文档库 最新最全的文档下载
当前位置:文档库 › 化工原理

化工原理

化工原理
化工原理

第二章流体输送机械

学生自测

一.填空或选择

1.离心泵的主要部件有、和。

2.离心泵的泵壳制成蜗壳状,其作用是。

3.离心泵的主要特性曲线包括、和三条曲线。

4.离心泵特性曲线是在一定下,用常温为介质,通过实验测定得到的。

5.离心泵启动前需要先向泵内充满被输送的液体,否则将可能发生现象。而当离心泵的安装高度超过允许安装高度时,将可能发生现象。

6.若离心泵入口真空表读数为700mmHg,当地大气压为101.33kPa,则输送上42℃水时(饱和蒸汽压为8.2kPa)泵内发生汽蚀现象。

7.离心泵安装在一定管路上,其工作点是指。

8.若被输送的流体的粘度增高,则离心泵的压头、流量、效率、轴功率。

9.离心泵通常采用调节流量;往复泵采用调节流量。

10.离心泵允许汽蚀余量定义式为。

11.离心泵在一管路系统中工作,管路要求流量为Q e,阀门全开时管路所需压头为H e,而与相对应的泵所提供的压头为H m,则阀门关小压头损失百分数为%。

12.离心通风机的全风压是指,它的单位是。

13.离心通风机的特性曲线包括、、和四条曲线。

14.往复泵的往复次数增加时,流量,扬程。

15.齿轮泵的特点是,适宜于输送液体,而不宜于输送。

16.写出三种正位移泵的名称,即,,。

17.离心泵的效率η和流量Q的关系为()

A.Q增大,η增大

B.Q增大,η先增大后减小

C.Q增大,η减小

D.Q增大,η先减小后增大

18.离心泵的轴功率N和流量Q的关系为()

A.Q增大,N增大

B.Q增大,N先增大后减小

C.Q增大,N减小

D.Q增大,N先减小后增大

19.离心泵在一定管路系统下工作时,压头与被输送液体的密度无关的条件是()

A. Z2-Z1=0

B. ∑h f =0

C. u22/2 –u12/2=0

D. p2-p1=0

20.离心泵停止操作时宜()

A.先关出口阀后停电 D.单级泵先停电,多级泵先关出口阀

C.先关出口阀或先停电均可 B.先停电后关阀

21.往复泵适用于()

A.大流量且要求流量特别均匀的场合

B.介质腐蚀性特别强的场合

C.流量较小,压头较高的场合

D.投资较小的场合

22.在测定离心泵性能时,若将压力表装在调节阀以后,则压力表读数p2 将(),而当压力表装在调节阀以前,则压力表读数p1将(),

A.随流量增大而减小

B.随流量增大而增大

C.随流量增大而基本不变

D.随真空表读数的增大而减小

23.离心泵铭牌上标出的流量和压头数值是()。

A.最高效率点对应值

B.操作点对应值

C.最大流量下对应值

D.计算数据

24.有自吸能力的泵是()

A.离心泵与旋涡泵

B.往复泵与回转泵

C.齿轮泵与离心泵

D.回转泵与旋涡泵

二.计算题

1.用离心泵将池中清水送至高位槽,两液面恒差13m,管路系统的压头损失∑H f =3×105Q 2(Q e的单位为m3/s),流动在阻力平方区。指定转速下,泵的特性方程为H =28-2.5×105Q 2(Q的单位为m3/s)

试求:(1)两槽均为敞口时,离心泵的流量和轴功率;

(2)两槽敞口,改送碱的水溶液(ρ=1250kg/m3),泵的流量和轴功率;(3)若高位槽密闭,其表压为4.91×104Pa,输送碱液和清水的流量;

(4)库房有一台规格相同的离心泵,欲向表压为4.91×104Pa的密闭高位槽送碱液(ρ=1250kg/m3),试比较并联还是串联能获得较大流量。

[答:(1) Q=18.8m3/h,N=1.55kW;(2) Q=18.8m3/h,N=1.94kW;(3) Q水

=15.35m3/h,Q碱=16.1m3/h;(4) 串联流量大,Q串=25.13m3/h]

2.用离心泵将20℃的清水以30m3/h的流率送至吸收塔的塔顶(表压为4.91×104Pa),管路出口和水面之间的垂直距离为10m,管内径为81mm,直管长度18m,管路上阀门全开时,所有局部阻力系数之和为13。

泵的特性方程为H =22.4+5Q-20Q2(Q的单位为m3/min,下同)

泵的效率为η =2.5Q-2.1Q2

管路摩擦系数λ =0.01227+0.7543/Re0.38

试求:(1)泵的理论功率Ne;

(2)泵的最高效率ηmax,并评价泵的适用性(Q,H和η);

(3)因调节泵的出口阀多消耗的功率。

[答:(1)N e=1418W;(2)ηmax=74.4%,η=72.5%=97.5%ηmax;Q=0.5952m3/min >Q e=0.5m3/min,H=19.9m>H e=17.02m;(3)208.5W]

3.用4B15型的离心泵将常压、20℃的清水送往A、B两槽,其流量均为25m3/h,主管段长50m,管内径为100mm,OA与OB段管长均为40m,管内径均为60mm(以上各管段长度包括局部阻力的当量长度,OB段的阀门除外)。假设所有管段内的流动皆进入阻力平方区,且摩擦系数λ=0.02。分支点处局部阻力可忽略。

试求:(1)泵的压头与有效功率;

(2)支路OB中阀门的局部阻力系数ζ;

(3)若吸入管线长(包括局部阻力当量长度)为4m,泵的允许吸上真空度为5m,试确定泵的安装高度。

[答:(1)H=17.7m,N e=2.41kW;(2)ζ=13;(3)H g=4.71m]

4.用一往复泵将密度为1200kg/m3的液体从A池输送到B槽中,A池和B 槽液面上方均为大气压。往复泵的流量为5m3/h。输送开始时,B槽和A池的液面高度差10m。输送过程中,A池液面不断下降,B槽液面不断升高。输送管路管内径为30mm,长为15m(包括局部阻力当量长度)。A池截面积为12m2,B 槽截面积为4.15m2。液体在管中流动时摩擦系数为0.04。试求把25m3液体从A 池输送到B槽所需的能量。

[答:所需能量为5300kJ

第二章气体吸收

一、选择与填空(30分)

1. 吸收操作的原理是__________________。

2. 对接近常压的低浓度溶质的气液平衡系统,当总压增大时,亨利系数将_____,相平衡常数将_____,溶解度系数将_____。

A. 增大;

B. 不变;

C. 减小;

D. 不确定。

3. 在吸收操作中,以液相浓度差表示的吸收塔某一截面上的总推动力为

_____。

A. ;

B. ;

C. ;

D. 。

4. 等分子反方向扩散通常发生在_______单元操作过程中;一组分通过另一停滞组分的扩散通常发生在_______单元操作过程中。

6. 增加吸收剂用量,操作线的斜率_____________,吸收推动力

_____________。

9. 推动力()与吸收系数_____相对应。

A. ;

B. ;

C. ;

D. 。

二、计算题(70分)

