文档库 最新最全的文档下载
当前位置:文档库 › 微纳米生物技术及其在药物研发方面的应用续

微纳米生物技术及其在药物研发方面的应用续

微纳米生物技术及其在药物研发方面的应用续
微纳米生物技术及其在药物研发方面的应用续

微纳米生物技术及其在药物研发方面的应用(续)

(7)生物分子马达 (Biomolecular Motors) :分子马达是一种分子机械,它是分子尺度(纳米尺度)下的一种复合体,能够作为机械零件的最小实体。驱动方式是透过外部的刺激(如化学、电化学、光化学等方法),使分子结构或模型发生较大变化,且这种变化是可以被控制及调整,具有可预期的规则性,进而使整个体系在理论上具有对外机械作功的可能性。由于马达是机器运转的核心,若将生物分子马达利用微机电技术再接上其它东西,可制造出纳米机器人等。生物分子马达的相关研究,目前遭遇到的最大困难在于作用时的稳定性问题,这些生物分子仅能够在狭窄的温度范围与离子强度下运作,在有机溶液或空气中都无法作用。

(8)核酸计算机 (DNA computer):DNA计算机的应用原理是基于DNA分子中的密码相当于数据的储存,DNA分子间可以在酵素作用下瞬间完成生化反应,从一种基因代码变成另一种基因代码。如果将反应前的基因代码作为输入数据,反应后的基因代码即为运算结果。DNA计算机运算速度极快,几天的运算量就相当于计算机问世以来的总运算量,储存容量也非常大,超过目前所有计算机的储存量,但所耗的能量极低,只有一台普通计算机的十亿分之一。

其中将微纳米技术应用到药物研究中治疗一些疾病是最受人们关注的,在近期的研究中,研究人员利用TD微纳米生物芯片中医消融法,推动了甲状腺结节治疗技术发展。甲状腺结节是甲状腺专科常见的内分泌疾病,在我们日常忙碌的生活中甲状腺结节一般情况下都是因为甲亢治疗不及时所引发的,这种情况下患者很难通过自己观察发现,通过常规体检会检查出甲状腺结节病发,不同程度病

情患者发生的病情危害是不一样的,盲目治疗往往会造成并发症,以及反复发作现象,最终来看病情还是严重了,那么,究竟治疗甲状腺结节有没有一种一次治疗效果彻底的方法呢,医学专家推荐“TD微纳米生物芯片中医消融法”该疗法运用传统中医药学结合国际先进物理治疗仪器成功突破了传统疗法束缚,临床推广阶段成功为近十万患者扫清了结节障碍,给技术极大的促进了甲状腺结节治疗技术的发展。

TD微纳米生物芯片中医消融法不仅可以调节神经与内分泌系统的功能活动,还可以恢复机体的免疫功能,以达到巩固疗效标本兼治和抗复发的目的。避免手术治疗所造成的不可逆的和破坏性的不良后果,也可避免患者长期服用西药的成瘾性和依赖性及毒副作用,安全、高效、不复发。治疗甲亢病疗效独特、显著、无毒副作用,给患者在治疗上提供了非常大的方便。

制备药物的主要原理是基于微纳米生物技术是用一种特殊的物理制备技术,在常温条件下,将鲜活的中药原材料进行纳米级(或亚微米级)的超微破碎,一方面将药材本身的细胞壁(膜)完全击破,使细胞中最为重要的核酸物质和其他有效活性成分充分溢出.另一方面将有效成分的大分子物质破碎成能被人体直接吸收的小分子颗粒悬浮在原生母液中,再采用特殊的保鲜方法将活性有效成分完好地保持在本然的鲜活状态.

这项技术进入医药领域后,在医药制剂业掀起了新的一场变革,为药品,保健品的加工工艺提供了全新的技术思路和解决方案.微纳米生物技术的特性物料颗粒细化比表面积大:微纳米生物技术的主要特性是使物料颗粒细化,颗粒粒子则比表面积大,其溶解性能则好.药物和保健品的固体制剂首先要崩解,分散成细颗粒,然后溶解于人体的胃肠液,通过生物膜进入血液循环,发生疗效.所以,药物和保健

品的颗粒细度和溶解速度对其吸收有重要影响.对难溶性药物(如灰黄霉素)和保健品(如鹿茸片和西洋参片)来说,这一影响更为明显,因此采用超细技术将固体制剂和物料超细粉碎成细小颗粒,从而增加其比表面积,是提高药物和保健品疗效的有效方法之一。

21世纪,微纳米生物技术领域将会有新的发展,其开发领域有四大重点方向第一,对癌症等绝症顽病的超细纳米药物开发,如灵芝破壁孢子粉,靶向释药等,将抗肿瘤药物连接在磁性超微粒子上作为生物导弹,定向消灭癌细胞:第二,对治疗心血管疾病的超细纳米材料的研制第三,对液体药物和生物制药进行超细纳米技术性能开发研制新药:第四,以名贵中草药和保健品的超细开发为研发方向.另外,用微纳米生物技术开发中草药也具有广阔的前景。

参考文献

[1] GOODMAN S L,SIMS P A,ALBRECHT R M.Three dimensional extracellular matrix textured biomaterials『J].Biomaterials,1996,17(21):2087-2095.[2] PAMULAE,De CUPERE V,DUFRENE Y F,et a1.Nanoscale organization of adsorbed collagen:influence of substrate hydrophobicity and adsorption time[J].J Colloid Interf Sci,2004,271(1):80-91.

[3] BOZECL,van der HEHDEN G,HORTON M.Collagen fibrils:nanoscale ropes[J].Biophys J,2007,92(1):70-75.

[4] BETI'INGER C J,LANGER R,BORENSTEIN J T.Engineering substrate topography at the micro—and nanoscale to control cell function[J].Angew Chem Int Edit,2009,48(30):5406-5415.

[5] ZHOU F,YUAN L,HUANG H,et a1.Phenomenon of“contact guidance” on the surface with nano microgroove like pattern and cell physiological effects[J]. Chinese Sci Bull,2009,54(18):3200-3205.

[6] GERECHT S,BETrlNGER C J,ZHANG Z,et a1.The effect of actin disrupting agents on contact guidance of human embryonic stem cells[J].Biomaterlals,2007,28(28):4068-4077.

