速发展时代。 由于无人机具有低成本、零伤亡、可重复使用和高机动等优点,因此

深受世界各国军队的广泛欢迎,近年来得到了快速发展。对于无人机而言,其自动飞行控制系统的设计是至关重要的,它的优劣程度直接影响到无人机各项性能(包括起飞着陆性能、作业飞行性能、飞行安全可靠性能、系统的自动化性和可维护性等)。因此,研究无人机的自动飞行控制技术具有十分重要的现实意义,尤其是在军事上的重要性己经得到国内外的高度重视,而无人机飞行控制系统是无人机能够安全、有效地完成复杂战术、战略使命的基本前提,因此迫切需要加强该领域的研究工作。 无人机的研制早在 20 世纪初就开始了,几乎与有人机同步,自30年代国外首次采用无线电操纵的模型飞机作为靶机以后,无人机的发展十分迅速。40年代,低空低速的小型活塞式靶机投入使用。50年代出现了高亚音速和超音速高性能的靶机,世界各国空军开始大量装备无人机作为空靶。60年代以后,随着微电子技术、导航与控制技术的发展,一些国家研制了无人驾驶侦察机,美国率先研制成功无人驾驶侦察机,并开始用于越战。无人机受到越来越多国家的青睐,发展迅猛。在1982年的中东战争中,以色列在贝卡谷地交战中,用“侦察兵”和“猛犬”无人机诱骗叙军的地空导弹的制导雷达开机,侦查获取了雷达的工作参数并测定了其所在位置。无人机的飞速发展是在海湾战争后,以美国为首的多国部队的无人机在海湾战争中成功地完成了战场侦察、火炮校射、通信中继和电子对抗任务。无人机的研制成功和战场运用,揭开了以远距离攻击型智能化武器、信息化武器为主导的“非接触性战争”的新篇章,由此引发了无人机及其飞行控制研究的热潮。 美国、英国、法国、德国、以色列、澳大利亚等国都针对这个领域投入了相当的研究力量。究其原因,用无人机替代有人驾驶飞机可以降低生产成本,便于运输、维修和保养,而且不用考虑人的生理和心理承受极限。未来无人机在军事和民事上都有广泛的应用前景。在军事领域,采用无人

双gpsins组合导航系统在无人机飞控系统的应用终审稿)

双G P S I N S组合导航系统在无人机飞控系统的 应用 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

双GPS+INS组合导航系统在无人机飞控系统的应用 1背景 无人驾驶飞机是一种有动力、可控制、能携带设备、执行多种任务、并能重复使用的无人驾驶航空器,简称无人机(Unmanned AenM Vehicle缩写UAV)。自1913年世界上出现第一个自动驾驶仪以来,无人机受到越来越多国家的重视,发展迅猛。目前从事研究和生产无人机的有中国、美国、俄罗斯、以色列、法国、英国和南非等近3O个国家,无人机基本型数量已增加到多种。鉴于其独有的低成本、低损耗、零伤亡、可重复使用和高机动等诸多优势,其使用范围已拓宽到军事、民用和科学研究三大领域。在军事上可用于照相侦察、信号情报搜集、布撒雷达干扰箔条、防空火力诱饵、防空阵地位置标识、直升机航路侦察,为武器系统提供目标定位、目标指示、目标动态监视和目标毁伤评估的实时情报等;在民用上,可用于农作物种植和施播、救护定位、桥梁大坝检测、输油管、天然气管道、悬挂电缆、铁路、高压线的监视,公路交通及危险品的运输监视等;在科学研究上,可用于大气研究、对核生化污染区的取样与监控、新技术新设备与新飞行器的试验验证等。随着航空技术的发展以及对无人机越来越广泛的需求,无人机飞控系统向着高精度、小型化、数字化方向发展。高精度要求无人机的导航控制精度高、稳定性好、并且实时性要求高,能够适应复杂的外界环境,因此控制和信号处理算法比较复杂、计算速度快、精度高。小型化则对驾驶仪系统的重量和体积提出了更高的要求,要求处理和控制计算机的性能越高越好,体积越小越好。这些条件在设计系统时都要综合考虑以达到最优化的性能设计。

相关文档