文档库 最新最全的文档下载
当前位置:文档库 › 新型锂电正极材料——阳离子无序氧化物

新型锂电正极材料——阳离子无序氧化物

新型锂电正极材料——阳离子无序氧化物
新型锂电正极材料——阳离子无序氧化物

Science:新型锂电正极材料——阳离子无序氧化物

正极材料在锂离子电池中扮演着非常关键的角色,它直接影响着锂离子电池的性能、成本、重量和体积。目前,广泛应用的锂离子电池正极材料往往是有序紧密堆积排列的氧化物,如典型的岩盐结构和尖晶石结构锂离子过渡金属氧化物,而对无序结构材料的关注甚少。正极材料的有序结构一直被认为是获得高容量和高循环性能的重要条件。然而,近日麻省理工大学材料科学与工程学院的Gerbrand Ceder研究团队发现:将阳离子无序氧化物Li1.211Mo0.467Cr0.3O2(LMCO)作为锂离子电池正极材料,具有比层状氧化物正极材料更高的容量与稳定性。该成果已在2014年01月09日的《Science》杂志网络版《Sciencexpress》上发表。

该研究中LMCO采用固相法制备而成,呈现层状岩盐结构,但在几次充放电循环后转化为无序岩盐结构,混排有大量的过渡金属阳离子。虽然阳离子的混排一度被认为是致使循环性能大幅下降的元凶,但该无序结构的LMCO具有非常好的循环性能。特别是经过碳包覆的LMCO,在C/20充放电倍率下循环10周后,比容量仍可达265.6 mAh/g。这在层状锂离子过渡金属氧化物中都很少能够做到。

文章指出,在无序岩盐结构中,锂离子和过渡金属阳离子各自占据着八面体中的立方晶格,锂离子的扩散通过八面体位之间的跃迁完成,中间需通过一个四面体位(o-t-o扩散模式)。锂离子在四面体位呈现激活状态,该激活态锂离子与4个八面体位共面,分别是锂离

子自身起初占据的隙位及其将要占据的隙位,还有两个可被锂离子与过渡金属阳离子占据的隙位。该激活态能量决定了锂离子的迁移阻力,主要由激活态锂离子和共面阳离子之间的静电排斥力来决定,取决于以下两个因素:(1)共面阳离子的化合价;(2)激活态锂离子与共面阳离子之间的可弛豫空间。该空间可通过层状结构中的锂离子插层间距来衡量,也可通过弛豫发生的空间——四面体高度来衡量。

由于存在两个共面阳离子时,将对激活态锂离子产生较强的静电排斥,因此锂离子主要通过双空位机制进行扩散。在无序岩盐结构中,这一机制可通过无共面过渡金属阳离子扩散通道(0-TM通道)和单共面过渡金属阳离子通道(1-TM通道)实现。其中,在经典的层状锂离子过渡金属氧化物中,锂离子扩散就是通过1-TM通道实现的。为了研究在无序的LMCO中,哪种通道可以实现合理的锂离子跃迁速率,文章通过密度泛函理论(DFT)对两种通道中的锂离子迁移阻力进行了计算。结果表明,0-TM通道中的锂离子迁移阻力远远低于1-TM 通道中的锂离子迁移阻力,室温下锂离子在0-TM通道中的跃迁速率约为1-TM通道中的4400倍。

这是由于 1-TM通道的四面体高度较小,导致其在无序化材料中几乎关闭。而0-TM通道虽然使用频率较低,但在无序化岩盐状材料中保持畅通。那么,只要锂离子过量,0-TM通道即可使其扩散更加容易。而0-TM通道要想主导锂离子的扩散,其必须在整个材料内部保持连续,形成不被1-TM通道和2-TM通道干扰的逾渗网络。文章对岩盐状锂离子过渡金属氧化物中的0-TM通道何时开始逾渗,以及哪

部分锂离子会成为逾渗网络中的一部分这两项问题展开了研究。结果表明,0-TM通道只有在Li x TM2-x O2中的锂含量x约超过1.09时才能开启逾渗网络;而在达到此逾渗阈值后,随着锂含量x的继续增加,将产生更多的0-TM通道,从而形成连续性更强的逾渗网络。

文章所研究材料LMCO的锂含量x>1.09,因此其0-TM通道可以开启渗滤网络,从而保证了无序结构下的锂离子扩散。这一原理同时也完美地解释了以往无序结构不受欢迎的原因——大部分锂离子过渡金属氧化物正极材料的化学式为LiTMO2,其锂含量远远低于0-TM 通道渗滤阈值,因此在无序结构下0-TM通道与1-TM通道均无法有效发挥作用,从而导致了电池容量的大幅下降。

文章提出的0-TM通道渗滤网络原理也可应用在制备其它高性能无序锂离子过渡金属氧化物材料中。这一研究将阳离子无序氧化物提上了高容量、高能量密度锂离子电池正极材料的舞台,为高性能锂离子电池的研究开辟了新方向。

原文章:

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Jinhuyk Lee, Alexander Urban, Xin Li, Dong Su, Geoffroy Hautier, Gerbrand Ceder. Science. 1246432. pp. 1-6 (2014)

锂电池正极材料及其设备制作方法与制作流程

本技术公开了一种锂电池正极材料,它是由下述重量份的原料组成的:氢氧化锂100110、硫酸锰2030、氧化亚钴46、导电粘合液23、氧化锌79、羧甲基纤维素钠0.10.2、硫酸亚锡0.080.1,本技术制备出的正极材料具有颗粒均匀、比容量高、循环性能好、易于工业化生产等优点,采用三乙胺处理石墨粉,然后与松香共混,不仅具有更好的导电性,而且黏度高,可以有效的提高成品电极材料的稳定性。 权利要求书 1.一种锂电池正极材料,其特征在于,它是由下述重量份的原料组成的: 氢氧化锂100-110、硫酸锰20-30、氧化亚钴4-6、导电粘合液2-3、氧化锌7-9、羧甲基纤维素钠0.1-0.2、硫酸亚锡0.08-0.1。 2.根据权利要求1所述的一种锂电池正极材料,其特征在于,所述的导电粘合液的是由下述重量份的原料组成的: 石墨粉20-30、三乙胺1-2、乙炔炭黑6-9、松香1-2、三羟甲基丙烷0.1-0.2; 制备方法包括以下步骤: (1)取石墨粉,加入到其重量10-18倍的96-98%的硫酸溶液中,升高温度为35-40℃,超声10-20分钟,过滤,将沉淀水洗,常温干燥,与三乙胺混合,加入到混合料重量13-15倍的去离子水中,在50-60℃下保温搅拌1-2小时,得胺化石墨粉溶液; (2)取松香,加热软化,加入到其重量3-4倍的无水乙醇中,加入乙炔炭黑,搅拌均匀,与上述胺化石墨粉溶液混合,搅拌均匀,加入三羟甲基丙烷,在70-75℃下保温搅拌2-3小时,即得所述导电粘合液。

