文档库 最新最全的文档下载
当前位置:文档库 › 最新AUTOFORM分析拉延成型资料

最新AUTOFORM分析拉延成型资料

最新AUTOFORM分析拉延成型资料
最新AUTOFORM分析拉延成型资料

常见缺陷及解决办法

1.拉延开裂

开裂是拉延工序中最为常见的缺陷之一,其表现为出现破裂或裂纹,产品部分如果出现破裂或者裂纹将被视为不合格产品,所以必须予以解决。产生开裂的原因大致有:

(1)产品工艺性不好,如R 角过小、型面变化剧烈、产品深度较深以及材质成形性能差等。

(2)工艺补充、压边圈的设计不合理。

(3)拉延筋设计不合理,不能很好的控制材料流动。

(4)压边力过大。

(5)模具型面表面粗糙度达不到要求,摩擦阻力大。

(6)模具加工精度差,凸凹模间隙小,板料流动性差。

目前,主要通过改善产品工艺性、设计合理的坯料形状、增加刺破刀、加大R 角、合理设计工艺补充及压

料面、调整拉延筋阻力及压边力和模面镜面处理等方式来解决拉延开裂问题。

2.起皱

起皱是拉延工序中另一个常见的缺陷,也是很难解决的板件缺陷。板件发生起皱时,会影响到模具的寿命以及板件的焊接,板件发生叠料时还会使模具不能压合到底,从而成形不出设计的产品形状,同时,由于叠料部位不能进行防锈处理,容易导致板件生锈而影响到板件的使用寿命,给整车安全造成隐患。

目前主要从产品设计及工艺设计上来解决起皱问题,归纳起来有以下几点:

(1)产品设计时尽量避免型面高低落差大、型面截面大小变化剧烈,在不影响板件装配的情况下,在有可能起皱的部位加吸皱包。

(2)工艺上可以考虑增加整形工序。

(3)分模线调整。随着分模线的调整,往往会伴随着开裂缺陷的产生,目前主要通过使用CAE 软件来分

析确定合理的分模线位置。

(4)在工艺补充面上增加吸料筋、工艺台阶等,将多余的料消化掉。

(5)合理设计拉延筋,以确保各个方向进料均匀为目标。

(6)当开裂与起皱同时存在,且起皱不被允许时,一般先解决起皱再解决开裂。

AutoForm 模拟分析算法

AutoForm 模拟分析算法主要有两种:隐式算法和一步成形法。

1.隐式算法

静态隐式算法是解决金属成形问题的一种方法。在静态隐式算法中,在每一增量步内都需要对静态平衡方程迭代求解。理论上在这个算法中的增量步可以很大,但是实际运算中要受到接触以及摩擦等条件的限制。随着单元数目的增加,计算时间几乎呈几何级数增加。由于需要矩阵求逆以及精确积分,对内存要求很高。隐式算法的不利方面还有收敛问题不容易得到解决以及当开始起皱失稳时,在分叉点处刚度矩阵出现奇异等。其中静态隐式算法多配合动态显式算法用于求解成形后的回弹分析。

2.一步成形法

一步法有限元方程利用虚功原理导出,其基本思想是采用反向模拟。将模拟计算按照与实际成形相反的顺序,从所期望的成形后的工件形状通过计算得出与此相对应的毛坯形状和有关工艺参数。板材成形过程的变形决定其有利于进行方向模拟。在冲压成形过程中,成形后的工件为一空间曲面,而板料毛坯为一平板。以板平面为X-Y坐标平面,整个成形过程中各质点的Z向位移是确定的。采用有限元计算求解时,节点未知量仅为X和Y方向的位移。板料成形的方向模拟多采用近似方法,假设变形过程为简单加载过程,用塑性变形的理论进行模拟分析。在分析的过程中以利用工件形状进行计算,用简化的方法避免了非常麻烦的接触处理。一步法方向模拟要求输入的数据少,因此可以在概念及初期设计阶段就投入使用,可以预测毛坯形状,整个计算可以很快地求解出结果,因此可以反复调整参数进行计算模拟,对毛坯形状、压边力和拉延筋等进行优化。

3.AutoForm 分析流程

分析一个CAD 模型的一般步骤是:导入CAD 模型(软件自动进行网格划分)、网格检查及空洞填充、确定基准模具、料厚及冲压方式、工具设定、坯料尺寸确定及网格自动划分、材料选择、拉延筋布置、工艺参数设置和分析计算等。