[7] HAMILTON D W,OAKLEY C,JAEGER N A F,et a1.Directional change produced by perpendicularly oriented microgrooves is microtubule dependent for fibroblasts and epithelium[J].Cell Motil Cytoskel,2009,66(5):260-271.

[8] YIM E K F,PANG S W,LEONG K W.Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage[J].Exp Cell Res,2007,313(9):l82O-l829.

[9] ENGLER A J,SEN S,SWEENEY H L,et a1.Matrix elasticity directs stem cell lineage specification[J].Cell,2006,126(4):677-689.

[10] TAN J L,TIEN J,PIRONE D M,et a1.Cells lying on a bed of microneedles:an approach to isolate mechanical force[J].Proc Natl Acad Sci USA,2003,100(4):1484-1489.

[11] FU J P,WANG Y K,YANG M T,et a1.Mechanical regulation of cell function with geometrically modulated elastomeric substrates[J].Nature Methods,2010,7(9):733-736.

[12] MATSUZAKA K,WALBOOMERS X F,de RUIJTER J E,et a1.The effect of poly L lactic acid with parallel surface microgroove on osteoblast—like cells in vitro[J].Biomaterials,1999,20(14):1293-1301.

[13] YANG Y,KUSANO K,FREI H,et a1.Mierotopographical regulation of adult bone marrow progenitor cells chondrogenic and osteogenic gene and protein expressions[J].J Biomed Mater Res Part A,2010,95A(1):294-304.

微生物学实验知识点总结与实践应用

微生物实验知识总结与实践应用经过这学期学习和实验操作,我对《微生物实验》有了一些初步的认识,也从中学习到了有用的知识。《微生物学实验》是要求我们掌握实验知识的基本操作和技能训练,初步了解和掌握先进的技术和方法,与迅速发展的科学前沿接轨。微生物:包括细菌、病毒、真菌以及一些小型的原生动物、显微藻类等在内的一大类生物群体,它个体微小,却与人类生活关系密切。涵盖了有益有害的众多种类,广泛涉及健康、食品、医药、工农业、环保等诸多领域。我将我这学期学到的微生物学知识,结合生活和工业当中的一些应用,归纳如下:在吾尔恩老师的带领下,我们先从最基本的知识学起。 (1)无菌操作技术:高温对微生物具有致死效应,因此微生物在转接过程中,一般再火焰旁进行,并用火焰直接灼烧接种环,已达到灭菌的目的。在做实验时要保持严谨的态度,以后的实验中多数操作都必须再火焰旁进行。 (2)培养基的制备:培养基是人工配置的生物生长繁殖或积累代谢产物的营养基质,用以培养、分离、鉴别微生物或积累代谢产物。自然界中培养基的种类很多,但是不同的培养基中,一般含有水分、碳源、氮源、无机盐和生长因子等,不同类别的微生物对PH值的要求一般不同。 (3)消毒与灭菌:灭菌是用理化方法杀死一定物质中的微生物的微生物学基本技术。灭菌的彻底程度受灭菌时间与灭菌剂强度的制约。微生物对灭菌剂的抵抗力取决于原始存在的群体密度、菌种或

环境赋予菌种的抵抗力。灭菌是获得纯培养的必要条件,也是食品工业和医药领域中必需的技术。是指用物理或化学的方法杀灭全部微生 物,使之达到无菌保障水平。经过灭菌处理后,未被污染的物品,称无菌物品。经过灭菌处理后,未被污染的区域,称为无菌区域。 (4)平板分离与活菌计数:平板分离计数法是将待测菌液经适当稀释,涂布在平板上。经培养后在平板上形成肉眼可见的菌落。根据稀释倍数和取样量计算出样品中细胞密度。平板分离法主要有:1.平板划线分离法。2.稀释涂布平板法。 (5)革兰氏染色法:革兰氏染色法可将细菌分为革兰氏阳性细菌(G+)和革兰氏阴性细菌(G-)两种类型。这是两种细菌细胞壁结构和组成的差异决定的。大肠杆菌是革兰氏阴性杆状细菌,金黄色葡萄球菌是革兰氏阳性细菌,经过革兰氏染色后两者呈现不同的颜色,在显微镜下便于进行观察…… 我们学习微生物实验技术,就是要把微生物的实验技能应用于实践生产,培养繁育细菌收集细菌代谢产物,应用于药业、工业,产生经济利益。制备培养基是微生物实验技术操作的重要环节,按照培养基的功能分类培养基的类型有:1.选择培养基。2.鉴别培养基。在工业生产中常常应用于培养微生物的主要是-发酵罐。我将微生物在生产生活中的应用总结如下: 微生物技术的应用在当今社会中已取得了很大的作用,在工业、农业、医药业、畜牧业等各个行业中都取得了长足的进展,但相对于

2019抗菌药物临床应用指导原则答案

下列不属于第一代头孢菌素类药物的是D、头孢克洛 下列不属于梅毒治疗应选的药物是()D、甲硝唑 下列不属于治疗皮肤炭疸的药物是()D、甲硝唑 下列关于布鲁菌病说法错误的是()D、属丙类传染病 下列关于鼠疫说法错误的是()D、属乙类传染病 下列关于性传播疾病说法正确的是()D、同时检查和治疗性伴侣 下列属于第四代头孢菌素的是()D、头孢吡肟 小于5岁的要幼儿脓胸,常见病原菌为(D、黄色葡萄球菌、肺炎链球菌、流感嗜血杆菌 胸外科手术(食管、肺)Ⅱ类手术切D、大肠杆菌 口,不太可能含有污染菌是() 氧头孢烯类抗菌药物使用注意事项不包D、在治疗期间及治疗结束后3天内禁酒括() 以下哪种抗菌药物可以引起灰婴综合征D、氯霉素 以下情况原则上不应预防使用抗菌药物D、普通感冒、麻疹 因颅底骨折导致化脓性脑膜災,可能的D、肺炎链球菌、流感嗜血杆菌、A组 致病菌为( 溶血性链球菌 因溶血性链球菌感染发生的非化脓性并D、10 发症,抗菌治疗疗程需()天 引起淋巴管炎及急性犛窝织炎最常见的D、A组溶血性链球菌 病原菌是() 支气管扩张合并急性细菌感染,最常见D、铜绿假单胞薗 的病原菌为() 治疗B组链球菌所致的细菌性脑膜炎及脑D、氨苄西林或青霉素+氨基糖苷类 脓肿,直选药物为() 治疗不动杆菌属所致的医院获得性肺D、氨苄西林/舒巴坦,头孢哌到/予巴坦 ,直选药物() 治疗草绿色链球菌所致的感染性心内膜D、青莓素+庆大霉素 炎,宜选药物为() 治疗头癬的首选药物是() D、灰黄霉素 ()是新大环内酯类抗生素 E、阿奇霉素 ()与軍胞嘧啶联合治疗隐球薗脑膜炎E、两性霉素B 时,前者的剂量可适当减少,以减少其 毒性反应 艾滋病患者隐球菌性脑膜炎的首选药物E、氯康唑 是() 初治菌阳/或菌阴结核疗程一般是()E、6 个月 达托霉素为()抗菌药物