3.一种如权利要求1所述的锂电池正极材料的制备方法,其特征在于,包括以下步骤: (1)取氢氧化锂、硫酸锰、氧化亚钴混合,加入到混合料重量30-40倍的去离子水中,搅拌均匀,得前驱体溶液; (2)取氧化锌、羧甲基纤维素钠混合,加入到混合料重量10-14倍的去离子水中,搅拌均匀,得氧化锌分散液; (3)取上述前驱体溶液、氧化锌分散液混合,搅拌均匀,滴加氨水,调节pH为9-10,在50-60℃下保温搅拌30-40分钟,加入上述导电粘合液,升高温度为70-75℃,保温搅拌10-20分钟,得导电溶胶; (4)取硫酸亚锡,加入到上述导电溶胶中,搅拌均匀,蒸馏除去乙醇,刮涂到集流体中,在110-130℃下干燥1-2小时,压制成型,即得所述锂电池正极材料。 技术说明书 一种锂电池正极材料及其制备方法 技术领域 本技术属于电池领域,具体涉及一种锂电池正极材料及其制备方法。 背景技术 锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3:1-4:1),因为正极材料的性能直接影响着锂离子电池的性能,其成本

2017年锂电池正极材料分析报告

2017年锂电池正极材料深度 分析报告 (此文档为word格式,可任意修改编辑!) 2017年8月

正文目录 一.正极材料:锂电池的核“芯” (5) 1.1 正极材料为锂电池产业链的关键材料 (5) 1.2 传统的电池材料正不断被替换 (6) 1.3 上游涨价带动正极材料价格上涨 (9) 1.4 动力电池材料成为热点 (11) 二.下游市场需求旺盛,以动力型电池增长为主 (14) 2.1 3C市场增速放缓,需求平稳 (16) 2.2 动力型电池增长明显,需求旺盛 (18) 2.3 储能领域的应用逐渐增长 (21) 三.扩张时代,高镍三元为王 (23) 3.1 高能量密度三元材料需求增大 (23) 3.2 产能扩大加剧行业洗牌 (26) 3.3 正极材料中日韩三分天下 (27) 四.主要公司分析 (28) 4.1 杉杉股份 (28) 4.2 当升科技 (30) 4.3 格林美 (32)

图表目录 图表 1:锂离子电池结构 (5) 图表 2:电芯材料成本构成 (5) 图表 3:正极材料产业链(以含钴的材料为例) (6) 图表 4:正极材料性能统计 (7) 图表 5:中国正极材料细分产品产量 (8) 图表 6:中国正极材料产量 (8) 图表 7:中国正极材料产量结构 (9) 图表 8:磷酸铁锂价格变动趋势图(元/吨) (10) 图表 9:钴酸锂价格变动趋势图(元/吨) (10) 图表 10:部分正极材料价格涨跌表(万元/吨) (11) 图表 11:三元NCM523价格变动趋势图(元/吨) (11) 图表 12:常见正极材料合成示意图 (11) 图表 13:磷酸铁锂合成路线图 (12) 图表 14:三元材料合成路线图 (12) 图表 15:三元材料分型号产量占比(2016) (13) 图表 16:常见的三元正极材料性能表 (13) 图表 17:主要的正极材料厂商(2016) (13) 图表 18:主部分正极材料上市公司业绩(2016) (14) 图表 19:全球锂电市场规模(2011-2015,亿元) (15) 图表 20:中国锂电池产量和增速(2012-2016,Gwh) (15) 图表 21:中国锂电池产值和增速(2012-2016) (16) 图表 22:中国锂电池用途分类(2012-2015) (16) 图表 23:全球手机出货量(2011-2016,千部) (17) 图表 24:中国无人机市场规模产值(亿元) (18) 图表 25:中国智能穿戴市场规模(亿元) (18) 图表 26:全国动力电池用正极材料需求(2017-2020,万吨) (19) 图表 27:全国动力电池出货量(2012-2016,Gwh) (19)

四种主要的锂电池正极材料

四种主要的锂电池正极材料 LiCoO2 锂离子从LiCoO2中可逆脱嵌量最多为0.5单元.Li1-xCoO2在x=0.5附近发生可逆相变,从三方对称性转变为单斜对称性。该转变是由于锂离子在离散的晶体位置发生有序化而产生的,并伴随晶体常数的细微变化。但是,也有人在x=0.5附近没有观察到这种可逆相变。当x>0.5时,Li1-x CoO2在有机溶剂中不稳定,会发生释氧反应;同时CoO2不稳定,容量发生衰减,并伴随钴的损失。该损失是由于钴从其所在的平面迁移到锂所在的平面,导致结构不稳定,使钴离子通过锂离子所在的平面迁移到电解质中。因此x的范围为0≤x≤0.5,理论容量为156mA·h/g。在此范围内电压表现为4V左右的平台。当LiCoO2进行过充电时,会生成新的结构 当校子处于纳米范围时,经过多次循环将产生阳离子无序,部分O3相转变为立方尖晶石相结构,导致容量衰减。粒子小时,由于锂离子的扩散路径短,形成的SEI膜较粒子大的稳定,因此循环性能好。例如,70nm的粒子好于300nm 的粒子。粒子大小对自放电也具有明显影响。例如粒子小,自放电速率快。粒径分布窄,粒子的球形性越好,电化学性能越佳。最佳粒子大小取决于电池的要求。 尽管LiCoO 与其它正极材料相比,循环性能比较优越,但是仍会发生衰减, 2 对于长寿命需求的空间探索而言,还有待于进一步提高循环性能。同时。研究过经过长时期的循环后,从层状结构转变为立方尖晶石结构,特别程发现,LiCoO 2 是位于表面的粒子;另外,降低氧化钴锂的成本,提高在较高温度(<65℃)下的循环性能和增加可逆容量也是目前研究的方向之一。采用的方法主要有掺杂和包覆。 作为锂离子电池正极材料的锂钴氧化物能够大电流放电,并且放电电压高,放电平稳,循环寿命长。.因此成为最早用于商品化的锉离子蓄电池的正极材料,亦是目前广泛应用于小型便携式电子设备(移动电话、笔记本电脑、小型摄像机等)的正极材料。LiCoO2具有a-NaFeO2型二维层状结构,适宜于锂离子在层间的嵌人和脱出,理论容量为274 mA·h/g。在实际应用中,该材料电化学性能优异,热稳定性好,且初次循环不可逆容量小。实际可逆容量约为120~150 mA·h/g,即可逆嵌人/脱出晶格的锂离子摩尔百分数接近55 %。 在过充电条件下,由于锂含量的减少和金属离子氧化水平的升高,降低了材料的稳定性。另外由于Co原料的稀有,使得LiCoO2的成本较高。 LiCoO2生产工艺相对较为简单,其传统的合成方法主要有高温固相合成法和低温固相合成法。 高沮固相合成法通常以Li2CO3和CoCO3为原料,按Li/Co的摩尔比为1:1配制,在700~900℃下,空气氛围中灼烧而成。也有采用复合成型反应生成LiCoO2前驱物,然后在350~450℃下进行预热处理,再在空气中于700~850℃下加热合成,所得产品的放电容量可达150 mA·h/g。唐致远等以计量比的钴化合物、锂化合物为合成原料在有机溶剂乙醇或丙酮的作用下研磨混合均匀,先在450℃的温度下处理6h.,待冷却后取出研磨,然后再在6~10 MPa压力下压成块状,最后在900℃的温度下合成12~36 h而制得。日本的川内晶介等用Co3O4和Li2 CO3做原料,按化学计量配合在650℃灼烧10h制的温定的活性物质。章福平等按计量将分析纯LiNO3和Co(NO3)2·6H2O混匀,加适量酒石酸,用氨水调