1. 在压力为101.3kPa 、温度为30℃的操作条件下,在某填料吸收塔中用

。已知入塔混合气体的流量为 220 kmol/h,其中含清水逆流吸收混合气中的NH

3

NH

为1.2% ( 摩尔分数)。操作条件下的平衡关系为Y =1.2X(X、Y均为摩尔比),3

空塔气速为1.25m/s;气相总体积吸收系数为0.06 kmol / (m3·s);水的用量

的回收率为95%。试求:

为最小用量的1. 5倍;要求NH

3

(1)水的用量;

(2)填料塔的直径和填料层高度。(25分)

2. 已知某填料吸收塔直径为1m,填料层高度为4m。用清水逆流吸收某混合

气体中的可溶组分,该组分进口组成为8%,出口组成为1%(均为mol%)。混合

气流率为30kmol/h,操作液气比为2,操作条件下气液平衡关系为。试

求:

(1)操作液气比为最小液气比的多少倍;

(2)气相总体积吸收系数;

(3)填料层高度为2m处的气相组成。(25分)

3. 在一逆流操作的填料塔中,用循环溶剂吸收某混合气体中的溶质。气体

入塔组成为0.025(摩尔比,下同),液气比为1.6,操作条件下气液平衡关系

为。若循环溶剂组成为0.001,则出塔气体组成为0.0025。现因脱吸不良,循环溶剂组成变为0. 01,试求此时出塔气体组成。(20分)

第三章机械分离与固体流态化

一.填空或选择

1.固体粒子的沉降过程分____阶段和____阶段。沉降速度是指____阶段颗粒相对于____的速度。

2.在重力场中,固粒的自由沉降速度与下列因素无关()

A)粒子几何形状B)粒子几何尺寸

C)粒子及流体密度D)流体的流速

3.在降尘室中除去某粒径的颗粒时,若降尘室高度增加一倍,则颗粒的沉降时间____,气流速度____,生产能力____。

4.在斯托克斯区,颗粒的沉降速度与其直径的____次方成正比,而在牛顿区,与其直径的____次方成正比。

5.沉降雷诺准数Ret越大,流体粘性对沉降速度的影响____。

6.一球形石英粒子在空气中作滞流自由沉降。若空气温度由20℃提高至50℃,则其沉降速度将____。

7.降尘室操作时,气体的流动应控制在____区。

8.含尘气体通过长4m、宽3m、高1m的降尘室,颗粒的沉降速度为0.03m/s,则降尘室的最大生产能力为____m3/s。

9.降尘室内,固粒可被分离的条件是____。

10.理论上降尘室的生产能力与____和____有关,而与____无关。

11.在降尘室内,粒径为60μm的颗粒理论上能全部除去,则粒径为42μm 的颗粒能被除去的分率为____。(沉降在滞流区)

12.在离心分离操作中,分离因数是指____。某颗粒所在旋风分离器位置上的旋转半径R=0.2m,切向速度u T=20m/s,则分离因数为____。

13.选择旋风分离器的依据是:____、____、____。

15.旋风分离器的分离效率随器身____的增大而减小。

17.饼层过滤是指____;深床过滤是指____。

18.用板框压滤机恒压过滤某种悬浮液,其过滤方程式为q2+0.062q=5×10-5θ,式中q的单位为m3/m2,θ的单位为s,则过滤常数值及其单位为:K=____,qe =____,θe=____。

若该过滤机由635×635×2mm的10个框组成,则其过滤面积A=____m2,介质的虚拟滤液体积Ve=____m3。

19.根据过滤基本方程式()说明提高过滤机生产能力的措施是(最少写出三条)____、____、____。

20.以下说法中正确的是()

A)B)C)D)

21.在板框压滤机中,若过滤压力差增加一倍,则过滤速率变为原来的倍,生产能力为倍。(过滤介质阻力忽略不计,滤饼不可压缩)

A)B)2 C)1 D)4

22.恒压过滤某种悬浮液(介质阻力可忽略,滤饼不可压缩),已知10min 单位过滤面积上得滤液0.1m3。若1h得滤液2m3,则所需过滤面积为____m。

23.连续真空过滤机的生产能力为Q∝A a n bΔp c(A为过滤面积,m2;n为转筒转速,r/min;Δp为过滤压力差,Pa;介质阻力可忽略,滤饼不可压缩),则式中的a=____,b=____,c=____。

24.叶滤机过滤某种悬浮液,介质阻力可忽略,滤饼不可压缩,K=

2.5×10-3m2/s。若过滤终了时,q=2.5m3/m2,每m2过滤面积上用0.5m3清水洗涤(Δp、μ与过滤终了相同),则所需过滤时间θ=____s,洗涤时间θw=____s。

25.在空床气速u增加时,气体通过流化床的压强降。

A)Δp∝u B)Δp∝u2C)Δp∝u1.75D)Δp不变

26.要使固粒在流态化操作,通常要使气速高于____而低于____。

27.实际流化床可能有两种不同的流化形式,即____和____。流化床的不正常现象有____和____。

28.按固气比R,气力输送分为____和____两类。

二.计算题

1.体积流量为0.95m3/s,温度为20℃,压力为9.81×104Pa的含尘气体,在进入反应器之前需除尘并升温至400℃。尘粒密度ρS=1800kg/m3,降尘室的底面积为60m2,试求:

(1)若先预热后除尘,理论上可全部除去的最小颗粒直径;

(2)若先除尘后预热,为保持除去的最小颗粒直径不变,则空气的流量为若干m3/s。20℃时,μ=1.81×10-5Pa·s;400℃时,μ=3.31×10-5Pa·s。

[答:(1)d=35μm,(2)VS=3.99m3/s]

2.在实验室中用一个每边长0.162m的小型滤框对CaCO3固体的质量分率为0.0723。测得每1m3滤饼烘干后的质量为1602kg。在过滤压力差为275800Pa 时所得的数据列于本题附表中。习题2附表

试求过滤介质的当量滤液体积Ve,滤饼的比阻r,滤饼的空隙率ε及滤饼的比表面积a。已知CaCO3颗粒的密度为2930kg/m3,其形状可视为圆球。

[答:V e=3.23×10-4m3,r=2.71×1014l/m2,ε=0.4532,a=4.11×106m2/m3]

3.用BMS50/810-25(38个框)板框压滤机过滤含CaCO3的水悬浮液。已知条件为:料浆中固相质量分率为13.9%,滤饼中水的质量分率为32%,且每m3滤饼含固相1180kg。在200KPa下测得恒压过滤方程式为(q+3.45×10-3)2=2.72×10-5(θ+0.439)式中θ的单位为s。试计算:

(1)滤饼充满滤框所需时间

(2)滤毕,用1m3清水于过滤终了相同条件下洗涤,所需洗涤时间;