纳米生物医学材料的应用

纳米生物医学材料的应用 摘要:纳米材料和纳米技术是八十年代以来兴起的一个崭新的领域,随着研究的深入和技术的发展,纳米材料开始与许多学科相互交叉、渗透,显示出巨大的潜在应用价值,并且已经在一些领域获得了初步的应用。本文论述了纳米陶瓷材料、纳米碳材料、纳米高分子材料、微乳液以及纳米复合材料等在生物医学领域中的研究进展和应用。 关键字:纳米材料;生物医学;进展;应用 1. 前言 纳米材料是结构单元尺寸小于100nm的晶体或非晶体。所有的纳米材料都具有三个共同的结构特点:(1)纳米尺度的结构单元或特征维度尺寸在纳米数量级(1~100nm),(2)有大量的界面或自由表面,(3)各纳米单元之间存在着或强或弱的相互作用。由于这种结构上的特殊性,使纳米材料具有一些独特的效应,包括小尺寸效应和表面或界面效应等,因而在性能上与具有相同组成的传统概念上的微米材料有非常显著的差异,表现出许多优异的性能和全新的功能,已在许多领域展示出广阔的应用前景,引起了世界各国科技界和产业界的广泛关注。 “纳米材料”的概念是80年代初形成的。1984年Gleiter首次用惰性气体蒸发原位加热法制备成功具有清洁表面的纳米块材料并对其各种物性进行了系统研究。1987年美国和西德同时报道,成功制备了具有清洁界面的陶瓷二氧化钛。从那时以来,用各种方法所制备的人工纳米材料已多达数百种。人们正广泛地探索新型纳米材料,系统研究纳米材料的性能、微观结构、谱学特征及应用前景,取得了大量具有理论意义和重要应用价值的结果。纳米材料已成为材料科学和凝聚态物理领域中的热点,是当前国际上的前沿研究课题之一[1]。 2. 纳米陶瓷材料 纳米陶瓷是八十年代中期发展起来的先进材料,是由纳米级水平显微结构组成的新型陶瓷材料,它的晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都只限于100nm量级的水平[2]。纳米微粒所具有的小尺寸效应、表面与界面效应使纳米陶瓷呈现出与传统陶瓷显著不同的独特性能。纳米陶瓷已成为当前材料科学、凝聚态物理研究的前沿热点领域,是纳米科学技术的重要组成部分[3]。 陶瓷是一种多晶材料,它是由晶粒和晶界所组成的烧结体。由于工艺上的原因,很难避免材料中存在气孔和微小裂纹。决定陶瓷性能的主要因素是组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响,使材料的强度、韧性和超塑性大大

微生物学的应用习题参考答案

第十一章微生物学的应用习题参考答案 一、选择题 1-5. CDAAAAC;6. B 二、是非题 1-5. FFTFF;6-7. FT 三、填空题 1. 糖类化合物 2. 同型;异型 3. 自然;纯种 4. 深层培养;固体基质 5. 促进植物生长发育;增强抗寒抗旱;抗倒伏的能力;提高农作物的品质和产量 6. 高等植物叶绿素;蛋白质的合成;光合作用;养分的吸收和利用 7. 对病原菌的抑制作用;影响宿主或其他菌株的代谢活性;刺激机体的免疫系统;减缓乳 糖不适症 8. 瘤胃内氨;蛋白质;蛋白质;非氨态氮;植物酶活性,提高单胃动物对;磷 9. 谷氨酸;赖氨酸;苏氨酸;异亮氨酸;缬氨酸;精氨酸 10. 谷氨酸钠为鲜味剂;色氨酸和甘氨酸为甜味剂;赖氨酸为营养增强剂 11. 保护细胞;影响细胞移动;增殖和分化;影响细胞的吞噬功能;屏蔽细胞膜上的机械感 受器;调节合成细胞的能力;肿瘤 12. 深层通气发酵;固体通风发酵 13. 纯菌种的分离(用选择性培养法和平板分离法纯化得到);纯培养操作及其保障措施(高 温灭菌、空气除菌、无菌操作、认真贯彻执行生产操作规程等);纯培养空间(经过无菌处理并在无菌条件保障下的玻璃培养器皿及其培养箱、摇瓶及摇瓶培养室、各种类型的大小发酵罐及其补料等设备) 14. 寄生;拮抗;竞争 四、解释题