轿车翼子板模拟流程分析

1.导入CAD 模型

由于AutoForm曲面处理功能的局限性,对一些曲面问题很难解决,所以有必要在三维CAD软件NX里对

工艺数模进行检查,避免出现面交叉、面重叠等曲面问题,同时须提取 B 曲面,保证工艺数模在导入AutoForm 时不出现面丢失、面交叉等缺陷(见图1)。

图1导入CAD模型

2 ?网格检查及空洞填充

工艺数模导入之后,AutoForm会自动进行网格划分,可以通过显示网格边界的方式检查网格质量,对于平坦的空洞可以通过自动填充来解决,如果对填充的效果不满意,可以通过改变参数max size值来解决问题,对于边界复杂的空洞,AutoForm填充不能得到理想结果时,需要在NX软件中对数模空洞进行填充。

3?确定分析类型、模具基准、料厚及冲压方式

(1)AutoForm提供了增量法与一步法两种求解方式,对于成形性分析选用incremental增量法能得到更加精确的结果。

(2)根据客户要求,该件生产时所在冲压线首台设备为双动机床,所以本文选择双动拉延方式。

(3)根据客户要求,设定料厚为0.8mm。

(4 )根据产品数模给定的料厚基准,选择凹模为几何偏置基准。

4?工具设定

对于拉延分析而言,需设定凹模、凸模和压边圈三个工具,其中凹模处于坯料的下面,凸模、压边圈处于

坯料的上部,各工具的工作方向均为工具指向坯料的方向,软件默认Z轴的负方向为冲压方向,工具的工

作方向与冲压方向相同时为正值,相反时为负值,如凹模工作方向为凹模指向坯料的方向,即为Z轴负方向,因此凹模工作方向为正值。凸模与压边圈由凹模网格偏置得到,工作方向为负值。

5.坯料尺寸、材质确定及网格自动划分

AutoForm提供了5种不同的方式来设定坯料的大小:通过画线的方式来得到坯料线轮廓;输入IGS格式的坯料文件;通过中心坐标、长和宽的方式输入坯料尺寸;通过复制现有模型中的线来作为坯料线;通过

对模型中的线进行拓展而得到的线作为坯料线(见图 2 )。

图2坯料尺寸确定

本次分析所采用的坯料线是由NX软件设计的,通过IGS的方式导入到模型中,材料为特深冲用热镀锌钢

板DC54D+Z,该材料耐腐蚀能力强、有良好的力学性能、加工性和焊接性,屈服强度为140?220MPa , 抗拉强度为270?350MPa,n值不小于0.18,r值不小于1.6,断后延长率不小于36%。

AutoForm提供了较为完善的材料库,包括中国、日本、欧洲以及美国等常用钢板材料,用户可以新建或者修改现有材料库参数,并且可以通过设置roll angle参数来设置板料的轧制方向。

6.拉延筋布置

在冲压成形中,为了限制板料的流动,需要设置各种形状的拉延筋。AutoForm中不需要建立实际的拉延筋有限元模型,而是采用一些曲线来模拟拉延筋行为,当板料流过时,施加拉延筋阻力(见图3)。

采用这种等效拉延筋后,在分析时可以很方便的调整拉延筋阻力,节省分析时间,分析成功之后再根据相应的拉延筋阻力系数来设计真实拉延筋几何形状。

7?工艺参数设置

这一步主要是对摩擦系数、压边力以及冲压速度等工艺参数进行设置,因为拉延分析为典型的工艺分析,AutoForm有专门针对拉延分析的模版,所以只需要修改一些工艺参数即可,在输出结果的界面选择默认输

出结果即可,由于采用虚拟拉延筋分析,默认的板料网格大小以及时间步长大小都可以满足正常分析的需要。8?分析计算

以上步骤完成以后,可以用动画的形式检查一下工具的运动情况,如果没有问题就可以提交计算,计算的结果文件都保存在*.sim文件中,在计算的过程中随时可以查看计算结果。

9? CAE结果判断

计算完成之后,就可以用后处理打开结果文件,对计算结果进行分析、判定。

(1)料厚减薄评价。判断准则:单向拉伸区域,减薄超过极限料厚一律视为破裂;单向拉伸区域和双向拉伸区域,减薄超过30 律视为破裂;双向拉伸区域,减薄在极限料厚和30%之间,查看FLD指示。