(3)每批操作的辅助时间30min,生产能力Q(m3滤液/h)。

[答:(1)277s;(2)515s;(3)5.77m3/h]

第三章蒸馏和吸收塔设备

一、填空题(40分)

1.板式塔是____接触式气液传质设备,操作时为____连续相;填料塔是____接触式气液传质设备,操作时为____连续相。

2.塔板的主要类型有____、____、____、____等。

3.气体通过塔板的总压降包括____、____和____。

4.塔板上的异常操作现象包括____、____、____。

4.塔板的负荷性能图由五条线构成,它们是____、____、____、____、____,塔板适宜的操作区是____区域,而实际操作时应尽可能将操作点位于适宜操作区的。

5.塔板的操作弹性是指________。

6.填料的几何特性参数主要包括____、____、____等。

7.通常根据____、____及____ 三要素衡量填料性能的优劣。

8.填料因子是指____________。

9.填料塔内件主要有____、____、____、____。

10.填料操作压降线(D p/Z~u)大致可分为三个区域,即____、____和____。填料塔操作时应控制在____区域。

二、选择题(30分)

1.气液在塔板上有四种接触状态,优良的接触状态是(),操作时一般控制在()。

①鼓泡接触状态②蜂窝接触状态③泡沫接触状态④喷射接触状态

2.板式塔塔板的漏液主要与()有关,液沫夹带主要与()有关,液泛主要与()有关。

①空塔气速②液体流量③板上液面落差④塔板间距

3.()属于散装填料,()属于规整填料。

①格栅填料②波纹填料③矩鞍填料④鲍尔环填料⑤脉冲填料⑥弧鞍填料

4.填料的静持液量与()有关,动持液量与()有关。

①填料特性②液体特性③气相负荷④液相负荷

5.()越小,()越大,越易发生液泛。

①填料因子f值②气体密度③液体密度④液体粘度⑤操作液气比

三、计算与分析题(30分)

本题附图为某塔板的负荷性能图,A为操作点。

(1)请作出操作线;

(2)塔板的上下限各为什么控制;

(3)计算塔板的操作弹性;

(4)该塔板设计是否合适,若不合适如何改变塔板的结构参数。

第四章传热

【学生自测题】

一、填空或选择

1. 多层壁稳定导热中,若某层的热阻最大,则该层两侧的温差。

2. 一定质量的流体在f25×2.5mm的直管内,作强制的湍流流动,其对流传热系数a i=1000W/m2·℃,如果流量和物性不变,改在f19×2mm的直管内流动,其a i为W/m2·℃。

A.1259;B.1496;C.1585;D.1678。

3. 水与苯通过间壁换热器进行换热。水从20℃升至30℃,苯由80℃降至40℃,则最小值流体为____ ,换热器的传热效率e=____ 。

4. 列管式换热器的壳程内设置折流挡板的作用在于_________ 。

5. 有一套管换热器,在内管中空气从46℃被加热到50℃,环隙内有119.6℃的水蒸气冷凝,管壁温度接近___ ℃。

A.35;B.119.6℃;C.77.3 。

6. 对膜状冷凝传热,冷凝液膜两侧温差愈大,冷凝传热系数愈____ 。

7. 在列管换热器中饱和蒸气加热空气,有:甲)传热管的壁稳接近加热蒸气温度;乙)换热器总传热系数K将接近空气侧的对流传热系数。则:

A.甲乙均合理;B.甲乙均无理;C.甲合理,乙无理;D.甲无理,乙合理。

8. 在蒸气冷凝传热中,不凝气体的存在对a的影响是______ 。

A.不凝气体的存在会使a大大降低;

B.不凝气体的存在会使a升高;

C.不凝气体的存在对a无影响。

9. 对在蒸气-空气间壁换热过程中,为强化传热,下列方案中在工程上可行的是____ 。

A.提高空气流速;B.提高蒸气流速;

C.采用过热蒸气以提高蒸气流速;

D.在蒸气一侧管壁上装翅片,增加冷凝面积并及时导走冷凝液。

10. 在两灰体间进行辐射传热,两灰体的温度差50℃,现因某种原因,两者的温度各升高100℃,则此时的辐射传热量与原来的相比,应该____ 。

A.增大;B.变小;C.不变;D.不确定。

11. 327℃的黑体辐射能力为27℃黑体辐射能力的____倍。

12. 物体黑度是指在___温度下,物体的___与_____ 之比,在数值上它与同一温度下物体的_____相等。

13. 在卧式列管换热器中用饱和水蒸气冷凝加热原油,则原油宜在___流动,总传热系数接近的对流传热系数值,传热壁面的温度接近于___温度。

14. 列管式换热器的壳程内设置折流挡板,以提高___程流速。设置隔板以提高____程流速,以达到强化传热的目的。管程流速的选取,对一般液体取___,气体取____,如果该换热器用水蒸气冷凝来加热原油,那么水蒸气应在____流动。

15. 斯蒂芬─波尔茨曼定律的数学表达式是____ ,该式表明____ 。

二、计算题

1. 有一套管换热器,长为6m内管内径为38mm。环隙间用110℃的饱和水蒸气加热管内湍流的空气(Re>104)。空气由25℃被加热到60℃。若将内管改为f25×

2.5mm,而长度仍为6m,试计算能否完成传热任务。若欲维持气体出口温度,定性分析可采取的措施(计算时可作合理简化)。

2. 设计由f25×2mm的136根不锈钢管组成的列管换热器。平均比热为4187J/kg·℃的溶液在管内作湍流流动,流量为15000kg/h,并由15℃加热到100℃。

温度为110℃的饱和水蒸气在壳方冷凝。已知单管程时管壁对溶液的对流传热系数为ai=520W/m2·℃,蒸气冷凝时的对流传热系数ao=1.16×104W/m2·℃,不锈钢管的导热系数l=17W/m ·℃,忽略污垢热阻和热损失,试求:

(1)管程为单程时的列管有效长度;

(2)管程为四程时的列管有效长度(仍为136根)。

3. 有一单程列管式换热器,内装有f25×2.5mm的钢管300根,管长为2m。要求将质量流量为8000kg/h的常压空气于管程由20℃加热到85℃,选用108℃的饱和蒸气在壳方冷凝加热。若蒸气的冷凝传热膜系数为1×104W/m2·K,忽略管壁及两侧污垢热阻和热损失。已知空气在平均温度下的物性常数为Cp

=1kJ/kg·K,l=2.85×10-2W/m·K,m=1.98×10-5Pa·s,Pr=0.7。试求:

(1)空气在管内的对流传热系数;

(2)换热器的总传热系数(以管子外表面为基准);

(3)通过计算说明该换热器能否满足需要;

(4)计算说明管壁温度接近哪一侧的流体温度。

4. 有一传热面积为3 m2由f25×2.5mm的管子组成的单程列管式换热器,用初温为10℃的水将机油由200℃冷却到100℃,水走管内,油走管间。已知水和油的质量流量分别为1000kg/h和1200kg/h,比热分别为4.18kJ/kg.K和2.0kJ/kg·K,水侧和油侧的对流传热系数分别为2000W/m2·K和250W/m2·K,两流体呈逆流流动,忽略管壁及两侧污垢热阻和热损失。试求:

(1)通过计算说明该换热器能否合用;

(2)夏天,当水的初温达30℃时,该换热器能否合用?如何解决?(假设传热系数及水的比热不变)。

5. 有一传热面积为20m2换热器,用温度为20℃,流量为13200kg/h的冷却水,冷却进口温度为110℃的醋酸,两流体呈逆流流动。换热器刚投入使用时,冷却水出口温度为45℃,醋酸出口温度为40℃,运转一段时间后,冷热流体流量、进口温度不变,冷却水出口温度降到38℃,水比热为4.2kJ/kg·℃,忽略管壁及两侧污垢热阻和热损失。试求:传热系数下降的百分率。

6. 有一列管换热器由f25×2.5mm的120 根钢管组成。110℃的饱和水蒸气在壳方冷凝以加热在管内作湍流流动的某液体,且冷凝水在饱和温度下排出。已知液体平均比热为4.187 kJ/kg·℃,由15℃加热到90℃。管内对流传热系数为

ai=800W/m2·℃,蒸气冷凝的对流传热系数ao=1.1×104W/m2·℃,忽略污垢热阻、壁阻和热损失,每小时收集冷凝水2100kg,在饱和温度下蒸气冷凝潜热

g=2232kJ/kg,试求:

(1)每小时可处理的液体量;

(2)管程单程时的列管有效长度;

(3)其它条件均保持不变,将120根钢管改为两管程,列管有效长度为多少。

7. 有一壁厚10mm为的钢制平壁容器,内盛80℃的恒温热水,水对内壁面的对流传热系数为240W/m2·℃。现在容器外表面覆盖一层导热系数为

0.16W/m2·℃、厚度为50mm的保温材料,保温层外为的空气所包围,外壁对空气的联合传热系数为10W/m2·℃,试求:

(1)每小时所损失的热量kJ/h·m2;

(2)容器的内表面温度TW。(钢材的导热系数为45W/m2·℃)。

第四章液-液萃取

【学生自测题】

一、选择与填空(45分)

1.在三角形相图上,三角形的顶点代表()物系、三条边上的点代表()物系、三角形内的点代表()物系。

2.分配系数是指()。

3.分配系数与下列因素有关()。

A 温度;

B 物系种类;

C 压力;

D 组成。

4.分配系数越大,萃取分离的效果()。

5.通常,物系的温度越高,稀释剂与萃取剂的互溶度(),越不利于萃取操作。

6.选择性系数的定义式为()。

7.溶质的分配系数越大,稀释剂的分配系数越小,则选择性系数(),越有利于组分的萃取分离。

8.选择萃取剂时,主要考虑的因素有()。

9.萃取是利用原料液中各组分()的差异而实现分离的单元操作。

10.溶解度曲线将三角形相图分为两个区域,曲线内为()区,曲线外为()区,萃取操作只能在()进行。

11.进行萃取操作时,应使选择性系数()1。

A 等于;

B 大于;

C 小于。

12.进行萃取操作时,应使溶质的分配系数()1。

A 等于;

B 大于;

C 小于。

13.萃取剂的加入量应使原料与萃取剂的和点M

位于()。

A 溶解度曲线上方区;

B 溶解度曲线下方区; C

溶解度曲线上; D 任何位置均可。

14.萃取设备的主要类型有()。

15.根据两相接触方式的不同,萃取设备可分为()式和()式两大类。填料萃取塔属于(),筛板萃取塔属于()。

二、分析题(25分)

用纯溶剂S对某混合液A+B进行单级萃取,操作条件下的溶解度曲线和辅助曲线如附图所示。请图示分析单独改变下列条件时,萃余液的组成如何变化。

(1)萃取剂用量S增加;(10分)

增加。(15分)

(2)原料组成x

F

三、计算题(30分)

20℃时丙酮(A)–水(B)–氯苯(S)三元物系的三角形相图如本题附图所示。现拟采用多级逆流萃取装置,以氯苯为溶剂从丙酮水溶液中提取丙酮,原料液中丙酮的质量分率为0.35,处理量为1000kg/h,萃取剂用量为680kg/h,要求最终萃余相中丙酮的质量分率不大于0.05。试求理论级数。

第五章固体物料的干燥

【学生自测题】

一、选择与填空(50分)

1. 某常压湿空气由t1被加热到t2,则空气的性质参数变化为: H1()H2、φ1()φ2、I1()I2、t d1()t d2、t w1()t w2、t as1()t as2、c H1()c H2、v H1()v H2。

① 大于② 等于③ 小于④ 不确定

2. 湿空气的温度、干球温度、绝热饱和温度和露点之间的关系为: t( )t as、t

( ) t w、t w ( ) t d。

as

① 大于或等于② 等于③ 小于或等于④ 不确定⑥ 大于⑤ 小于

3. 湿空气H–I图由()线群、()线群、()线群、()线群和()线群组成。

4. 若已知湿空气的性质参数(),则可在H–I图确定湿空气的状态。

① H、t ② H、t d③ I、t w④ I、j⑤ H、t w⑥ H、j

5.干燥系统所消耗的热量主要用于( )、()、()和()。

6.干燥系统的热效率是指()。

7.()与物料的性质有关,()与空气的状态有关。

① 平衡水分② 自由水分③ 结合水④ 非结合水

8.通过干燥不可能被除去的水分是()。

① 平衡水分② 自由水分③ 结合水④ 非结合水

9.一般地,恒速干燥阶段除去的水分是()

① 平衡水分② 自由水分③ 结合水④ 非结合水

10 一般地,干燥过程可划分为()阶段和()阶段。

11.在干燥过程中,表面汽化控制阶段所除去的水分是(),内部迁移控制阶段所除去水分是()。

① 平衡水分② 自由水分③ 结合水④ 非结合水

12.临界含水量是指()。

13.干燥器的主要形式有()。

14.气流干燥器的干燥作用主要发生在()。

① 干燥管的进口段② 干燥管的出口段③ 干燥管的中间段④ 整个干燥管内

15.流化床干燥器的主要特点是()。

二、计算题(50分)

1. 若将温度为20℃、湿度为0.009kg水/kg绝干气的湿空气常压加热至50℃,试求

(1)加热前后湿空气的焓变;(2)加热后湿空气的相对湿度。(15分)