锂电池正极材料的发展及应用材料

锂电池正极材料的发展及应用 一、电池产业概况 1、发展历程 电池产业先后经历了铅酸电池(1890年)、镍镉电池(1956年)、镍氢电池(1990年)、锂电池(1992年)、太阳能电池及燃料电池。 图1-1 电池产业发展历程 2、未来发展趋势 传统铅酸电池、镍镉电池在民用领域将被逐步取代。铅酸电池是较早出现的一种二次电池。它的优点是技术成熟,价格便宜,无记忆效应。但缺点也非常明显,电池含有的重金属铅对环境污染影响较大,能量密度低。铅酸电池的发展前景在短期仍有重要应用,长期将逐渐被性能更好的绿色电池所取代。 镍氢电池与锂离子电池快速发展,但长期锂离子电池将取代镍氢电池。镍氢电池的优点是绿色无污染、可快速充电、能量密度高、循环寿命长、低温性能好。其缺点是具有轻度记忆效应、高温环境下性能差和充放电效率差。短期内将延续对镍镉电池的

替代攻势,长期来看,镍氢电池产业的发展将面对锂离子电池技术进步带来的替代威胁。能力密度、循环寿命等性能占优使锂离子电池成为发展趋势,但锂离子电池目前发展瓶颈主要在于安全性和成本上面的突破。 燃料电池是真正的绿色电池,将是二次电池发展的长期目标。 二、锂电池正极材料的应用与发展 1、锂电池正极材料 锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。 锂离子电池的性能主要取决于所用电池内部材料的结构和性能。锂离子电池的原材料主要包括正负极材料、电解液、电极基材、隔离膜和罐材等。其中,正极材料是锂电池中最为关键的原材料,由于正极材料在锂离子电池中占有较大比例(正、负极材料的质量比例为3:1-4:1),因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂 图1-2 锂离子电池成本占比图

锂电池及正极材料生产项目可行性实施报告

锂电池及正极材料生产项目可行性研究报告 目录

一、概述 1.1. 项目名称及建设地点 1.2. 项目概况 1.3. 公司概况 1.4. 经济效益和社会效益分析 1.5. 建设目标 二、技术可行性分析 2.1.项目的技术路线、工艺的合理性和成熟性,关键技术的先 进性和效果 ?1.项目的生产路线 ?2.技术的创造性和先进性 3.技术创新性 4.工艺与原材料的适应性及其经济合理性 5.连续化、自动化及环保情况 6.成果的创造性、先进性 2.2.产品技术性能水平与国外同类产品的比较 2.3.项目承担单位在实施本项目中的优势 ?1.政策优势;2.技术优势;3.市场优势;4.性能优势 三、项目成熟程度 3.1. 产品质量的稳定性,以及在价格、性能情况 ?1.技术质量指标 3.2.核心技术的知识产权情况 四、市场需求情况和风险分析

4.1.国市场需求规模和产品的发展前景、在国市场的竞争优势 和市场占有率 ?1.国市场需求规模 ?2.产品经济周期及目前所处生命期的阶段 ?3.小型锂离子电池市场对锂电池的需求趋势 ?4.车用动力电池市场对锂电池的需求趋势 五、项目建设规划 六、原材料、原材料供应、动力消耗及三废治理 七、项目工艺、设备与经济效益分析 八、节能环保 九、风险分析及对策 ?1.项目风险2.风险对策 十、结论 一、概述 1.1 项目名称及建设地点

(1)项目名称:锂电池及正极材料生产项目 (2)建设地点:某经济开发区 1.2 项目概况 1.2.1项目法人代表: 1.2.2 建设目标: 本项目建设的主要目标是:建成年产1000吨锂电池正极材料及50000组锂电池生产线,通过产学研相结合的方式,形成较强的研发团队,为公司进入锂离子电池市场打下基础。 1.2.3 产品及拟建规模 类型产品名称建设规 模 原料型锂电池正极材料 1000吨功率型高功率电池;新型动力电池 50000组 1.2.4 主要建设容及投资 项目注册资本1500万元,计划总投资2亿元,投资构成如下:(1)土地:100亩*8万/亩=800万; (2)厂房:20000平米*800元/平米=1600万元 办公楼:3000平米*1500/平米=450万元 宿舍楼:2000平米*1300/平米=260万元 配套和完善相应的公用辅助:300万元 (3)设备(正极材料生产线和锂电池生产线)共0.987亿元;

锂电池正极材料的发展及应用

锂电池正极材料的发展及应用 一、电池行业的发展历程 1.1电池分类 一次电池:也称为原电池,活性物质只能使用一次的电池,如:一次性碱性电池 二次电池:经充电后可继续使用的电池,包括:铅酸电池、镍氢电池、镍镉电池、锂电池太阳能电池:通过光化学反应转化为电能,可分为:多晶硅电池、非晶硅薄膜电池等。 燃料电池:将燃料与氧化剂中化学能直接转化为电能的发电装置。外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂” 图1 二次电池的发展历程 1.2电池性能比较 表1 几种电池的性能比较 资料来源:国泰君安证券研究所