对于外覆盖件,需同时评价最大变薄及最小变薄,将料厚减薄云图的刻度设置为-0.3?0.02,用不同颜色

来显示,最大减薄为-0.283,产品部分的最小变薄率大于0.02。本文所例产品料厚减薄情况如图4所示。

图4料厚减薄

(2)成形极限图。成形极限图刻度如图5所示,可以看岀双向拉伸区域有黄色,说明有开裂的趋势,但离极限曲线还有一定安全量。

-0J6 -C* -CJ -CO fl? 0* Minor strain

Forming Limit Diagram

图5成形极限

(3)主应变和副应变评价。通过主应变和副应变来评价拉延质量,在产品内基本都属于双向拉伸状态,拉延质量良好,副应变和主应变变化情况如图6、7所示。

autoform详细设置

Autoform中整形的设置过程 以S21项目中的一个产品为例,介绍在Autoform中设置整形的过程。 1.产品名称:左/右门槛后部本体,产品图号:S21-5101931/2 料厚:1.2 材质:ST12 如图所示: 2.此产品由(1)拉延、(2)修边冲孔、(3)翻边整形、(4)冲孔侧冲孔切断四序完成(左右 件共模)。仅介绍第三序翻边整形的设置过程。 3.设置过程 3.1 过程准备 3.1.1按“Autoform操作规范”进行工艺补充(如图所示),并进行拉延序的计算,拉延序的计算 结果达到最佳时,方可进行后序的计算。 3.1.2将修边线(必要时将修边后的产品型以.igs 格式输出以便在Autoform中计算整形和翻 边时提取修边线)、产品数型以.igs 格式输出。

3.2 在Autoform 中对整形过程进行设置: 3.2.1 打开拉延序的.sim 文件,在此基础上进行整形过程的设置。 3.2.2 打开几何构型(Geometry Generator )对话框,导入产品数型,导入过程如图所示: (1) (2) (3) 具体步骤为: ① 打开Geometry Generator 对话框,如图(1)所示; ② 在File 的下拉菜单中选择Import[如图(2)所示];弹出如图(3)所示的对话框; ③ 选择New Geometry ,在地址栏中输入文件所在地址,单击 OK 。

3.2.3 打开仿真参数输入(Input Generator )对话框,进行仿真参数设置。 3.2.3.1 模具结构的运动过程 ① 在进行仿真参数设置以前,首先要了解模具结构的运动过程。 翻边:向上翻边是通过上压料芯和下托料芯夹紧料与下模镶块的相对运动来完成的; 向下翻边是通过上压料芯和下模压紧料与上模镶块的相对运动来完成的。 整形:整形是通过上(或下)模镶块与上压料芯(或下托料芯)的相对运动来完成。 ② 此产品需要向上翻边,且拉延修边后的产品型和翻边前的产品型不一致,因此在 Autoform 中进行仿真参数设置时要相应的增加上压料芯、上模镶块、下托料芯和下模镶块这些工具;同样,在运动过程设置中也需要增加修边、定位(制件)、闭合、成型这些运动过程(其中成型过程需要两个,分别为:翻边、整形的成型过程),先将修边后的产品型整形,再翻边得到最终的产品型。 (4)Input Generator 中的Tools 对话框

AutoformR6实现压边圈等压料工具体不自动增加压料力的方法及探讨

AutoformR6实现压边圈等压料工具体不自动增加压料力的方法及探讨 本文主要涉及到AutoformR6中,对于有压料的成型方式,如拉延、翻边整形类的分析,如何实现压板不自动增加压边力的设置方法,以及所产生的各个问题的一些探讨。 在R3.1之前的版本中,如果要实现不自动增加压边力,只需在misc中添加Toolopening就可以了, 但是在R6版本中,这一混合参数不再支持。但是呢,我们有其他方法实现压边力的恒定。 即把压板的控制方式选为SpringControlled,即弹性控制的。 下图中,binder的控制方式即为Spring Controlled 然后再设置弹簧的刚度Spring Stiffness和预紧力Preload Force即可 这里,在弹簧的设置上有两个问题: 1、对于矩形弹簧,要查标准书,来确定刚度和预紧力(这里的预紧力就是预压几个mm所对应的压力值); 2、对于氮气缸,氮气缸的压力曲线接近平的直线,所以刚度可设置为0,然后预紧力设置为氮气缸的初始压力 由此,可得出两种不同的设置: 1、对于实际模具中由弹性元件控制的压板,按照弹性元件的参数进行设置即可; 2、对于由机床气垫控制的拉延压边圈,可以按照氮气缸的参数进行设置。 当然,这种spring的设置会产生一些其他问题,譬如: 1、弹簧所产生的压力不足时,工具体之间无法完全闭合,会有较大间隙,当然这个间隙肯定大于料厚,造成料片压料不足; 2、到下死点时,工具体因为被机床强制闭合,所以离到底前2~4mm的时候,压板的压力会急剧增大。

下面是我分析的单动拉延的一些结果: 1、原始分析,压边力400KN,binder设置为Force Controlled 分析结果: 压边力始终为400KN,全过程保持恒定 产品面无裂无皱。 2、分析文件2,压边力50KN(原始分析是400KN),binder设置为Force Controlled 分析结果: 到底时压边力自动增加为320KN,全过程不恒定,系统提示压边力增加了6次 产品面无裂无皱,但是和原始的400KN分析结果有明显不同。 3、分析文件3,压边力50KN(原始分析是400KN),binder设置为Spring Controlled 分析结果:

最新AUTOFORM分析拉延成型资料

常见缺陷及解决办法 1.拉延开裂 开裂是拉延工序中最为常见的缺陷之一,其表现为出现破裂或裂纹,产品部分如果出现破裂或者裂纹将被视为不合格产品,所以必须予以解决。产生开裂的原因大致有: (1)产品工艺性不好,如R角过小、型面变化剧烈、产品深度较深以及材质成形性能差等。 (2)工艺补充、压边圈的设计不合理。 (3)拉延筋设计不合理,不能很好的控制材料流动。 (4)压边力过大。 (5)模具型面表面粗糙度达不到要求,摩擦阻力大。 (6)模具加工精度差,凸凹模间隙小,板料流动性差。 目前,主要通过改善产品工艺性、设计合理的坯料形状、增加刺破刀、加大R角、合理设计工艺补充及压料面、调整拉延筋阻力及压边力和模面镜面处理等方式来解决拉延开裂问题。 2.起皱 起皱是拉延工序中另一个常见的缺陷,也是很难解决的板件缺陷。板件发生起皱时,会影响到模具的寿命以及板件的焊接,板件发生叠料时还会使模具不能压合到底,从而成形不出设计的产品形状,同时,由于叠料部位不能进行防锈处理,容易导致板件生锈而影响到板件的使用寿命,给整车安全造成隐患。 目前主要从产品设计及工艺设计上来解决起皱问题,归纳起来有以下几点: (1)产品设计时尽量避免型面高低落差大、型面截面大小变化剧烈,在不影响板件装配的情况下,在有可能起皱的部位加吸皱包。 (2)工艺上可以考虑增加整形工序。 (3)分模线调整。随着分模线的调整,往往会伴随着开裂缺陷的产生,目前主要通过使用CAE软件来分析确定合理的分模线位置。 (4)在工艺补充面上增加吸料筋、工艺台阶等,将多余的料消化掉。 (5)合理设计拉延筋,以确保各个方向进料均匀为目标。 (6)当开裂与起皱同时存在,且起皱不被允许时,一般先解决起皱再解决开裂。 AutoForm模拟分析算法

AUTOFORM常见问题汇总

1: AUTOFORM如何更改工作目录。 本帖隐藏的内容需要回复才可以浏览 答:目前主要方法有以下几种: 方法一:更改AutoForm工作主目录的新方法(直到最新的AF_PLUS_R1.1所有版本通用): 在本地用户组下选中所使用的用户点右键选属性栏 如下图,在配置文件窗口下选择本地路径,选上你需要的路径,然后注销一下此用户,在进入即可。

方法二:(plusplus 提供)(需要安装SFU即4.11以前的所有版本通用): 到Autoform安装目录修改af-xstart.vbs文件(右键选编辑),找到XAF = """" & "$AF_HOME_XX/xaf_X.XX " & ARGS & " -geom +0+0" & """" 其中XX/X.XX为Autoform的版本号把它改为XAF = """" & "$AF_HOME_XX/xaf_X.XX -wd /dev/fs/X/.../.../ " & ARGS & " -geom +0+0" & """"其中X为盘符,/.../.../为路经,记得以/结尾。存盘,重新运行OK. 方法三:目前网络上还有网友提供一种方法(4.2以前的所有版本通用): 设置本地用户环境变量 HOME=(你的工作目录). 方法四:更改目标设置(4.2以后的所有版本通用直到目前最新的AF_PLUS_R1.1): AF桌面启动快捷文件右键属性查看目标,如下图,在后面加上 -param -wd 你的工作目录即可, 如下图:

2: AUTOFORM快捷键一览。 点我AUTOFORM快捷键 3: AUTOFORM计算中途报错停止。

autoform工艺补充规范

应用Autoform 构建工艺补充规范 1. 将制件数型读入Autoform 2. 将制件摆至冲压方向。此过程需遵循先平移后旋转的原则,平移大小及旋转角度值可从对话窗口的左下角反映出来。 自动确定冲压方向常用方法主要有:平均法矢法、最小拉延深度法和最小冲压负角法。 3. 填充孔洞。制件上的孔洞,尤其是较大的孔洞,必须填充,这是保证计算时接触搜索的需要,保证计算精度的需要。有些边界较复杂的孔洞,需添加特征线来控制填充面的形状,此时,为保证填充面能顺利输出,推荐采用“Add detail ”方式来制作填充面。 平均法矢 最小拉延深度 最小冲压负角