化工原理第一章

一、 选择题 1. 流体阻力的表现,下列阐述错误的是( )。 A.阻力越大,静压强下降就越大 B.流体的粘度越大,阻力越大 流体的流动状况是产生流体阻力的根本原因 D.流体的内摩擦力在流体激烈流动时不存在 2. 压强的具有专门名称的国际单位是Pa ,用基本单位表示是( )。 A.atm B.mmHg C.Kg/m.s2 D.N/m2 3. 水在直管中流动,现保持流量不变,增大管径,则流速( )。 A.增大 B.减小 C.不变 D.无法判断 4. 对不可压缩流体,满足( )条件时,才能应用柏努力方程求解。 A.)%(20p p p 1 21式中压强采用表压表示<- B.)%(01p p p 1 21式中压强采用表压表示<- C.)%(20p p p 1 21式中压强采用绝压表示<- D. )%(01p p p 121式中压强采用绝压表示<- 5. 判断流体的流动类型用( )准数。 A.欧拉 B.施伍德 C.雷诺 D.努塞尔特 6. 流体在圆形直管中滞流流动时的速度分布曲线为( )。 A.直线 B.抛物线 C.双曲线 D.椭圆线 7. 增大流体的流量,则在孔板流量计的孔板前后形成的压强差( )。 A.增大 B.减小 C.不变 D.无法判断 8. 流体在管内流动时的摩擦系数与( )有关。 A.雷诺准数和绝对粗糙度 B.雷诺准数和相对粗糙度 C.欧拉准数和绝对粗糙度 B. 欧拉准数和相对粗糙度 9. 测速管测量得到的速度是流体( )速度。 A.在管壁处 B.在管中心 C.瞬时 D.平均 10. 在层流流动中,若流体的总流率不变,则规格相同的两根管子串联时的压降为并联时的( )倍。 A. 2; B. 6; C. 4; D. 1。 11. 流体在长为3m 、高为2m 的矩形管道内流动,则该矩形管道的当量直径为( )。 A. 1.2m ; B. 0.6m ; C. 2.4m ; D. 4.8m 。 12. 当流体在园管内流动时,管中心流速最大,滞流时的平均速度与管中心的最大流速的关

化工原理公式和重点概念

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μτ= 静力学方程 g z p g z p 2211 +=+ρ ρ 机械能守恒式 f e h u g z p h u g z p +++=+++2222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 2 32d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η

最大允许安装高度 100][-∑--=f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体) (饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+ 恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑=V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μρρ18)(2 g d u p p t -=, 2R e

化工原理第10章

第10章习题解答 1 在操作条件下,以纯净的氯苯为萃取剂,在单级接触萃取器中,萃取含丙酮的水溶液。丙酮-水-氯苯三元混合液的平衡数据见本题附表。试求: ⑴在直角三角形坐标系下,绘制此三元体系的相图,其中应包括溶解度曲线、联接线和辅助曲线; ⑵若近似地将前五组数据中B与S视为不互溶,试在X-Y直角坐标图上标绘分配曲线; ⑶若丙酮水溶液质量比分数为0.4,并且m B/m S=2.0,在X-Y直角坐标图上求丙酮在萃余相中的浓度; ⑷求当水层中丙酮浓度为45%(质量%,下同)时,水与氯苯的组成以及与该水层成平衡时的氯苯层的组成; ⑸由0.12kg氯苯和0.08kg水所构成的混合液中,尚需加入多少kg丙酮即可成为三元均相混合液; ⑹预处理含丙酮35%的原料液800kg,并要求达到萃取平衡时,萃取相中丙酮浓度为30%,试确定萃取剂(氯苯)的用量; ⑺求条件⑹下的萃取相和萃余相的量,并计算萃余相中丙酮的组成; ⑻若将条件⑹时的萃取相中的溶剂全部回收,求可得萃取液的量及组成。 解:⑴依平衡数据绘出溶解度曲线如附图1-1所示,图中各点代号与数据的对应关系注于附表1-1中。联结互成平衡的两液层组成点得E1R1、E2R2、E2R2……等平衡联结线。 由E1、E2、E3……各点作平行于AB边的直线,再由R1、R2、R3……各点作平行于AS边的

直线,两组线分别相交于点G、H、I、J、K,连接P、G、H、I、J、K即得辅助曲线。 ⑵将前五组数据转换为质量比浓度,其结果列于附表1-2中,并在X-Y直角坐标图上标绘分配曲线,如图1-2。 附表1-2 ⑶由X F=0.4,在图1-2上,自点X F作斜率为-m B/m S=-2.0的直线与分配曲线相交于点T,点T的横坐标即为丙酮在萃余相中的浓度X R=0.25。 图1-1 图1-2 ⑷水层中各组分的浓度 由所绘制的溶解度曲线如图1-3,在AB边上确定组分A的浓度为45%的点F,由点F绘直线FW平行于三角形底边BS,则FW线上各点表示A的组成均为45%。FW与溶解度曲线左侧的交点R,即代表水层中含A为45%的组成点,由图可读得点R组成为(质量%): x A=45%x B=52.8%x S=2.2%

化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理 七、实验数据处理 1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。 实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。实验装置所用紫铜管的规格162mm mm φ?、 1.2l m =,求得紫铜管的外表面积 200.010.060318576281.o S d l m m m ππ=??=??=。 根据2 4s s V V u A d π= =、0.012d m =,得到流速u ,见下表2: 表2 流速数据 取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示: 表3 查得的数据 t 进/℃ t 出/℃ t 平均/℃ ()p c J kg ????? ℃ Pa s μ? ()W m λ?????℃ ()3 kg m ρ-? 22.1 77.3 49.7 1005 0.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.6 84 59.8 1005 0.0000201 0.029 1.06 根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、 ()()ln m T t T t t T t T t ---?=--进出进出 , 求出Q 序号 ()31s V m h -? ()1u m s -? 1 2.5 6.140237107 2 5 12.28047421 3 7.5 18.42071132 4 10 24.56094843 5 12.5 30.70118553 6 15 36.84142264 7 17.5 42.98165975 8 20 49.12189685

化工原理重要概念和公式

《化工原理》重要概念 第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点 , 对其跟踪观察,描述其运动参数 ( 如位移、速度等 ) 与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。 系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。 粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。 平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直 , 在定态流动条件下该截面上的流体没有加速度 , 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度 u 、压强 p 的脉动性,即是否存在流体质点的脉动性。 第二章流体输送机械 管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加。 输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量 (J/N) 。 离心泵主要构件叶轮和蜗壳。 离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关。 叶片后弯原因使泵的效率高。 气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象。 离心泵特性曲线离心泵的特性曲线指 H e~ q V ,η~ q V , P a~ q V 。 离心泵工作点管路特性方程和泵的特性方程的交点。 离心泵的调节手段调节出口阀,改变泵的转速。 汽蚀现象液体在泵的最低压强处 ( 叶轮入口 ) 汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象。 必需汽蚀余量 (NPSH)r 泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少 离心泵的选型 ( 类型、型号 ) ①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号。 正位移特性流量由泵决定,与管路特性无关。 往复泵的调节手段旁路阀、改变泵的转速、冲程。 离心泵与往复泵的比较 ( 流量、压头 ) 前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变。前者不易达到高压头,后者可达高压头。前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门。 通风机的全压、动风压通风机给每立方米气体加入的能量为全压 (Pa=J/m 3 ) ,其中动能部分为动风压。

化工原理概念汇总汇总

化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,程输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数

第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬程): 离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率: 轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。 二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向 g QH N e ρ=η/e N N =η ρ/g QH N =