表2 镍镉、镍氢、锂离子电池性能对比 分析上表几种电池的性能比较,可得出以下结论: 电池产业的发展将有三种趋势: 1、传统铅酸电池、镍镉电池在民用领域将被逐步取代。铅酸电池是较早出现的一种二 次电池。它的优点是技术成熟,价格便宜,无记忆效应。但缺点也非常明显,它含污染环境的重金属铅,能量密度低。铅酸电池的发展前景是短期仍有重要应用,长期将逐渐被性能更好的绿色电池所取代。 2. 镍氢电池与锂离子电池快速发展,但长期锂离子电池将取代镍氢电池。镍氢电池是 近些年开发出来并投入大规模应用的一类新型绿色环保二次电池,其各项性能与镍镉电池相似,但它的能量密度高,性能更好。镍氢电池的正极材料为氢氧化镍,负极材料为储氢合金。主要有圆柱形和方形两种。目前镍氢电池在日常消费类产品、电动工具、无绳电话、照明灯具、储能设备和HEV等领域均具有重要的应用。 镍氢电池的优点是绿色无污染、可快速充电、能量密度高、循环寿命长、低温性能好、安全和价格相对便宜。其缺点是具有轻度记忆效应、高温环境下性能差和充放电效率差。镍氢电池的发展前景:短期内将延续对镍镉电池的替代攻势,并在新能源汽车和风电、太阳能发电系统中的分时调峰/UPS领域得到重要应用。长期来看,镍氢电池产业的发展将面对锂离子

各种锂离子电池正极材料分析

锂离子电池现使用的正极材料有如下几种: 1、钴酸锂 钴酸锂也是目前应用最为广泛的正极材料,钴产生3.9V(vs. Li)的电势平 台,对钴酸锂而言,对应于其理论容量,高达274mAh/g,实际容量可达155mAh/g,具有很高的能量密度。主要应用于便携电池领域:如手机,PDA;移动DVD; MP3/MP4、笔记本电脑。 1)结构缺陷 对钴酸锂(LixCoO2,00.55 时,材料的容量发生严重的退化,其层状结构倾向于塌陷,使得实际可利用的容量不超过155mAh/g,为了能够更多的利用LiCoO2 中的锂离子,人们采用掺杂、包覆等办法对其改性。目前,有多种元素应用于LiCoO2 掺杂,但只有Mn 和Al 表现出较好的效果。 在Li 过分脱出时(E>4.2V 时),LiCoO2 发生严重的过充现象,化学键发生断 裂而释出O2,导致体系的不稳定,甚至有使电池爆炸的危险。 2)资源缺乏 钴在我国属于稀缺资源,我国钴矿矿床规模较小,矿区储量大于2 万吨的只 有甘肃金川和青海德尔尼两处,矿区储量大于1 万吨的有河北、四川、海南、新 疆4 省。截至2006 年底,我国探明钴储量47.1 万吨。由于连年开采,我国钴储 量逐年减少。我国钴产量应该在4900 吨左右。2002 年我国钴消费量为4845 吨,比2001 年增加了22%。从2002 年起,电池行业已超过硬质合金行业,成为我国 钴消费的第一大行业。由于目前我国未发现大规模有开采价值的钴矿,我国锂电池正极材料用钴酸锂的生产基本上是从国外进口价格昂贵钴原料。 2、镍酸锂 Ni4+/Ni3+电对能产生3.75V 的电势平台。它能可逆的嵌脱0.7Li,具有接 近200mAh/g 的循环容量,但在实际中,很难得到这个结果。首先在高温下,由于Li 的挥发,很难合成化学计量比LiNiO2,高温时六方相的LiNiO2 很容易向立方相的LiNiO2 转变,这种锂镍置换的立方相的没有电化学活性,而且这个反应的逆过程很慢并且不完全。此外在充放电过程中,LiNiO2 还会发生一系列的结构变化,而导致嵌锂容量的损失。实际上镍酸锂无太大实用价值。 3、镍钴二元材料和多元复合材料 LiCoO2 价格昂贵,LiNiO2 合成困难,如果能够结合二者的优点,用价格相 对低廉的Ni 替代部分Co,合成具有LiCoO2 一样优良电化学性能地电极材料,那么将具有广阔的应用前景。由于半径相近,Ni 和Co 几乎可以以任何比例形成 固溶体。近几年来,多元混合掺杂的层状氧化物得到了大量的研究,不同金属原子比例的镍钴锰多元材料得到了研究,但是颗粒形貌和粒度分布不得到有效的控制,只有在足够高的电势下(大于4.5V)才能获得180mAh/g 的容量,此外没有从根本上改变钴系材料的特点。 4、尖晶石锰酸锂 尖晶石锰酸锂能够产生4.0 V 的电压平台,与钴酸锂相当,理论容量 148mAh/g,实际容量120mAh/g 左右,比现在所用的钴酸锂稍低。早在上世纪80

年产1万吨锂电池三元正极材料项目的可行性研究报告

年产1万吨锂电池三元正极材料项目可行性研究报告

1 总论 1.1 概述 1.1.1 项目提出的背景 20世纪是人类发展最为快速的一个世纪,各种高新技术的出现和应用给人们的生活带来了巨大的便利。然而,伴随这种高速发展的是能源的严重消耗,污染的加剧以及全球灾难性气候变化的屡屡出现,这已经严重危害到人类的生存环境和健康安全。全世界已探明的化石燃料(煤、石油、天然气)的贮量在不久以后将会枯竭。为了缓解环境与能源压力,探索新型的能源模式已成为21世纪必须解决的重大课题。 电池的出现是人们在寻找清洁能源过程中一个里程碑式的事件。电池的最大特点是在提供能源的高效率转化时,能够实现原料的“零排放”,从而减少对原材料的损耗,达到最优化的利用地球上有限的自然资源,实现社会的和谐发展的目的。由此可见电池材料对解决今后的能源危机及其所造成的环境污染起着关键的作用,而锂电池则是能实现高效能量储存与能源转换的储能设备而得到社会的广泛认可。锂电池是通常使用的锂离子电池的俗称,锂离子电池是指Li+嵌入化合物为正负极,依靠Li+在正负极之间移动来实现充放电的二次电池。 锂离子电池的研究开始于20世纪80年代,20世纪90年代初日本索尼公司推出了第一代锂离子电池并进行了商业化生产。随着现代社会的不断发展和生活水平的逐渐提高,笔记本电脑、手机等数码产品在人们日常生活中的使用越来越频繁。据统计,2015年全球笔记本电脑销量已达到1.644亿台。从2010年开始,我国笔记本电脑市场需求增速明显,2015年1~10月我国笔记本电脑累计产量为14711.95万台。同时,使用手机的人数也大幅增长。截至2015年底,全球手机用户数达到71亿,手机信号已覆盖全球超过95%的人口,其中我国移动电话用户13.06亿户。2015年全球智能手机用户比例首次超过全球人口的四分之一,达到19.1亿,到2016年全球智能手机用户数量将超过20亿,而到2018年,全球三分之一的消费者将是智能手机用户,总数超过25.6亿人。2018年智能手机用户指数代表了全球移动手机用户的一半,这意味