4.边界光顺。一个光顺的边界,可以大大提高构建工艺补充面的效率,节省大 量的调整工艺补充面的时间。此步骤尽量不要省略。 5.构建压料面。构建工艺补充的目的是为了使材料流动尽量均匀一致,因此, 构建压料面时,其截面线到制件的距离变化应均匀、平缓。由于压料面必须是光顺可展的,因此,压料面的调整应遵循循序渐进的原则。首先,需确定一条主截面线,调整此截面线至合适形状,截面线调整时,控制点数量应适度,宜少不宜多。调整完主截面线后,视制件形状复杂程度,在适当位置再添加一条截面线并调整至适当形状,依此类推,直至获得一个令人满意的压料面。 6.工艺补充面。工艺补充面是指介于压料面和制件之间的那部分曲面。 Autoform中提供了一系列模板及交互式对话框来调节控制生成工艺补充面。 调节工艺补充时应注意: ●确定主截面形状时,需确定凸、凹模圆角(Punch radius、Die radius) 及侧壁倾角(Wall angle),确定分模线宽度(PO widths)。 ●为保证工艺补充面的整体光顺,应视具体情况,应用“Directions”功 能,调节工艺补充上各截面线的分布状况,调节时尺度应把握在使所有 截面线空间分布尽量均匀。 ●应用“Lines”功能按钮中的“PO width--->Edit”功能,编辑分模线形 状。分模线的形状不宜太复杂,控制点总体上不宜多,拐角出的控制点 以三至四个为宜。 工艺补充输出到CAD系统中后,往往会视需要而需做一些编辑修改工作。 为方便在CAD系统中的工作,建议: ●将所作文件另存为一个文件后,将所有凸、凹模圆角有变圆角的地方都 改为与主截面参数一致。 ●将压料面位置降低20,重新生成工艺补充,并将此工艺补充面输出。 ●将压料面位置复原,并将此压料面输出。这样做的目的是为了得到压料 面和工艺补充面侧壁的相交线,这条相交线即为分模线。

AUTOFORM软件使用手册

AUTOFORM软件使用手册 一、 数据文件的准备 建议用IGES格式文件进行数据传输。 CAE作为工艺分析的辅助,一般在做好工艺补充后进行。为便于AUTOFORM软件进行CAE仿真分析,需要在UG中做以下工作: 1、按零件尺寸要求进行倒角; 2、CAE计算中采用的是等效拉延筋模型,所以要去掉实际拉延筋,并将去 掉拉延筋后出现的孔洞补上; 3、以IGES格式输出产品曲面数模; 4、以IGES格式输出拉延筋中心线、修边线。 二、 数据文件的读入 运行AUTOFORM,新建一filename文件,缺省length和force的单位分别为mm和N。改文件被缺省放在C盘根目录下(文件名和路径可在运行仿真时更改)。 图1,Import曲面数模文件,选择IGES格式,点击OK。 图1 图2 三、几何构型(Geometry Generator) 曲面数据读入后,自动被划分网格,见图2,按F键、Auto、Shade,进入光照模式。读入的曲面自动全部被认为是Part。如果读入的曲面是带补充面的,则将压料面部分选出放入Binder,方法是:shift+鼠标右键选面,选完后点Binder 键。 如果读入的曲面已经完成工艺补充,则不必再进行几何构型的其他操作了。 四、 仿真参数输入(Input Generator)

在主菜单的Model中选择Input Generator,出现图3窗口,要求选择仿真类型。Incremental—用增量法计算(精度高、时间较长),One step—一步法计算(精度低、计算速度很快);模具的工作位置Tool Set up选第一种;板料厚度按实际给;Geometray refer to—一般选die side。点击OK。出现图4界面,Title不用管。 图 3 图 4 1、构造模具(Tools) die和punch采用缺省参数。Binder的Columns选择Tool center。 2、输入坯料(Blank) 图 5 图6如图5,坯料须输入轮廓线,可选Input,然后用鼠标右键画出。 坯料位置选择On Binder;坯料厚度已给,此时可更改;材料库中有日本、欧洲等标准材料,可击Import选取,也可用Input自己输入材料参数构造材料。摆放角度用缺省值0度。 如果坯料上要挖洞,则击Add hole,然后用鼠标右键画出洞的轮廓线,Edit 可进行编辑改动。 3、润滑条件