1. 菌根是土壤中某些真菌侵染植物根部,与其形成的菌-根共生体。与农业关系密切的是VA 菌根真菌,它是土壤共生真菌中宿主和分布范围最广的一类真菌。研究表明,V A菌根不但侵染的植物种类多,范围广,而且V A菌根的菌丝具有协助植物吸收磷类营养的功能。 2. 有机肥是利用历史最悠久、用量最大、综合效益俱佳的“多功能”微生物肥料,它实际上是动物排泄物、动植物残体被微生物部分或全部降解的混合物。它不但给作物提供养料,还能改善土壤的耕作性能。 3. 原位发酵又称分批发酵或分批培养,即在一个发酵罐或生物反应器中,投入一定量的发酵培养基,灭菌消毒后接入一定量的种子液,控制合适的发酵条件,让微生物在发酵罐中生长繁殖,当菌丝体增长到一定量后发酵过程自动转入次级代谢阶段,产生大量的目标产物(即药物)最后当产物的量不再明显增加时所有的发酵液一次性放出,进入分离纯化车间。 4. 以一定速度向发酵罐内连续供给新鲜培养基的同时,将含有微生物和产场的培养液以相同速度从发酵罐内放出,发酵罐内液量维持恒定。经过一定时问培养后,培养物就近似于恒定状态的生长和代谢,这时所有物质(营养物、产物、微生物细胞等)的浓度、环境的物理状态(如pH、DO)以及比生长速率等始终维持不变,即稳定状态。 5. 定向进化技术指人为地创造特殊的进化条件,模拟自然进化机制,在体外对基因进行随机突变,从一个或多个已经存在的亲本酶(天然的或者人为获得的)出发,经过基因的突变和重组,构建一个人工突变酶库,通过一定的筛选或选择方法最终获得预先期望的具有某些特性的进化酶。 6. 易错PCR(error prone PCR)是指在扩增目的基因的同时引入碱基错配,导致目的基因随机突变。 五、简答题 1. 单细胞生产常用原料有:糖蜜、亚硫酸盐纸浆废液、谷氨酸发酵废液、稻草、稻壳、玉米芯、木榍等的水解液;天然气、乙醇、乙烷等;乳制品和啤酒生产的废弃物; 发酵方法:深层通气发酵和固体通风发酵; 主要用途:作为单细胞食品;提取核苷酸、辅酶A、乳糖酶等医药及生物试剂; 主要菌种:产元假丝酵母、解脂假丝酵母、嗜石油假丝酵母等。 2. 原料;豆饼、麸皮、大麦、小麦和大豆等; 菌种:黄曲霉、米曲霉; 工艺流程:大豆等→熏蒸→接种→制曲→加盐和水→发酵→压滤→酱油。

微生物技术在城市生活垃圾处理中的应用(新编版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 微生物技术在城市生活垃圾处理中的应用(新编版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

微生物技术在城市生活垃圾处理中的应用 (新编版) 摘要:本文结合堆肥化、卫生填埋两种现行的城市生活垃圾处理工艺,主要介绍了城市生活垃圾生物处理过程中的微生物种群,以及通过分析开发出的新的微生物技术,指出了应用于城市生活垃圾处理的高效的微生物技术的研究方向。 关键词:城市生活垃圾微生物强化微生物处理技术基因工程 随着城市化进程在全球范围的加速,城市化带来的环境污染和人类聚居状况恶化等问题,已成为世界各国共同关心的问题。城市生活垃圾(Municipalsolidwaste,简称MSW)是在城市日常生活及为城市生活提供服务的活动中产生的固体废弃物,是城市环境的主要污染物之一。目前,城市生活垃圾处理处置的方法主要包括卫生填埋(Sanitarylandfill)、堆肥化(Composting)、焚烧(Incineration)

三种,其中前两种处理方式均属于生物处理技术。具体来说,MSW生物处理技术就是城市生活垃圾中固有的或外添加的微生物,在一定控制条件下,进行一系列的生物化学反应,使得MSW中的不稳定的有机物代谢后释放能量或转化为新的细胞物质,从而MSW逐步达稳定化的一个生化过程。 1.城市生活垃圾生物处理中主要的微生物 MSW生物处理技术主要包括好氧和厌氧生物处理。好氧生物处理如:好氧堆肥、生物反应器填埋等,其工艺中的微生物主要有细菌、放线菌、真菌等微生物种群。厌氧生物处理,如:厌氧消化、厌氧填埋等,其工艺中的微生物又称“瘤胃微生物”,主要有水解细菌、产氢产乙酸菌群和产甲烷菌群等。 1.1城市生活垃圾好氧生物处理中的微生物 1.1.1细菌 在MSW好氧生物降解过程中,细菌凭借强大的比表面积,可以快速将可溶性底物吸收到细胞中,进行胞内代谢。总的来说,其数量要比放线菌和真菌多得多。当然,在不同的环境中分离的细菌在

纳米技术在生物医药中的应用(一)

纳米技术在生物医药中的应用(一) 摘要纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。介绍了纳米技术在生物医药中的应用现状和前景,并分析了纳米技术在生物医药领域应用中的纳米材料安全性和成本问题。 关键词纳米技术纳米材料生物医药1990年在美国召开了第一届纳米技术国际学术会议,成为纳米科技发展进步的一个重要标志。1999年,美国的RobertAFreitasJr出版了《纳米医学》,表明了纳米科技的发展已促使人们开始多方面考虑并且探索纳米科技在医学临床诊治、药物学等方面的应用。纳米技术作为一项新兴技术,在生物医药领域具有十分广阔的应用前景。1纳米技术 纳米是英文nanometre的译名,像米、厘米、毫米等一样,是一个长度单位。1纳米(nm)为10-9米,也即百万分之一毫米,相当于一根头发丝直径的五万分之一。更形象地讲,如果把1nm的物体放在乒乓球上,就像一个乒乓球放在地球上。在纳米尺度上,由于物质的量子效应,物质的局域性和巨大的表面、界面效应,形成的材料性能发生了由量变到质变的飞跃,从而突变或产生奇异的新现象。 纳米技术是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。这一基本概念普遍认为由美国著名物理学家、诺贝尔物理奖获得者RichardFeynman在一次题为《在物质底层有很大的空间》的演讲中提出,“为什么我们不可以从另外一个方向出发,从单个的分子甚至原子开始组装,以达到我们的要求……如果有一天能按照人们的意志安排一个个原子和分子,将会产生什么样的奇迹”。 纳米技术涵盖领域广泛,包括纳米材料学、纳米生物学和纳米显微学等方面,它建立了一种崭新的思维方式,使人类能够利用越来越小、越来越精确的物质和越来越精细的技术成品来满足更高层次的要求。目前,由于纳米技术具有的独特优势以及人们对健康和重大疾病防治等问题的日益关注,纳米技术开始广泛应用于生物医药领域。 2纳米技术在生物医药中的应用 方兴未艾的纳米技术把人类对微观世界的认识带入了一个全新的境界,同时也为人类战胜疾病、提高健康水平提供了更为有力的武器。就目前而言,纳米技术在生命领域的应用前景已逐渐展现,并且许多设想已经逐渐实现,可以预见纳米技术将渗透至生物医药研究和应用的方方面面。 2.1万能的机器人 1986年,美国预见研究所的工程师埃里克·德雷克斯勒说:“我们为什么不制造出成群的、肉眼看不见的微型机器人,让它们在地毯或书架上爬行,把灰尘分解成原子,再将这些原子组装成各种物品。这些微型机器人不仅是搬运原子的建筑工人,同时还具有绝妙的自我复制和自我修复能力。” 同时,还有些科学家设想将蛋白质芯片或基因芯片组装成尺寸比人体红细胞还小的纳米机器人,使其具有某些酶的功能,它是纳米机械装置与生物系统的有机结合,在生物医学工程中可充当微型医生,解决传统医生难以解决的问题。将这些纳米机器人注入血管内,可按照预定程序,直接打通脑血栓,清洁心脏动脉脂肪沉积物等,达到预防和治疗心脑血管疾病的目的。 除此以外,不同的组合方案还可组装出其他功能的纳米机器人,例如,有的可以吞噬病菌、杀死癌细胞;有的可以作为人体器官的修复工具,修复损伤的器官和组织等,以完成整容手术或其他器官修复手术;有的可以进行基因装配工作,除去基因中错误或有害的DNA片段,并将正常的DNA片段装配进染色体,使机体正常运作。 2.2灵敏的检测器