锂电池几种正极材料的优缺点

锂电池几种正极材料的优缺点 锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:(1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;(3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;(4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电;(5)正极材料应有较高的电导率,能使电池大电流地充电和放电;(6)正极不与电解质等发生化学反应;(7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;(8)价格便宜,对环境无污染。 锂离子电池正极材料一般都是锂的氧化物。研究得比较多的有LiCoO2,LiNiO2,LiMn2O4,LiFePO4和钒的氧化物等。导电聚合物正极材料也引起了人们的极大兴趣。 1、LiCoO2 在目前商业化的锂离子电池中基本上选用层状结构的LiCoO2作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。 2、LiNiO2

锂电池正极材料--生产磷酸铁锂的上市公司一览

锂电池正极材料--生产磷酸铁锂的上市公司一览 本文来自:财富赢家https://www.wendangku.net/doc/2416617258.html, 作者:冬季风点击1055次 原文:https://www.wendangku.net/doc/2416617258.html,/viewthread.php?tid=145421 上市公司, 正极, 锂电池, 磷酸, 生产 磷酸铁锂是一种新型锂离子电池电极材料。目前全球已经有很多厂家开始了工业化生产,国外美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。其特点是放电容量大,价格低廉,无毒性,不造成环境污染。世界各国正竞相实现产业化生产。 锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂离子电池的正极材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005年7月。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料。 [1]、杉杉股份 (600884): 湖南杉杉新材料有限公司,控股75%。主要生产锂离子电池正极材料,是中国国内发展最快、规模最大的锂离子电池正极材料制造商。拥有年产5000吨锂电正极材料的生产规模,钴酸锂年生产能力为4000吨,锰酸锂500吨。目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。2007年钴酸锂占国内市场份额的40%以上,稳稳占据全国第一、世界第三的锂离子电池正极材料生产商地位。长沙杉杉动力电池有限公司,控股82%。主要生产锂离子动力电池。目前有钢壳液态锂离子电池、聚合物锂离子电池等几十种动力电池产品。产品材料体系有锰酸锂系列、磷酸亚铁锂系列、三元体系电池。 [2]、中国宝安 (000009): 在锂电池正负极材料上拥有绝对的行业话语权。主要通过2家控股子公司进行。控股55%的贝特瑞公司是国内唯一的锂电池碳负极材料标准制定者;也是国内唯一的锂电池磷酸铁锂正极材料标准制定者,贝特瑞公司,控股55%。是锂电池碳负极材料和磷酸铁锂正极材料的龙头。锂电池碳负极材料国内第一,市占率80%,全球第二;磷酸铁锂正极材料国内第一,目前全球第三。贝特瑞09年碳负极材料产能是6000吨/年,磷酸铁锂正极材料产能是1500吨/年。天骄公司,控股75%。主营的三元正极材料,08年销量居国内第一,市场占有率30-40%。08年三元正极材料产量805吨,销量665吨;09年保守产能是1400吨,负极材料钛酸锂180吨,正极材料磷酸铁锂09年6月达产,年产能是150吨。 [3]、金瑞科技 (600390): 正极材料是锂离子电池中成本最高的部分。钴酸锂(LiCoO2)是目前唯一已经大规模产业化并广泛应用于商品锂离子电池的正极材料。公司子公司长远锂科(公司占16%,大股东占84%)是专业生产钴酸锂的高新技术企业。05年钴酸锂年产量达1500吨,其中采用具有自主知识产权的湿法新技术生产的球状钴酸锂为1000吨。08年金瑞科技开展了磷酸亚铁锂制备技术和镍钴锰酸锂三元材料的研究。新型锂离子正极材料镍钴锰酸锂其比容量比钴酸锂高出30%以上。

新型锂离子电池正极材料的制备及性能研究

新型锂离子电池正极材料的制备及性能研究 摘要:锂离子电池的正极材料占据了高于40%的比例,材料性能对锂电池各项性能指标产生了直接影响。本文研究了一种新型锂离子电池,对电池正极材料的制备方法及性能进行了深入探讨。 关键词:锂离子电池正极材料制备性能 一、新型锂离子电池正极材料制备研究 1.电池正极材料制备方法综述 本次研究涉及了一种锂离子电池正极材料的制备方法,有以下步骤[1]:先将三元材料与钴酸锂混合,进行回火处理,获得锂离子电池正极材料,可将综合性能进一步提升,应用作为正极材料,不但能提高电池的比容量、循环性能和首次充放电效率,还能降低成本、改善电池安全性。其次采用纳米氢氧化镁、纳米二氧化钛用作添加剂制备钴酸锂,充分提升了正极材料的性能,将其应用在锂离子电池中,能够极大的提升正极材料放电比容量,增加锂离子电池的稳定性,有效缓解锂离子电池容量衰减现象,提高了锂离子电池的电化学性能。 2.锂离子电池正极材料制备具体实施方法 将三元材料与钴酸锂混合后回火处理处理,获得正极材料。此次研究适合在球磨机中将其进行混合,更适合在行星球磨机中混合;钴酸锂质量比三元材料质量为3-5:5-7,更适合比为3-4:5-6。 将均匀混合的混合物装入氧化铝匣钵进入马弗炉行回火处理,得到反应产物。回火反应温度为500℃-600℃;回火时间为4-6h。 回火处理后的产物,实施冷却、粉碎、过筛,获得锂离子电池正极材料,方式均无明确限制。本次研究的锂电池正极材料的粒度D50为12-15μm;振实密度为2.40-2.60g/mL;金属异物为0-50ppb。 3.钴酸锂与三元材料制备依据方式 混合镍钴锰系三元材料与镁钛掺杂的钴酸锂,进行锂离子电池正极材料制备[2]。将三元材料与钴酸锂回火处理能够极大提升其综合性能,用作正极材料使用,可有效提高电池比容量、循环性能及首次充放电效率,还能降低成本、改善电池安全性。 钴酸锂依据以下方式制备:①混合碳酸锂、四氧化三钴和纳米氢氧化镁并进行首次加热,获得中间产物[3];适合在球磨机中将它们进行混合,更适合在行星球磨机中混合。碳酸锂与四氧化三钴以锂和钴计的摩尔比为1.01-1.10:1。纳