化工原理各章节知识点总结

第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程 却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。定态流动流场中各点流体的速度u 、压强p不随时间而变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增 加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上

的流体没有加速度, 故沿该截面势能分布应服从静力学原理。 层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。 稳定性与定态性稳定性是指系统对外界扰动的反应。定态性是指有关运动参数随时间的变化情况。 边界层流动流体受固体壁面阻滞而造成速度梯度的区域。 边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。 雷诺数的物理意义雷诺数是惯性力与粘性力之比。 量纲分析实验研究方法的主要步骤: ①经初步实验列出影响过程的主要因素; ②无量纲化减少变量数并规划实验; ③通过实验数据回归确定参数及变量适用围,确定函数形式。 摩擦系数 层流区,λ与Re成反比,λ与相对粗糙度无关; 一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大; 充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大。 完全湍流粗糙管当壁面凸出物低于层流层厚度,体现不出粗糙度过对阻力 损失的影响时,称为水力光滑管。Re很大,λ与Re无关的区域,称为完全湍流粗糙管。同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管。 局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度。 毕托管特点毕托管测量的是流速,通过换算才能获得流量。 驻点压强在驻点处,动能转化成压强(称为动压强),所以驻点压强是静压强与动压强之和。 孔板流量计的特点恒截面,变压差。结构简单,使用方便,阻力损失较大。转子流量计的特点恒流速,恒压差,变截面。 非牛顿流体的特性 塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动。

化工原理课后题答案(部分)

化工原理第二版 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B *,P A *,由 于总压 P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一 组绘平衡t-x图数据。 以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa下该溶液的平衡数据。 温度C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C 5H 12 (A)和C 6 H 14 (B)的饱和蒸汽压

以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A *= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A *(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B *(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时 x = (P-P B *)/(P A *-P B *) =(13.3-2.826)/(13.3-2.826)= 1 平衡气相组成以260.6℃为例 当t= 260.6℃时 y = P A *x/P = 13.3×1/13.3 = 1 同理得出其他温度下平衡气液相组成列表如下 t(℃) 260.6 275.1 276.9 279 289 x 1 0.3835 0.3308 0.0285 0 y 1 0.767 0.733 0.524 0 根据平衡数据绘出t-x-y曲线 3.利用习题2的数据,计算:⑴相对挥发度;⑵在平均相对挥发度下的x-y数据,并与习题2 的结果相比较。 解:①计算平均相对挥发度 理想溶液相对挥发度α= P A */P B *计算出各温度下的相对挥发度: t(℃) 248.0 251.0 259.1 260.6 275.1 276.9 279.0 289.0 291.7

化工原理基本概念

基本定义 理想溶液 ideal solution(s):溶液中的任一组分在全部浓度范围内都符合拉乌尔定律[1]的溶液称为理想溶液。 这是从宏观上对理想溶液的定义。从分子模型上讲,各组分分子的大小及作用力,彼此相似,当一种组分的分子被另一种组分的分子取代时,没有能量的变化或空间结构的变化。换言之,即当各组分混合成溶液时,没有热效应和体积的变化。即这也可以作为理想溶液的定义。除了光学异构体的混合物、同位素化合物的混合物、立体异构体的混合物以及紧邻同系物的混合物等可以(或近似地)算作理想溶液外,一般溶液大都不具有理想溶液的性质。但是因为理想溶液所服从的规律较简单,并且实际上,许多溶液在一定的浓度区间的某些性质常表现得很像理想溶液,所以引入理想溶液的概念,不仅在理论上有价值,而且也有实际意义。以后可以看到,只要对从理想溶液所得到的公式作一些修正,就能用之于实际溶液。 各组成物质在全部浓度范围内都服从拉乌尔定律的溶液。[2]对于理想溶液,拉乌尔定律与亨利定律反映的就是同一客观规律。其微观模型是溶液中各物质分子的大小及各种分子间力(如由A、B二物质组成的溶液,即为A-A、B-B及A-B 间的作用力)的大小与性质相同。由此可推断:几种物质经等温等压混合为理想溶液,将无热效应,且混合前后总体积不变。这一结论也可由热力学推导出来。理想溶液在理论上占有重要位臵,有关它的平衡性质与规律是多组分体系热力学的基础。在实际工作中,对稀溶液可用理想溶液的性质与规律作各种近似计算。 泡点: 液体混合物处于某压力下开始沸腾的温度,称为在这压力下的泡点。 若不特别注明压力的大小,则常常表示在0.101325MPa下的泡点。泡点随液体组成而改变。对于纯化合物,泡点也就是在某压力下的沸点。 一定组成的液体,在恒压下加热的过程中,出现第一个气泡时的温度,也就是一定组成的液体在一定压力下与蒸气达到汽液平衡时的温度。泡点随液相组成和压力而变。当泡点与液相组成的关系中,出现极小值或极大值时,这极值温度相应称为最低恒沸点或最高恒沸点,这时,汽相与液相组成相同,相应的混合物称为恒沸混合物。汽液平衡时,液相的泡点即为汽相的露点。

化工原理实验数据处理关于

离心泵特性曲线原始数据 序号 水流量Q/m3/h 水温°C 出口压力/m 入口压力 /m 电机功率 /KW 1 0.00 27.70 21.50 0.00 0.49 2 1040.00 27.70 20.40 0.00 0.53 3 2170.00 27.70 19.20 0.00 0.58 4 3110.00 27.60 18.10 -0.30 0.64 5 3890.00 27.60 17.10 -0.40 0.69 6 4960.00 27.50 15.20 -0.70 0.75 7 5670.00 27.50 14.30 -1.00 0.80 8 6620.00 27.30 13.10 -1.20 0.85 9 7380.00 27.40 11.50 -1.50 0.88 10 8120.00 27.00 8.90 -1.70 0.90 11 8950.00 26.60 5.80 -2.10 0.93 已知 ΔZ=0.2m η电=0.9 η转=1.0 此温度下水的密度约为ρ=997.45kg/m3 以第 组数据为例计算 根据扬程Z g p g p H ?+-= ρρ12e 转电电轴ηη??=N N 102Q e e ρ??= H N 轴 N N e =η He= N 轴= e N = η=

离心泵特性曲线 序号 水流量 Q/m3/s He/m N 轴/KW Ne/KW η 1 0.00 21.70 0.44 0.00 0.00 2 0.29 20.60 0.48 0.06 0.12 3 0.60 19.40 0.52 0.11 0.22 4 0.86 18.60 0.58 0.16 0.27 5 1.08 17.70 0.62 0.19 0.30 6 1.38 16.10 0.68 0.22 0.32 7 1.58 15.50 0.72 0.24 0.33 8 1.84 14.50 0.77 0.26 0.34 9 2.05 13.20 0.79 0.26 0.33 10 2.26 10.80 0.81 0.24 0.29 11 2.49 8.10 0.84 0.20 0.24 2 0.00 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85Q (m3/s ) 离心泵 特 性曲线 η N E (K W ) 8 1012141618 2022 He-Q η-Q N 轴-Q He (m )