微生物学发展简史

1、史前期(约8000 年前一1676 ) ,各国劳动人民,①未见细菌等微生物的个体;②凭实践经验利用微 生物是有益活进行酿酒、发面、制酱、娘醋、沤肥、轮作、治病等)。 在17世纪下半叶,荷兰学者吕文虎克用自制的简易显微镜亲眼观察到细菌个体之前,对于一门学科来说尚没形成。这个时期称为微生物学史前时期。在这个时期,实际上人们在生产与日常生活中积累了不少关于微生物作用的经验规律,并且应用这些规律,创造财富,减少和消灭病害。民间早已广泛应用的酿酒、制醋、发面、腌制酸菜泡菜、盐渍、蜜饯等等。古埃及人也早已掌握制作面包和配制果酒技术。 这些都是人类在食品工艺中控制和应用微生物活动规律的典型例子。积肥、沤粪、翻土压青、豆类作物与其它作物的间作轮作,是人类在农业生产实践中控制和应用微生物生命活动规律的生产技术。种痘预防天花是人类控制和应用微生物生命活动规律在预防疾病保护健康方面的宝贵实践。尽管这些还没有上升为微生物学理论,但都是控制和应用微生物生命活动规律的实践活动。 2、初创期(1676 一1861 年),列文虎克,①自制单式显微镜,观察到细菌等微生物的个体;②出于个人 爱好对一些微生物进行形态描述。微生物的形态观察是从安东·列文虎克(Antony Van Leeuwenhock 1632-1732)发明的显微镜开始的,它是真正看见并描述微生物的第一人,他的显微镜在当时被认为是最精巧、最优良的单式显微镜,他利用能放大50~300倍的显微镜,清楚地看见了细菌和原生动物,而且还把观察结果报告给英国皇家学会,其中有详细的描述,并配有准确的插图。1695年,安东·列文虎克把自己积累的大量结果汇集在《安东·列文虎克所发现的自然界秘密》一书里。他的发现和描述首次揭示了一个崭新的生物世界——微生物世界。这在微生物学的发展史上具有划时代的意义。这是首次对微生物形态和个体的观察和记载。随后,其他研究者凭借显微镜对于其它微生物类群进行的观察和记载,充实和扩大了人类对微生物类群形态的视野。但是在其后相当长的时间内,对于微生物作用的规律仍一无所知。这个时期也称为微生物学的创始时期。 3、奠基期(1861 一1897 年),巴斯德,①微生物学开始建立;②创立了一整套独特的微生物学基本研究方法;③开始运用“实践―理论―实践”的思想方法开展研究;④建立了许多应用性分支学科;⑤进入寻找人类动物病原菌的黄金时期。继列文虎克发现微生物世界以后的200年间,微生物学的研究基本上停留在形态描述和分门别类阶段。直到19世纪中期,以法国的巴斯德和德国的柯赫为代表的科学家才将微生物的研究从形态描述推进到生理学研究阶段,揭露了微生物是造成腐败发酵和人畜疾病的原因,并建立了分离、培养、接种和灭菌等一系列独特的微生物技术。从而奠定了微生物学的基础,同时开辟了医学和工业微生物等分支学科。巴斯德和柯赫是微生物学的奠基人。(1)巴斯德 巴斯德原是化学家,曾在化学上做出过重要的贡献,后来转向微生物学研究领域,为微生物学的建立和发展做出了卓越的贡献。主要集中在下列三个方面:①彻底否定了“自然发生”学说。“自生说”是一个古老学说,认为一切生物是自然发生的。到了17世纪,虽然由于研究植物和动物的生长发育和生活循环,是“自生说”逐渐消弱,但是由于技术问题,如何证实微生物不是自然发生的仍是一个难题,这不仅是“自生说”

2019-抗菌药物临床应用指导原则-试题及答案

1、下列对老年患者抗菌药物的应用注意事项的认识,错误的是() A、老年人肾功能呈生理性减退,由于药物自肾排出减少,可导致药物在体内积蓄,血药浓度增高,易发生药物不良反应 B、老年患者无用药禁忌者可首选青霉素类、头孢菌素类等β-内酰胺类抗菌药物 C、老年患者,尤其是高龄患者接受主要自肾排出的抗菌药物时,可按重度肾功能减退减量给药 D、老年患者宜选用毒性低并具杀菌作用的抗菌药物 E、万古霉素、去甲万古霉素、替考拉宁等药物应在有明确应用指征时慎用,必要时进行血药浓度监测,并据此调整剂量 2、下列哪项不属于碳青霉烯类抗菌药物的适应证() A、下呼吸道感染 B、血流感染 C、上呼吸道感染 D、盆腔感染 E、肾盂肾炎 3、下列哪些品种不属于β-内酰胺类/β-内酰胺酶抑制剂() A、氨苄西林/舒巴坦 B、头孢拉定/舒巴坦 C、替卡西林/克拉维酸 D、阿莫西林/克拉维酸 E、头孢哌酮/舒巴坦 4、治疗气性坏疽宜选药物是() A、红霉素 B、磺胺嘧啶 C、青霉素 D、氧氟沙星 E、利福平 5、下列不属于治疗皮肤炭疽的药物是() A、阿莫西林 B、环丙沙星 C、多西环素 D、甲硝唑 E、左氧氟沙星 6、治疗由A组溶血性链球菌所致的皮肤、软组织感染,宜选药物为() A、多西环素 B、利奈唑胺 C、头孢唑林 D、氨基糖苷类 E、红霉素