锂离子电池正极相关材

锂离子电池具有工作电压高、无记忆效应、环境友好等优点,已经成为21世纪绿色电池的首选。锂离子电池的关键材料之一是正极材料,目前商品化锂离子电池的正极材料主要是LiCoO2,但存在成本高、实际比容量偏低、抗过充电性能差、安全性能不佳等问题,严重阻碍了锂离子电池的进一步发展,限制了它在更广领域的应用,迫切需要研究者开发出成本低、性能优良、安全性高的锂离子电池正极材料以满足电动汽车等新兴行业的需求。 锂离子电池是绿色环保电池,是二次电池中的佼佼者。与镍镉电池(Cd.Ni)和镍氢电池(Ni.H)相比,锂离子电池具有工作电压高、比能量大、充放电寿命长、自放电率低等显著优点,且没有Cd-Ni电池中镉的环境污染问题。锂离子电池的上述特点,使其可以向小型化方向发展,因而适合于小型便携式电器电源,如移动电话、笔记本电脑、照相机等。这些电器与人们的商务活动和日常生活紧密相连,使用的群体广,新旧换代快。锂离子电池还可以用于电动工具和电动车电源替代Cd.Ni电池和铅酸电池,一方面Cd-Ni电池和铅酸电池的原材料上涨,成本提高,发展受限,我国出口退税政策调整;另一方面欧盟在2005和2006年相继出台了两项与化学品相关的RollS和REACH法令,前者限制了铅、镉等6种化学元素的使用,后者则规定上万种化学药品要重新注册。所以这为锂离子电池行业发展带来了新的机遇【l】。此外,锂离子电池也是航空航天和军事等领域要求空间上移动使用的新一代清洁安全能源,以及作为家庭和交通照明、备用电源、储能电站等时间上移动使用的储能调峰电源。因此锂离子电池有非常广阔的应用范围。 1.2锂离子电池发展简况 锂离子电池的发展可以追迥到锂二次电池,锂二次电池的研究最早始于20世纪60--70年代的石油危机,当时主要集中在以金属锂及其合金为负极的锂二次电池体系,但锂在充放电过程中由于电极表面的凹凸不平,导致表面电位分布不均匀,造成了锂的不均匀沉积。这种不均匀沉积导致锂在一些部位沉积过快,产生锂枝晶,当锂枝晶发展到一定程度时,一方面会发生折断,造成锂的不可逆损失;另一方面锂枝晶的产生会刺穿电池的隔膜,将正极与负极连接起来,引起短路,产生大电流进而生成大量的热,引起电池着火甚至爆炸,从而引发严重的安全问题,因此这种电池未能实现商品化【2】。锂二次电池的突破性发展源于Armand 的“摇椅电池(Rocking chair batteries)”的构想,即采用低插锂电势的嵌锂化合物代替会属锂为负极,与高插锂电势的嵌锂化合物组成二次锂离子电池。Scrosati等【3】以LiWO2或Li6FeO3为负极,以TiS2、WO3、NbS2或V2O5为正极组装成二次电池。1987年,Aubom等【4】装配了以MoO2或WO2为负极,LiCoO2为正极的“摇椅式”电池。与金属锂为负极的二次锂电池相比,这些电池的安全性能和循坏性能大大提高。但由于MoO2和WO2等负极材料的嵌锂电位较高(07~2.0 V vs Li+/Li),因此未能得到实际应用。1990年日本Sony能源技术公司首先推出实用型锂离子电池。该电池既克服了二次锂电池循环寿命短、安全性差的缺点,又较好地保持了二次锂电池高电压、高比能量的优点。由此,二次锂离子电池在全世界范围内掀起了研究开发热潮,并取得了巨大的进展净。 锂离子电池的关键材料之一是正极材料,所以锂离子电池对正极材料的要求也很高。从上世纪70年代开发锂电池起,经过30多年的研究,多种嵌锂化合物可作为锂离子电池的正极材

各种锂离子电池正极材料分析

各种锂离子电池正极材料分析 锂离子电池现使用的正极材料有如下几种: 1、钴酸锂 钴酸锂也是目前应用最为广泛的正极材料,钴产生3.9V(vs. Li)的电势平台,对钴酸锂而言,对应于其理论容量,高达274mAh/g,实际容量可达155mAh/g,具有很高的能量密度。主要应用于便携电池领域:如手机,PDA;移动DVD;MP3/MP4、笔记本电脑。 1)结构缺陷对钴酸锂(LixCoO2,00.55 时,材料的容量发生严重的退化,其层状结构倾向于塌陷,使得实际可利用的容量不超过155mAh/g,为了能够更多的利用LiCoO2 中的锂离子,人们采用掺杂、包覆等办法对其改性。目前,有多种元素应用于LiCoO2 掺杂,但只有Mn 和Al 表现出较好的效果。在Li 过分脱出时(E>4.2V 时),LiCoO2 发生严重的过充现象,化学键发生断裂而释出O2,导致体系的不稳定,甚至有使电池爆炸的危险。 2)资源缺乏钴在我国属于稀缺资源,我国钴矿矿床规模较小,矿区储量大于2 万吨的只有甘肃金川和青海德尔尼两处,矿区储量大于1 万吨的有河北、四川、海南、新疆4 省。截至2006 年底,我国探明钴储量47.1 万吨。由于连年开采,我国钴储量逐年减少。我国钴产量应该在4900 吨左右。2002 年我国钴消费量为4845 吨,比2001 年增加了22%。从2002 年起,电池行业已超过硬质合金行业,成为我国钴消费的第一大行业。由于目前我国未发现大规模有开采价值的钴矿,我国锂电池正极材料用钴酸锂的生产基本上是从国外进口价格昂贵钴原料。 2、镍酸锂 Ni4+/Ni3+电对能产生3.75V 的电势平台。它能可逆的嵌脱0.7Li,具有接近200mAh/g 的循环容量,但在实际中,很难得到这个结果。首先在高温下,由于Li 的挥发,很难合成化学计量比LiNiO2,高温时六方相的LiNiO2 很容易向立方相的LiNiO2 转变,这种锂镍置换的立方相的没有电化学活性,而且这个反应的逆过程很慢并且不完全。此外在充放电过程中,LiNiO2 还会发生一系列的结构变化,而导致嵌锂容量的损失。实际上镍酸锂无太大实用价值。 3、镍钴二元材料和多元复合材料 LiCoO2 价格昂贵,LiNiO2 合成困难,如果能够结合二者的优点,用价格相对低廉的Ni 替代部分Co,合成具有LiCoO2 一样优良电化学性能地电极材料,那么将具有广阔的应用前景。由于半径相近,Ni 和Co 几乎可以以任何比例形成固溶体。近几年来,多元混合掺杂的层状氧化物得到了大量的研究,不同金属原子比例的镍钴锰多元材料得到了研究,但是颗粒形貌和粒度分布不得到有效的控制,只有在足够高的电势下(大于 4.5V)才能获得180mAh/g 的容量,此外没有从根本上改变钴系材料的特点。 4、尖晶石锰酸锂 尖晶石锰酸锂能够产生4.0 V 的电压平台,与钴酸锂相当,理论容量148mAh/g,实际容量120mAh/g 左右,比现在所用的钴酸锂稍低。早在上世纪80 年代Goodenough 就发现锂离子能够在尖晶石结构的锰酸锂中电化学可逆的嵌脱,从而得到了众多研究者的关注。与钴酸锂和镍酸锂相比,锰酸锂原料来源广泛,价格非常便宜(只有Co 的10%),而且没有毒性,对环境友好。曾一度被认为是替代LiCoO2 的首选锂离子电池正极材料。尖