Autoform计算回弹设置培训资料

Autoform 计算回弹的设置 将Autoform 工具体及运算过程数据设置完成后,点击 “吶键(1)进行回弹设置。 一.首先设置 Main 界面下数据(如图一): 1.将Max element angle (2)栏中初始默认值由 30改为2 2.5。相当于将1/4圆弧由3等份 分为4等份,使凹模圆角处网格划分更小, CAE 分析也更精确。 size 栏(4)数值设为20,此值最好是2倍的凹模圆角半径数值,使计算更准确。但不能大 于20,如果是变半径或凹模圆角半径大于 10,则一般默认设为 20。然后把Max refinement level 栏(5 )数值设为5。此值默认为3,表示将一个标准等边三角形等分为 3等份,设为5 2 .在Mesh 栏点击 41心讪…」键(3),弹出如下图(二)所示对话框。将 in itial eleme nt 表示使网格分割更细化。设好后点 Dismiss 关掉此对话框。

图(二) time step 栏(7)数值设为0.4,默认值为0.5。表示在最后成形阶段每次计算步距为 图(三) .再设置 Misc 界面数值(如图四): Avail 一 1.点击 ----------- -- 键(8)。弹出如下图(五)所示对话框。选中 Maxlterations 选项(9 )。3.然后在 Time steps 栏点击 Advanced .. 二1键(6),弹出如下图(三)所示对话框。将 End 0.4个 单位,设置越小,则计算更精细,所耗时间也越长,设好后点 7 Dismiss 关掉此对话框。 lime steps Aiiva/iced ... Maximum displacement: Lavers

AUTOFORM分析拉延成型

常见缺陷及解决办法1.拉延开裂 开裂是拉延工序中最为常见的缺陷之一,其表现为出现破裂或裂纹,产品部分如果出现破裂或者裂纹将被视为不合格产品,所以必须予以解决。产生开裂的原因大致有: (1)产品工艺性不好,如R角过小、型面变化剧烈、产品深度较深以及材质成形性能差等。 (2)工艺补充、压边圈的设计不合理。 (3 (4 (5 (6 2 (1 (2 (3)分模线调整。随着分模线的调整,往往会伴随着开裂缺陷的产生,目前主要通过使用CAE软件来分析确定合理的分模线位置。 (4)在工艺补充面上增加吸料筋、工艺台阶等,将多余的料消化掉。 (5)合理设计拉延筋,以确保各个方向进料均匀为目标。 (6)当开裂与起皱同时存在,且起皱不被允许时,一般先解决起皱再解决开裂。 AutoForm模拟分析算法 AutoForm模拟分析算法主要有两种:隐式算法和一步成形法。

1.隐式算法 静态隐式算法是解决金属成形问题的一种方法。在静态隐式算法中,在每一增量步内都需要对静态平衡方程迭代求解。理论上在这个算法中的增量步可以很大,但是实际运算中要受到接触以及摩擦等条件的限制。随着单元数目的增加,计算时间几乎呈几何级数增加。由于需要矩阵求逆以及精确积分,对内存要求很高。隐式算法的不利方面还有收敛问题不容易得到解决以及当开始起皱失稳时,在分叉点处刚度矩阵出现奇异等。其中静态隐式算法多配合动态显式算法用于求解成形后的回弹分析。 2.一步成形法 一步法有限元方程利用虚功原理导出,其基本思想是采用反向模拟。将模拟计算按照与实际成形相反的顺序,从所期望的成形后的工件形状通过计算得出与此相对应的毛坯形状和有关工艺参数。板材成形过程的变形决定其有利于进行方向模拟。 3. 1 由于 图1? 导入CAD模型 2.网格检查及空洞填充

autoform分析基本过程

1. 将制件数型读入Autoform 2. 将制件摆至冲压方向。此过程需遵循先平移后旋转的原则,平移大小及旋转角度值可从对话窗口的左下角反映出来。 自动确定冲压方向常用方法主要有:平均法矢法、最小拉延深度法和最小冲压负角法。 3. 填充孔洞。制件上的孔洞,尤其是较大的孔洞,必须填充,这是保证计算时接触搜索的需要,保证计算精度的需要。有些边界较复杂的孔洞,需添加特征线来控制填充面的形状,此时,为保证填充面能顺利输出,推荐采用“Add detail”方式来制作填充面。 4. 边界光顺。一个光顺的边界,可以大大提高构建工艺补充面的效率,节省大量的调整工艺补充面的时间。此步骤尽量不要省略。 5. 构建压料面。构建工艺补充的目的是为了使材料流动尽量均匀一致,因此,构建压料面时,其截面线到制件的距离变化应均匀、平缓。由于压料面必须是光顺可展的,因此,压料面的调整应遵循循序渐进的原则。首先,需确定一条主截面线,调整此截面线至合适形状,截面线调整时,控制点数量应适度,宜少不宜多。调整完主截面线后,视制件形状复杂程度,在适当位置再添加一条截面线并调整至适当形状,依此类推,直至获得一个令人满意的压料面。 6. 工艺补充面。工艺补充面是指介于压料面和制件之间的那部分曲面。Autoform中提供了一系列模板及交互式对话框来调节控制生成工艺补充面。调节工艺补充时应注意:确定主截面形状时,需确定凸、凹模圆角(Punchλradius、Die radius)及侧壁倾角(W all angle),确定分模线宽度(PO widths)。 为保证工艺补充面的整体光顺,应视具体情况,应用“Directions”功能,调节工艺补充上各截面线的分布状况,调节时尺度应把握在使所有截面线空间分布尽量均匀。λ应用“Lines”功能按钮中的“POλwidth >Edit”功能,编辑分模线形状。分模线的形状不宜太复杂,控制点总体上不宜多,拐角出的控制点以三至四个为宜。 工艺补充输出到CAD系统中后,往往会视需要而需做一些编辑修改工作。为方便在CAD 系统中的工作,建议: 将所作文件另存为一个文件后,将所有凸、凹模圆角有变圆角的地方都改为与主截面参数一致。λ 将压料面位置降低20,重新生成工艺补充,并将此工艺补充面输出。λ 将压料面位置复原,并将此压料面输出。这样做的目的是为了得到压料面和工艺补充面侧壁的相交线,这条相交线即为分模线。λ