化工原理基本概念和原理

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A =p A 0x A p B =p B 0x B =p B 0(1—x A ) 根据道尔顿分压定律:p A =Py A 而P=p A +p B 则两组分理想物系的气液相平衡关系: x A =(P—p B 0)/(p A 0—p B 0)———泡点方程 y A =p A 0x A /P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。

2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有: α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图

《化工原理》基本概念、主要公式

《化工原理》基本概念、主要公式 第一章 基本概念: 连续性假定质点拉格朗日法欧拉法定态流动轨线与流线系统与 控制体粘性的物理本质 质量守恒方程静力学方程总势能理想流体与实际流体的区别可压 缩流体与不可压缩流体的区别 牛顿流体与非牛顿流体的区别伯努利方程的物理意义动量守恒方程 平均流速动能校正因子 均匀分布均匀流段层流与湍流的本质区别稳定性与定态性边界层 边界层分离现象因次 雷诺数的物理意义泊谡叶方程因次分析实验研究方法的主要步骤摩 擦系数完全湍流粗糙管 局部阻力当量长度毕托管驻点压强孔板流量计转子流量计的特点 非牛顿流体的特性(塑性、假塑性与涨塑性、触变性与震凝性、粘弹性) 重要公式: 牛顿粘性定律dyduμτ= 静力学方程gzpgzp2211+=+ρρ 机械能守恒式fehugzphugzp+++=+++2222222111ρρ 动量守恒)(12XXmXuuqF?=Σ 雷诺数μμρdGdu==Re 阻力损失22udlfλ=h ????dqduhVf∞∞ 层流Re64=λ或232dulhfρμ= 局部阻力22ufζ=h 当量直径Π=Ae4d 孔板流量计ρPΔ=200ACqV ,gRi)(ρρ?=ΔP 第二章 基本概念: 管路特性方程输送机械的压头或扬程离心泵主要构件离心泵理论压 头的影响因素叶片后弯原因 气缚现象离心泵特性曲线离心泵工作点离心泵的调节手段汽蚀现 象必需汽蚀余量(NPSH)r 离心泵的选型(类型、型号) 正位移特性往复泵的调节手段离心泵与 往复泵的比较(流量、压头) 通风机的全压、动风压真空泵的主要性能参数

重要公式: 管路特性242)(8VeqgddlzgpHπζλρ+Σ+Δ+Δ= 泵的有效功率eVeHgqPρ=

化工原理所有章节试题及答案完整版

化工原理所有章节试题 及答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

一、填空题: 1.(2分)悬浮液属液态非均相物系,其中分散内相是指_____________;分散外相是指______________________________。 ***答案*** 固体微粒,包围在微粒周围的液体 2.(3分)悬浮在静止流体中的固体微粒在重力作用下,沿重力方向作自由沿降时,会受到_____________三个力的作用。当此三个力的______________时,微粒即作匀速沉降运动。此时微粒相对于流体的运动速度,称为____________ 。 ***答案*** 重力、阻力、浮力代数和为零沉降速度 3.(2分)自由沉降是 ___________________________________ 。 ***答案*** 沉降过程颗粒互不干扰的沉降 4.(2分)当微粒在介质中作自由沉降时,若粒子沉降的Rep相同时,球形度越大的微粒,介质阻力系数越________ 。球形粒子的球形度为_________ 。 ***答案*** 小 1 5.(2分)沉降操作是使悬浮在流体中的固体微粒,在 _________力或__________力的作用下,沿受力方向发生运动而___________ ,从而与流体分离的过程。 ***答案*** 重离心沉积

6.(3分)球形粒子在介质中自由沉降时,匀速沉降的条件是_______________ 。滞流沉降时,其阻力系数=____________. ***答案*** 粒子所受合力的代数和为零 24/ Rep 7.(2分)降尘宝做成多层的目的是____________________________________ 。 ***答案*** 增大沉降面积,提高生产能力。 8.(3分)气体的净制按操作原理可分为_____________________________________ ___________________.旋风分离器属_________________ 。 ***答案*** 重力沉降、离心沉降、过滤离心沉降 9.(2分)过滤是一种分离悬浮在____________________的操作。 ***答案*** 液体或气体中固体微粒 10.(2分)过滤速率是指___________________________ 。在恒压过滤时,过滤速率将随操作的进行而逐渐__________ 。 ***答案*** 单位时间内通过单位面积的滤液体积变慢 11.(2分)悬浮液中加入助滤剂进行过滤的目的是___________________________ ___________________________________________________。 ***答案*** 在滤饼中形成骨架,使滤渣疏松,孔隙率加大,滤液得以畅流

化工原理E34章

一、填空题: 1.(2分) 自由沉降是___________________________________ 。 2.(2分) 沉降操作是使悬浮在流体中的固体微粒,在_________力或__________力的作用下,沿受力方向发生运动而___________ ,从而与流体分离的过程。 3.(3分) 球形粒子在介质中自由沉降时,匀速沉降的条件是_______________ 。滞流沉降时,其阻力系数=____________. 4.(2分) 过滤是一种分离悬浮在____________________的操作。 5.(2分) 过滤速率是指___________________________ 。在恒压过滤时,过滤速率将随操作的进行而逐渐__________ 。 6.(2分) 板框压滤机每个操作循环由______________________________________五个阶段组成。 7.(3分) 某板框压滤机的框的尺寸为:长×宽×厚=810×810×25 mm,若该机有10块框,其过滤面积约为_________________ m。 8.(4分) 板框压滤机采用横穿洗涤滤渣,此时洗穿过____层滤布及____个滤框厚度的滤渣,流经过长度约为过滤终了滤液流动路程的____倍,而供洗液流通的面积又仅为过滤面积的____。

某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为240 mm,λ=0.25w.m.K ,此时单位面积的热损失为_______。(注:大型容器可视为平壁) 10.(6分) 某间壁换热器中,流体被加热时,圆形管内湍流的传热系数表达式为_____________________.当管内水的流速为0.5m.s,计算得到管壁对水的传热系数α=2.61(kw.m.K).若水的其它物性不变,仅改变水在管内的流速,当流速为1.0m.s,此时传热系数α=________________. 11.(4分) 某并流操作的间壁式换热器中,热流体的进出口温度为90℃和50℃,冷流体的进出口温度为20℃和30℃,此时传热平均温度差△t=_________. 12.(2分) 热量传递的方式主要有三种:_____、_______、__________. 13.(4分) 间壁传热的总传热速率方程为_______.某换热过程中,要求q=30 kw, K=555(w.m.K),△t=30K,则传热面积为______. 14.(2分) 在两流体的间壁换热过程中,计算式Q=K.A.△t,△t表示为____________。 15.(3分) 应用准数关联式求取对流传热系数时,应注意三点:(1)____________ (2)_____________ (3)_________________ 二、选择题:

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的氯苯140000t,塔顶馏出液中含氯苯不高于%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理