7、猩红热的治疗药物首选() A、红霉素 B、青霉素 C、大环内脂类 D、磺胺类 E、头霉素类 8、支气管扩张合并急性细菌感染,最常见的病原菌为() A、曲霉 B、星形诺卡菌 C、肺炎链球菌 D、铜绿假单胞菌 E、分枝杆菌 9、下列关于β-内酰胺类/β-内酰胺酶抑制剂发生反应时采取的措施错误的是() A、如发生过敏反应,立即停药 B、如发生过敏反应,减少用药剂量 C、发生休克反应,应给予吸氧及注射肾上腺素、肾上腺皮质激素 D、一旦发生过敏性休克,应就地抢救 E、一旦发生过敏性休克,应立即停药 10、下列关于气性坏疽治疗原则说法错误的是() A、患者住单间病房并实施床旁接触隔离 B、早期足量应用抗需氧菌药物,合并厌氧菌感染时联合应用抗厌氧菌药物 C、疗程视病情及感染程度酌情而定 D、必要时应截肢 E、尽早进行清创术,清除感染组织及坏死组织,取创口分泌物做需氧及厌氧培养 11、万古霉素对以下哪些微生物敏感() A、真菌、病毒 B、螺旋体 C、支原体、衣原体 D、军团菌 E、葡萄球菌、链球菌 21、()与氟胞嘧啶联合治疗隐球菌脑膜炎时,前者的剂量可适当减少,以减少其毒性反应 A、红霉素 B、青霉素 C、克林霉素 D、第三代头孢 E、两性霉素B 22、氨基糖苷类的抗结核药是()

纳米技术在医学上的应用

纳米技术在医学上的应用 随着科学技术的进步和发展,纳米材料学和生物医学的结合越来越紧密,纳米材料在生物医学领域的应用已取得了很大进展,并展现出良好的发展势头和巨大的发展潜力。纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。纳米材料在生物医药领域的应用主要有纳米药物、抗菌材料、生物传感器等。 纳米药物 纳米药物与传统的分子药物的根本区别在于它是颗粒药物,而广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等;第二类是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料 抗菌材料 抗菌材料是指具有抗菌或杀菌功能的材料,其主要机理为:干扰细胞壁的合成、损伤细胞膜、抑制蛋白质的合成和干扰核酸的合成等4点。目前,抗菌材料使用的方法主要是通过添加抗菌剂或化学改性的方法使材料具有抗菌的效果。 通过表面化学改性方法将抗菌剂接枝到电纺纳米纤维表面,控制接枝反应在纳米纤维的表面进行,不影响纤维膜的本体力学性能。此外,纳米纤维巨大的比表面被具有高密度抗菌基团的聚合物链覆盖,并稳定、牢固地以共价键结合,这不仅大大提高了抗菌效率,小剂量即可产生强的抗菌作用,而且还具有长效及重复使用的优势,可以有效避免抗菌剂污染等问题。 生物传感器 生物传感器是信息科学、生物技术和生物控制论等多学科交叉融合而形成的新兴高科技领域。随着微电子机械系统技术、纳米技术不断整合入传感器技术领域,生物传感器越来越趋向于微型化。在纳米技术中,纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平,而纳米传感器又是纳米器件研究中的一个最重要的方向。 由中国科学院理化技术研究所唐芳琼研究员带领的纳米材料可控制备与应用研究组,在纳米增强的酶生物传感器研究方面取得了重要进展。此研究成果是采用四氧化三铁纳米颗粒构建高灵敏度葡萄糖生物传感器。研究表明,该生物传感器具有良好的抗干扰性,在实际血清的检测中表现出很好的检测效果,与现有临床方法检测结果相比,标准偏差均在3%以内,具有很强的实用性。 纳米技术医学应用的展望 虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪

利用微生物技术处理废水

利用微生物技术处理废水 摘要随着工业的发展,污水成分已愈来愈复杂。某些难降解的有机物质和有毒物质,需要运用微生物的方法进行处理,污水具备微生物生长和繁殖的条件,因而微生物能从污水中获取养分,同时降解和利用有害物质,从而使污水得到净化。废水生物处理是利用微生物的生命活动,对废水中呈溶解态或胶体状态的有机污染物降解作用,从而使废水得到净化的一种处理方法。废水生物处理技术以其消耗少、效率高、成本低、工艺操作管理方便可靠和无二次污染等显著优点而备受人们的青睐。 关键词污水生物处理好氧生物处理厌氧生物处理水质 1. 污水生物处理的特征 1.1 污水与污水生物处理 污水中的污染物质成分极其复杂,一般生活污水的主要成分是代谢废物和食物残渣,工业废水可能含有较多的金属、酚类、甲醛等化学物质。此外污水中还含有大量非病原微生物和少量病原菌及病毒。污水的生物处理就是以污水中的混合微生物群体作为工作主体,对污水中的各种有机污染物进行吸收、转化,同时通过扩散、吸附、凝聚、氧化分解、沉淀等作用,以去除水中的污染物。因此,污水生物处理实际上是水体自净的强化,不同的是,在去除了污水中的污染物后,必须将微生物从出水中分离出来,这种分离主要是通过微生物本身的絮凝和原生动物、轮虫等的吞食作用完成的。 1.2 生化需氧量及生物处理的应用 在污水处理中,通常是以有机物在氧化过程中所消耗的氧量这一综合性指标来表示有机污染物的浓度,如生化需氧量(BOD)和化学需氧量(COD)。生化需氧量是指在特定的温度和时间(通常这5 d、20℃下,微生物分解污水中有机物所消耗的氧量,称为BOD5。BOD5约占生化需氧总量的2/3,故采用BOD5来表示污水中可降解有机物的浓度是比较合适的。但污水中有机物并不是都能较快降解的,在工业废水中,可以结合COD等指标表示有机污染物的浓度。 只有BOD高的废水才适宜采用生物处理,COD很高但BOD不高的废水不宜采用生物处理。对于有毒的废水,只要毒物能降解,就可用生物法处理,关键是控制毒物浓度和驯化