Autoform4.11 中文操作手册

Autoform V4.1.1 用户界面 Autoform V4.1.1微机版是基于微软Windows 系统,用SFU3.5(Microsoft Windows Services for UNIX 3.5)和Exceed 通过模拟Unix 环境,将Autoform 从Unix 环境移植到Windows 环境,因此Autoform V4.1.1的用户界面仍属于UNIX 风格的窗口界面。在界面设计上, Autoform 简洁易懂、一目了然,具有良好的用户操作性。 现从认识Autoform 出发,对Autoform V4.1.1用户主界面、鼠标操作、菜单快捷命令和Autoform 特有的窗口控件颜色意义几个方面对学习Autoform 作入门的介绍,为后面更深层的功能学习打下良好基础。 1、Autoform V4.1.1用户主界面 Autoform V4.1.1的用户主窗口界面的样式如下图所示,主要包括菜单栏(Menu Bar)、图标工具栏 (Icon Bar, 菜单栏下面)、图形显示窗口(View Window)、右侧工具栏(Right Bar)和底部工具栏(Botton Bar)几个部分。 图1. Autoform 用户主界面 下面就对Autoform V4.1.1用户主界面的内容进行逐个的介绍。在这里先说明一下,更深的菜单或选项在这里不作介绍,这里只介绍当前主界面的内容,对于主菜单中的更详细的内容将在具体模块专题 菜单栏(Menu Bar) 图标工具栏 (Icon Bar) 右侧工具栏(Right Bar) 底部工具栏(Botton Bar) 图形显示窗口 (View Window)

autoform分析步骤

Autoform介绍 1. 概述: AutoForm工程有限公司包括瑞士研发与全球市场中心和德国工业应用与技术支持中心,其研发和应用的阶段主要有:1991年实现自适应精化(adaptive refinement)网格;1992年采用隐式算法(implicit code)并与1993年开发出板成形模拟分析的专用软件;1994年实现对C AD数据的自动网格划分;1995年开始工业应用;1996年实现对CAD数据的自动倒园(au tomatic filleting);1997年采用One-step(一步成形)代码实现工艺补充面(addendum)的自动设计;1998 年实现压料面(binder)的自动生成;2000年实现快速交互式模具设计。它是专门针对汽车工业和金属成形工业中的板料成形而开发和优化的,用于优化工艺方案和进行复杂型面的模具设计,约90%的全球汽车制造商和100多家全球汽车模具制造商和冲压件供应商都使用它来进行产品开发、工艺规划和模具研发,其目标是解决“零件可制造性(part feasibi lity)、模具设计(die design)、可视化调试(virtual tryout)”。它将来自世界范围内的许多汽车制造商和供应商的广泛的诀窍和经验融入其中,并采取用户需求驱动的开发策略,以保证提供最新的技术。 AutoForm的特点:1)它提供从产品的概念设计直至最后的模具设计的一个完整的解决方案,其主要模块有User- Interface(用户界面)、Automesher(自动网格划分)、Onestep(一步成形)、DieDesigner(模面设计)、Incremental(增量求解)、Trim(切边)、Hydro(液压成形),支持Windows和Unix操作系统。2)特别适合于复杂的深拉延和拉伸成形模的设计,冲压工艺和模面设计的验证,成形参数的优化,材料与润滑剂消耗的最小化,新板料(如拼焊板、复合板)的评估和优化。3)快速易用、有效、鲁棒(robust)和可靠:最新的隐式增量有限元迭代求解技术不需人工加速模拟过程,与显式算法相比能在更短的时间里得出结果;其增量算法比反向算法有更加精确的结果,且使在FLC-失效分析里非常重要的非线性应变路径变得可行。即使是大型复杂制件,经工业实践证实是可行和可靠的。4) AutoForm带来的竞争优势:因能更快完成求解、友好的用户界面和易于上手、对复杂的工程应用也有可靠的结果等,A utoForm能直接由设计师来完成模拟,不需要大的硬件投资及资深模拟分析专家,其高质量的结果亦能很快用来评估,在缩短产品和模具的开发验证时间、降低产品开发和模具成本、提高产品质量上效果显著,对冲压成形的评估提供了量的概念,给企业带来明显的竞争优势和市场机遇。