锂电池行业:锂电池正极材料现状及未来发展趋势会议纪要

题还是很多,但未来潜力还是很巨大的;钴的储藏量很小,基本进口;我国锰的资源比较多,在广西和越南边境大约有1亿吨的锰的储量,已经被中信公司控制了,湖南和贵州也有一些锰矿;镍的资源在甘肃金川有一些。(2)技术问题有很多,再生循环使用技术,新材料与技术,电池和马达及计算机与电子控制系统,新型车辆技术等。我们国内的电动汽车的技术为什么会显示出高耗能的问题呢?国外的马达做的小巧多了,把转动系统设计到轮子的中间。未来的电动汽车,传统的笨重的零部件都没有了,车厢的结构就是几组电池,系统在轮胎的中间,用导线连接起来就可以了。技术上的进步就会解决上述四个方面的问题。 2、未来的电池走向:一个是纯电动车的电池叫做高容量的电池,一是混合电动车用的电池叫做高功率的电池。这两个是小型锂电之外未来发展最快的电池。 与多元材料电池相比,磷酸亚铁锂电池无法解决大电流充放电问题,因而在混合动力汽车应用存在劣势。 多元复合氧化物正极材料是混合动力车、电动工具等上面需要大电流充放电状况下使用的锂电池材料。作为比较,我们使用海外生产的质量比较好的磷酸铁锂电池对比,用10C的电流充电的时候,多元材料电池的电压下降和容量减少都是十分有限的,而磷酸铁锂电池基本上已经没有电压了,处于无法使用的状况。而多元材料电池甚至在20C、25C电流充电的时候依然可以工作。混合动力汽车与纯电动汽车是不一样的,搭载的电池很小,但是在启动和刹车的时候对电池提出了非常苛刻的要求,启动的时候需要从电池里迅速的取出大量的电能,在刹车的时候要把急速刹车时大量的能量转化成电能储存到电池里,这样的电池与纯电动车上的电池的性能是完全不同的。混合动力车电池的特点决定了未来主要使用的将是多元材料锂电池。 与锰酸锂电池相比,磷酸亚铁锂电池无法解决低电压、低能量密度、低温特性差、容易发热、电压非常平缓等致命性的问题。所以未来解决不了安全性问和更小更轻的问题。 磷酸亚铁锂的低电压问题、低能量密度问题、低温特性差问题前文已经阐述过,这里重点介绍一下容易发热和电压平缓也是导致安全性问题的致命问题所在。 (1)电压平缓问题。锰酸锂电池充放电20%、40%、60%时,功率的变化非常有规律,而在混合动力车使用非常频繁的20%-60%之间的充放电时,磷酸铁锂电池功率或电压的变化非常小,接近于零,小到现在的电子检测设备检测不出来,这种差别是非常可怕的问题。在电池组中是一个电子管理系统在控制着这些电池,通过电压的测量,随时了解每个电池的状态。锰酸锂在不同的状态下有不同的电压,可以找到规律。而磷酸铁锂电池无法通过电压的测量判断处于什么状态,找不到规律,不知道该充电还是放电,就容易产生过充电或过放电,这是导致电池出现燃烧或者爆炸等安全性问题的重要的原因。 (2)发热的问题。电动汽车绝对不允许有任何安全性问题出现,发热问题是最可怕的。导电性能如何是至关重要的问题,导电性能好,在工作过程中内部留下来的热量就小,电的利用效率就高。磷酸亚铁锂导电性能不好就会出现这样的问题。在1C电流充电的时候,磷酸亚铁锂电池温度上升到30多度,而锰酸锂材料电池温度略微上升一点,而在5C充电的时候,磷酸亚铁锂电池温度已上升50度,而锰酸锂电池才35度。一次充电温度上升到这么高不重要,关键是电池工作过程中温度是要累积的,不会及时的散发出去,在电动汽车里,是几十块甚至几百块堆积到一起,热量很难散发出去。

锂电池正极粘结剂

锂离子电池由于具有比能量高,工作电压高,质量轻、自放电小、循环寿命长,贮存寿命长、放电性能稳定,无记忆效应、环境污染小等一系列突出优点,目前已广泛应用于手机,笔记本电脑等新型便携式通信、电子产品上。目前,研究者们对锂离子蓄电池材料的研究主要集中在正极材料、负极材料、电解液以及隔膜等方面,而对电池中的辅助材料(如导电剂、粘结剂、分散剂等)的研究较少。在电极中,粘结剂是用来将电极活性物质粘附在集流体上的高分子化合物。它的主要作用是粘结和保持活性物质,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构,对于在充放电过程中体积会膨胀、收缩的锂离子电池正负极来说,要求粘结剂对此能够起到一定的缓冲作用。选择一种合适的锂离子电池粘结剂,要求其欧姆电阻要小,在电解液中性能稳定,不膨胀、不松散、不脱粉。一般而言,粘结剂的性能,如粘结力、柔韧性、耐碱性、亲水性等,直接影响着电池的性能。加入最佳量的粘结剂,可以获得较大的容量、较长的循环寿命和较低的内阻,这对提高电池的循环性能、快速充放能力以及降低电池的内压等具有促进作用。因此选择一种合适的粘结剂非常重要。 1、粘接剂的作用及性能; (1)保证活性物质制浆时的均匀性和安全性; (2)对活性物质颗粒间起到粘接作用; 将活性物质粘接在集流体上;(3).