抗微生物药物概述

抗微生物药物概论 [基本内容] 化疗、抗菌药物、抗菌谱、抗菌活性、抑菌药、杀菌药、化疗指数和抗菌后效应等概念。抗菌药物的作用机制。细菌耐药性及其产生机制。抗微生物药物的合理应用。 [基本要求] 掌握:抗菌谱、抗菌活性、抑菌药、杀菌药、化疗指数及抗菌后效应的概念;抗菌药物的作用机制。 了解:细菌的耐药性和抗微生物药物的合理应用。 一、基本概念 化学治疗(简称化疗): 是指用化学药物抑制或杀灭机体内的病原微生物(包括病毒、支原体、衣原体、立克次体、细菌、螺旋体、真菌)、寄生虫及恶性肿瘤细胞,消除或缓解由它们所引起的疾病。所用的药物简称化疗药物。 抗菌药物: 由生物包括微生物(如细菌、真菌、放线菌)、植物和动物在内,在其生命活动过程中所产生的,能在低微浓度下有选择地抑制或影响其他生物功能的有机物质---抗生素及由人工半合成、全合成的一类化学药物的总称。 抗菌谱:每种药物抑制或杀灭病原菌的范围,分为广谱抗菌药和窄谱抗菌药。 抗菌活性:抗菌药物抑制或杀灭病原菌的能力。 抑菌药:仅有抑制病原菌生长、繁殖而无杀灭作用的药物。 最低抑菌浓度(MIC):抑制培养基内细菌生长的最低浓度。 杀菌药:不仅能抑制而且能杀灭病原菌的药物。 最低杀菌浓度(MBC):杀灭培养基内细菌(即杀死99.9%供试微生物)的最低浓度。化疗指数: 评价药物的安全性,通常用某药的动物半数致死量(LD50)与该药对动物的半数有效量(ED50)的比值来表示。 抗菌后效应(PAE): 当抗菌药物和细菌接触一定时间后,药物浓度逐渐下降,低于最小抑菌浓度或药物全部排出以后,仍然对细菌的生长繁殖继续有抑制作用,此种现象称为抗菌后效应。

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

大学生选修课应用微生物学论文

大学生选修课应用微生物学论文 当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。 生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。 微生物技术作为生命科学和生物技术的主要分支之一,是它们发展的先导和基础,特别是在解决人类所面临的人口健康、资源紧缺、粮食危机等方面,其具有不可替代的重要作用。下面本文将在微生物在污水处理和制氢两个方面论述微生物在环保和能源方面的巨大作用。 古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。 在当今社会中,随着全球工业和经济的迅速发展,人们对能源的需求正在逐渐增大,但目前人类使用的绝大部分是不可再生的矿物质能源,其数量是十分有限的,从而造成了能源的短缺。与此同时,在人类发展的过程中,由于不注重对环境的保护而一味的发展,对地球造成了大量的污染,这些污染已严重影响了人类社会的发展,甚至关系到人类的生死存亡。因此有科学家预测说能源和环保将是人类社会在今后发展的两大主题。 生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核

微生物应用技术

100学年度第一学期微生物应用技术 Final Examination 学生__________ 学号:_____________ ★请勿选择你报告的题目来回答 I. 解释名词 (30分选六题): 1. 何谓Molecular farming, 为何用植物? 2. 生分解性 3. 芽孢杆菌在工业上的应用优势 (1)Bacillus及其代谢产物已广泛应用于食品、医药、饲料中,目前尚未发现有任何毒副作用,是一种安全的菌种。 (2)Bacillus可以耐受不良的环境,如80℃的高温环境,pH2-3的酸性环境。 并且对营养要求简单,代谢快,易于分离和保存。 (3)Bacillus不仅对革兰氏阳性菌有抑菌作用,对革兰氏阴性菌和真菌也有抑制效果。 4. 生物相容性 用来描述生物医用材料与生物体相互作用情况的概念。 若生物材料相容性好,表示: a.该材料能够与身体相互适应 b.不会对身体有显着或严重的不良反应 c.身体也不会引起材料性能的改变 可分为:血液反应、免疫反应、组织反应、生物化学反应 5. 解说液化淀粉的功用 6. Plant Transformation 7. 白色生技的应用 8. NDM-1超级细菌 9. 抗药性结核分枝杆菌产生 10. 专利三特性 (1)排他性:为了保护一发明或创作其正当权益,而向政府提出申请,经过审查认为符合专利法的规定,因而给予申请人在一定期间享有专有排除 他人未经其同意而制造、贩卖、使用或为上述目的而进口该物品之权, 或专有排除他人未经其同意而使用该方法及使用、贩卖或为上述目的而 进口该方法直接制成物品之权,这种排他性就是专利权特性。 (2)时间性:发明、新型、新式样专利均自公告之日起给予专利权。 专利权只在专利权期限内有效,期限届满,权力消灭,技术内容即成公 共财产。 (3)地域性:专利系采属地主义,因此,虽已向外国申请专利,但如欲在我国