A-9-应用AutoForm调整冲压方向的说明(TIP)[1]

1. 在AutoForm 的Tip 功能菜单下(如图1),由工艺规划工程师提出规划要求,将产品件 旋转到适当的冲压方向和位置。 注: 若为左右对称件,则先将产品件进行对称,再将两个对称好的产品数型作为一个整体进行位置移动找到冲压中心,然后再进一步确定制件的旋转角度从而达到冲压要求。 操作步骤: 步骤一: 应用Tip->Total tipping->Min draw depth(最小拉延深度)或Min backdraft(最小冲压负角)自动旋转车身坐标系使其达到最小拉延深度方向或最小冲压负角方向以供参考。 注:本步骤所寻找的最小拉延深度方向或最小冲压负角方向仅供使用者参考具体要求由工艺规划工程师提出。 步骤二: 图1 步骤二 1 步骤一 步骤二 2 步骤三 步骤四

1应用 Tip->Tipping center自动寻找制件的冲压中心 点击Define弹出如图2所示对话框 图2 点击Tipping center->Coordinates->Center of gravity自动生成车身坐标系位置如:X:3035.08Y:-563.87 Z:492.05 记录下其数值并将其四舍五入圆整为末尾为0的整数值,如以上坐标系圆整为:X:3040.00Y:-560.00 Z:490.00 2退出Tipping center将圆整后的坐标植X、Y、Z分别输入至Tip->Incremental tipping/moving中的by dx dy dz:中,点击move – 从而将产品从车身坐标系移近绝对坐标系。 步骤三: 通过调整产品绕X-axis、Y-axis、Z-axis的旋转角度将产品转至工艺规划工程师所要求的冲压方向。 设置Incremental tipping/moving中About和by degrees点击rotate进行旋转 About——用于设置绕某一轴旋转 by degrees——用于设置每一步转动的角度值 注:冲压方向的确定必须以保证产品拉延过程中没有负角为前提。 产品是否存在负角AutoForm以不同颜色表示: 绿色——无负角 黄色——邻界状态 红色——有负角 在检查是否存在负角时将Tip->Limits中Safe设置为0。 设置为

AUTOFORM使用说明

AUTOFORM软件使用手册 2006-2-14MM版权所有,翻版必究一、 数据文件的准备 建议用IGES格式文件进行数据传输。 CAE作为工艺分析的辅助,一般在做好工艺补充后进行。为便于AUTOFORM软件进行CAE 仿真分析,需要在UG中做以下工作: 1、按零件尺寸要求进行倒角; 2、CAE计算中采用的是等效拉延筋模型,所以要去掉实际拉延筋,并将去掉拉延筋后出现 的孔洞补上; 3、以IGES格式输出产品曲面数模; 4、以IGES格式输出拉延筋中心线、修边线。 二、 数据文件的读入 运行AUTOFORM,新建一filename文件,缺省length和force的单位分别为mm和N。改文件被缺省放在C盘根目录下(文件名和路径可在运行仿真时更改)。 图1,Import曲面数模文件,选择IGES格式,点击OK。 图1 图2 三、几何构型(Geometry Generator) 曲面数据读入后,自动被划分网格,见图2,按F键、Auto、Shade,进入光照模式。读入的曲面自动全部被认为是Part。如果读入的曲面是带补充面的,则将压料面部分选出放入Binder,方法是:shift+鼠标右键选面,选完后点Binder键。 如果读入的曲面已经完成工艺补充,则不必再进行几何构型的其他操作了。 四、 仿真参数输入(Input Generator) 在主菜单的Model中选择Input Generator,出现图3窗口,要求选择仿真类型。Incremental —用增量法计算(精度高、时间较长),One step—一步法计算(精度低、计算速度很快);模具的工作位置Tool Set up选第一种;板料厚度按实际给;Geometray refer to—一般选die side。点

相关文档