(4)保持活性物质间以及和集流体间的粘接作用; (5)有利于在碳材料(石墨)表面上形成SEI膜。 2、对粘接剂的性能要求; (1)在干燥和除水过程中加热到130—180~C情况下能保持热稳定性; (2)能被有机电解液所润湿; (3)具有良好的加工性能; (4)不易燃烧; (5)具有比较高的电子离子导电性; (6)用量少,价格低廉; 锂离子电池中,由于使用电导率低的有机电解液,因而要求电极的面积大,而且电池装配采用卷式结构,电池的性能的提高不仅对电极材料提出了新的要求,而且对电极制造过程中使用的粘接剂也提出了新的要求。目前,工业上普遍采用聚偏氟乙烯(PVDF)作锂离子电池的粘结剂,N—甲基吡咯烷酮(NMP)做分散剂。 下面对工业上常使用的PVDF做一下总结: 聚偏二氟乙烯(PVDF),VF的均聚物和聚偏二氟乙烯共聚物,VF22(偏二氟乙烯)/HFP(六氟丙烯)的共聚物在锂离子电池系统中已经被广泛接受作为粘接剂的材料。它们在电化学性能、热稳定性,化学稳定性以及其生产工艺的简单程度是其它聚合物粘接剂所无法比拟的。PVDF是一个由VF单体,通过加聚反应合成的的聚合体。从结构2上说,它由CH键和CF键相间连接的。该聚合物既具有典型的含氟22. 聚合物的稳定性,同时聚合物链上的交互基团能产生一个独特的极性,

锂电池正极材料发展概况

锂电池正极材料发展概况 正极材料是锂电池的核心,目前以钴酸锂、锰酸锂、镍钴锰锂和磷酸铁锂为主。负极材料则以石墨、固体碳粒为主;在正负极中间则是电池电解液和隔膜。从目前的发展趋势来看,以磷酸铁锂电池为动力的混合动力汽车将成为下一阶段新能源汽车的主流,整个锂电池产业链是新能源汽车投资的重点,而锂电池正极材料将成为这条产业链中最耀眼的明珠。 此前,锂电池成本之所以高于镍氢电池,主要原因就在于其正极材料使用的是以贵金属钴为原料的 钴酸锂,锰酸锂和磷酸铁锂由于成本优势更为明显,正逐步成为锂电池的主要发展方向。也即,锂电池之战主要在锰酸锂与磷酸铁锂之间展开。 虽然镍氢电池由于技术成熟度和成本上的优势,在短期内仍将是混合动力汽车的首选动力,但由于 其比能量低和记忆效应的缺点,在成本问题解决后,锂电池将成为纯电动汽车和插电式混合动力汽车的主要动力选择。 与锰酸锂相比,磷酸铁锂的容量密度更高,前者为100-115mAH/g,后者为130-140mAH/g;充放电寿 命更长,前者为500次以上,后者可达1500次以上;工作温度区间更大,前者为0至50℃,后者则为- 40至70℃。 磷酸铁锂电池的出现,让混合动力、纯电动汽车的发展前景更为明朗,因为其动力、充电后续驶时 间和成本上有很大改进。 同时,磷酸铁锂的成本也要低于锰酸锂。但其致命弱点则是“导电性”不好,目前解决这一问题的 主流技术有用导电碳包覆颗粒、用金属氧化物包覆颗粒、用纳米制程让颗粒微粒化等。若该问题得到有效解决,磷酸铁锂的巨大优势将促其成为车用电池的首选材料。 锂离子电池正极材料的发展趋势

在2008年以前,钴酸锂正极材料在高能量密度小型锂离子电池正极材料市场中几乎占据垄断地位, 但其价格高、安全性较差的缺陷,使其在经历了十几年的辉煌后进入了衰退期,一些新型锂离子电池正极 材料在市场上已开始崭露头角,并显示出强劲的增长动力。其中包括镍锰钴酸锂三元材料、镍锰酸锂二元 材料等,其特征是:在高充电电压体系下,有更高的克容量、更好的安全性、更低的成本及更长的使用寿命。尤其是高镍锰钴酸锂和镍锰酸锂这两种新型锂离子电池正极材料,更具发展前景。如镍锰酸锂与钴酸 锂相比,在以下方面具有显著优势: (1)成本低:由于不含钴,成本仅相当于钴酸锂的1/4且更绿色环保。 (2)安全性好:安全工作温度可达170℃,而钴酸锂仅为130℃,大幅提升了使用安全性,有利于 消费者的人身安全。 (3)克容量高:充电电压在4.6V时(钴酸锂充电限制电压为4.2V),其克容量发挥高达210mah/g,充电电压在4.8V时,其克容量发挥高达245mah/g,相当于钴酸锂的1.7倍,极大提升了电池的能量密度 和供电时间。 (4)电池的循环使用寿命延长了45%。 高镍锰钴酸锂是指镍锰钴含量比为8:1:1或7:2:1的三元材料,其已开始批量生产和应用,而 我国目前可批量生产的还是1:1:1的普通镍锰钴酸锂三元材料。镍锰酸锂二元材料(镍锰比为5:5或6:4)将是应用在高能量密度小型锂离子电池最有潜力的新型正极材料,在已有批量生产。目前我国镍锰 酸锂二元材料还处于研制阶段。 具有高充电电压特征的新型正极材料及相关电池的研究自2002年起即成为国际研发的热点,据不完 全统计,来自美国、法国、韩国、意大利、德国、以色列、中国的研究机构在2003年-2006年期间,仅 在国际权威专业刊物上就发表了35篇高电压体系锂离子电池及相关材料的文章,其分布于:ECS、POWERSOURCES、SOLIDSTATEIONICS。三洋、松下,韩国的三星、LG,自2002年起至今,仅在中国已经公 告的、与高电压体系锂离子电池相关的发明专利就达五十余项。一场围绕高电压、高能量密度、高安全、

相关文档