应用微生物学思考题

思考题 名词解释 应用微生物学、 微生物:微生物是一切肉眼看不见或看不清的微小生物,个体微小,结构简单,通常要用光学显微镜和电子显微镜才能看清楚的生物,统称为微生物。微生物包括细菌、病毒、霉菌、酵母菌等。(但有些微生物是可以看见的,像属于真菌的蘑菇、灵芝等。)、 细菌:广义的细菌即为原核生物是指一大类细胞核无核膜包裹,只存在称作拟核区(nuclear region)(或拟核)的裸露DNA的原始单细胞生物,包括真细菌(eubacteria)和古生菌(archaea)两大类群。人们通常所说的即为狭义的细菌,狭义的细菌为原核微生物的一类,是一类形状细短,结构简单,多以二分裂方式进行繁殖的原核生物,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者。 放线菌:放线菌(Actinomycete)是原核生物的一个类群。大多数有发达的分枝菌丝。菌丝纤细,宽度近于杆状细菌,约0.5~1微米。可分为:营养菌丝,又称基质菌丝,主要功能是吸收营养物质,有的可产生不同的色素,是菌种鉴定的重要依据;气生菌丝,叠生于营养菌丝上,又称二级菌丝。、 酵母菌:子囊菌、担子菌等几科单细胞真菌的通称。可用于酿造生产,有的为致病菌。是遗传工程和细胞周期研究的模式生物。 霉菌:是丝状真菌的俗称,意即"发霉的真菌",它们往往能形成分枝繁茂的菌丝体,但又不象蘑菇那样产生大型的子实体。在潮湿温暖的地方,很多物品上长出一些肉眼可见的绒毛状、絮状或蛛网状的菌落,那就是霉菌。 微生物培养基:通常只人工配制的适合微生物生长繁殖或积累代谢产物的营养物质。广义上说,凡是支持微生物生长繁殖的介质或材料均可以作为微生物的培养基。培养基种类繁多。 微生物农药:直接利用细菌、真菌和病毒等产生的天然活性物质或生物活体本身开发的,对植物病虫草害进行防治的农药。 群体生长:一个微生物细胞在合适的外界环境条件下,不断吸收营养物质并进行新陈代谢。如果同化作用速度超过了异化作用,则其原生质总量不断增加,于是出现个体生长现象。如果这是平衡生长,即各个细胞组分是按恰当比例增长时,到达一定程度就会发生繁殖,从而引起个体数目增加,这时原有的个体已经发展为一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长。在微生物的研究和应用中,只有群体生长才有实际意义。 分批培养:一个微生物细胞在合适的外界环境条件下,不断吸收营养物质并进行新陈代谢。如果同化作用速度超过了异化作用,则其原生质总量不断增加,于是出现个体生长现象。如果这是平衡生长,即各个细胞组分是按恰当比例增长时,到达一定程度就会发生繁殖,从而引起个体数目增加,这时原有的个体已经发展为一个群体。随着群体中各个个体的进一步生

应用微生物学1

应用微生物学习题解答 第一章 1. 解释名词: (a) spontaneous generation: 自然发生说。此概念乃系『生物生自无生物』,相似 词为abiogenesis(偶然发生说)。 (b) biogenesis: 生源论。此概念乃系『生物生自生物』。 (c) generation time: 世代时间。菌细胞分裂增殖一倍细胞数所需时间。相似词 为mass doubling time(倍增时间)、doubling time(倍加时间)。 (d) agar: 洋菜胶或琼脂。系为萃取自红藻类海草之复合多糖,主要由agarose (琼脂糖)及agaropectin(琼脂胶)这两种多糖所组成。 2. 科霍假说。 3. 有害人体之细菌:(a) Vibrio parahemolyticus (肠炎弧菌),引起胃肠炎之致病原; (b)Legionella pneumophila(嗜肺退伍军人协会杆菌),引起退伍军人症之致病原。 有害人体之真菌:(a) Aspergillus flavus(黄曲菌),黄曲毒素(aflatoxin)生产菌;(b) Candida albicans(白色念珠菌),引起念珠菌病(candidiasis)之致病原。 4. 有益人体之细菌:(a) Lactobacillus bulgaricus (保加利亚乳酸杆菌),可用来制作酸奶;(b)Bacillus natto(纳豆菌),可用来制作纳豆。 有益人体之真菌:(a) Saccharomyces cerevisiae(啤酒酿母菌),可用来酿制啤酒;(b) Aspergillus oryzae(米曲菌),可用来生产曲酸、酱油、味噌等。 5. 微生物六大优点如下:体积小表面积大、培养简单、繁殖迅速、于温和条件下进行、菌株育种容易、种类多。 6. 显微镜(microscopes)主要分为光学显微镜(light microscopes)及电子显微镜(electron microscopes)。显微镜法(microscopy)则有明视野显微镜法(bright field microscopy)、暗视野显微镜法(dark-field microscopy)、荧光显微镜法(fluorescence microscopy)、位相差显微镜法(phase-contrast microscopy)、电子显微镜法(electron microscopy)。

生物医学中纳米材料的作用

生物医学中纳米材料的作用 1用于生物医学的纳米材料 1·1细胞分离用纳米材料 病毒尺寸一般约80~100nm,细菌为数百纳米,而细胞则更大,所以利用 纳米复合粒子性能稳定、不与胶体溶液反应且易实现与细胞分离等特点,可将纳米粒子应用于诊疗中实行细胞分离。该方法同传统方法相比,具有操作简便、费用低、快速、安全等特点。美国科学家用纳米粒子 已成功地将孕妇血样中微量的胎儿细胞分离出来,从而简便、准确地判 断出胎儿细胞中是否带有遗传缺陷。 1·2纳米材料用于细胞内部染色 利用不同抗体对细胞内各种器官和骨骼组织的敏感水准和亲和力的显 著差异,选择抗体种类,将纳米金粒子与预先精制的抗体或单克隆抗体 混合,制备成多种纳米金/抗体复合物。借助复合粒子分别与细胞内各 种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下表现某 种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组 合“贴上”了不同颜色的标签,因而为提升细胞内组织的分辨率提供了 一种急需的染色技术。 1·3纳米药物控释材料 纳米粒子不但具有能穿过组织间隙并被细胞吸收、可通过人体最小的 毛细血管、甚至可通过血脑屏障等特性,而且还具有靶向、缓释、高效、低毒且可实现口服、静脉注射及敷贴等多种给药途径等很多优点,因而 使其在药物输送方面具有广阔的应用前景。德国科学家将铁氧体纳米 粒子用葡萄糖分子包覆,在水中溶解后注入肿瘤部位,使癌细胞和磁性 纳米粒子浓缩在一起,通电加热至47℃,可有效杀死肿瘤细胞而周围正 常组织不受影响;挪威工科大学的研究人员,利用纳米磁性粒子成功地 实行了人体骨骼液中肿瘤细胞的分离,由此来实行冶疗;SharmaP等1用聚乙烯吡咯烷酮包覆紫松醇制得的纳米粒子抗癌新药,体内实验以荷瘤

相关文档
相关文档 最新文档