《化工原理课程设计》报告 年级07级 专业生物工程 设计者姓名 设计单位 完成日期2009年11 月 15日

设计任务书 (一)设计题目 试设计一座填料吸收塔,用于脱除混于空气中的CO2,混合 气体的处理为1500m3/h,其中CO227﹪。要求塔板排放气体 中含CO2低于0.6%,采用清水进行吸收。 (二)操作条件 常压,28℃ (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选 (四)设计内容 1、吸收塔的物料衡算 2、吸收塔的工艺尺寸计算 3、填料层压降的计算 4、吸收塔接管尺寸的计算 5、绘制吸收塔的结构图 6、对设计过程的评述和有关问题的讨论 7、参考文献 8、附表

目录 一、概述 (4) 二、计算过程 (4) 1. 操作条件的确定 (4) 1.1吸收剂的选择 (4) 1.2装置流程的确定 (4) 1.3填料的类型与选择 (4) 1.4操作温度与压力的确定 (4) 2. 有关的工艺计算 (5) 2.1基础物性数据 (5) 2.2物料衡算 (6) 2.3填料塔的工艺尺寸的计算 (6) 2.4填料层降压计算 (11) 2.5吸收塔接管尺寸的计算 (12) 2.6附属设备……………………………………………… ..12 三、评价 (13) 四、参考文献 (13) 五、附表 (14)

一、概述 填料塔不但结构简单,且流体通过填料层的压降较小,易于用 耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物 料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料 顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气 液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液 传质设备。 二、设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 因为用水作吸收剂,同时CO2不作为产品,故采用纯溶剂。 1.2装置流程的确定 用水吸收CO2属于中等溶解度的吸收过程,故为提高传 质效率,选择用逆流吸收流程。 1.3填料的类型与选择 用不吸收CO2的过程,操作温度低,但操作压力高,因 为工业上通常选用塑料散装填料,在塑料散装填料中,塑 料阶梯填料的综合性能较好,故此选用DN聚丙烯塑料阶 梯环填料。 1.4操作温度与压力的确定 28℃,常压

化工原理概念分析题问答

第1章 流体流动 1.在工程上,为什么将流体定义为由质点所组成的? 答:工程上仅关注流体分子微观运动所产生的宏观结果。流体质点是由大量分子所组成的微团,质点的运动状态反映并代表着流体的运动状态。 2.流体的连续性假定有何意义? 答:假定组成流体的质点之间无间隙,则流体在连续运动过程中无间断,从而可以应用连续的数学函数描述流体的连续运动过程。 3.什么叫作流体的轨线?什么叫作流体的流线? 答:同一个流体质点在运动过程中的轨迹,反映运动过程中不同时间时质点的运动方向。流体的流线是同一时刻,处于运动状态的各不同位置上的流体质点运动方向的连线。 4.描述流体流动的拉格朗日法和欧拉法有什么不同? 答:拉格朗日法描述同一个流体质点在运动过程中各运动参数随时间变化的规律。欧拉法描述同一时刻(某时刻),处于某运动状态时的各不同位置上的流体质点的各运动参数之间的关系。 5.流体粘性的物理本质是什么? 答:流体表现出粘性,是流体分子微观热运动过程中,分子之间的各种化学力相互作用所产生的宏观结果。液体的温度愈高,其分子微观热运动速度愈大,分子之间的间隙变大,分子之间的各种化学力变弱,液体的粘性变小。而气体的温度愈高,其分子微观热运动速度愈大,分子之间发生碰撞的概率愈大,分子之间的各种化学力相互作用愈强,故气体的粘性变大。 6.静压强有什么特性? 答:自空间任何方向作用于流体某一点的静压强数值相等。 7.为什么高烟囱比低烟囱拔烟效果好? 答:烟囱拔烟效果好是指(Pout-Pin) 差值大。烟囱出口的水平面上压强相等。当烟囱内的高温气体温度一定(即密度一定),烟囱外大气温度一定(即密度一定)时, ()out in air fluegas air fluegas P P H g H g H g ρρρρ-=-=-,故烟囱愈高,其拔烟效果愈好。 8.柏努利方程式的应用条件有哪些?

1-3章化工原理

第一章 一、问答题答案: 1.什么是连续介质假定 答:质点在流体内部紧紧相连,彼此间没有间隙,即流体充满所占空间。在研究流体流动时,常摆脱复杂的分子运动和分子间相互作用,从宏观角度出发,将流体视为由无数流体质点(或微团)组成的连续介质。 2.压力与剪应力的方向及作用面的不同 答:压力--垂直作用于流体表面的力,其方向指向流体的作用面。流体静压力的方向总是和所作用的面垂直,并指向所考虑的那部分流体的内部即沿着作用面的内法线方向。 剪切力--平行作用于流体表面的力。 微元面上的表面力 3.黏度的单位,物理意义及影响因素 答:单位:N?s/m2=Pa?s ;1cP=10-3Pa?s。 物理意义:流体的黏度为流体流动时在与流动方向垂直的方向上产生单位速度梯度所需的剪应力。它反映流体粘性大小的物理量,黏度也是流体的物性之一,其值由实验测定。 影响:液体的黏度,随温度的升高而降低,压强对其影响可忽略不计。气体的粘度,随温度的升高而增大,一般情况下也可忽略压强的影响,但在极高或极低的压强条件下需考虑其影响。 4.体积流量与质量流量 答:1)体积流量--单位时间内流经管道任意截面的流体体积,称为体积流量,以q v表示,单位为m3/s。 2)质量流量--单位时间内流经管道任意截面的流体质量,称为质量流量,以q m表示,单位为kg/s。体积流量与质量流量的关系为: q m= q v?ρ

5.平均流速与质量流速 答:1)平均流速:单位时间内流体质点在流动方向上所流经的距离,单位为m/s,简称为流速。u =q v/A 2)质量流速:单位时间内流经管道单位截面积的流体质量,以G表示,单位为kg/(m2·s)。 质量流速与流速的关系为G= q m /V= q v?ρ/V= u?ρ 6.定态流动与非定态流动 定态流动:流体流动系统中,若各截面上的温度、压强、流速等参量仅随所在空间位置变化,而不随时间变化。 非定态流动:若系统的参变量不但随所在空间位置而变化而且随时间变化,则称为非定态流动。 7. 化工厂哪些计算要应用流体静力学基本方程式 答:主要应用与以下三个方面:(1)压强差与压强的测量。 (2)测量容器内的液面位置(3)计算液封高度。 8. 扼要说明柏努利方程式和流体静力学基本方程式的关系 答:静止流体 120,0,0 e f u u W W ==== ∑。此时柏努利方程式即可化简为静力学基本方程式。所以,静力学基本方程式是柏努利方程式的一个特例。 9.流体流动的类型判断依据 答:层流与湍流。 流体的流动类型可用雷诺数Re判断。 Re=duρ/ Re准数是一个无因次的数群。流体在圆形直管内流动时: (1)当Re≤2000时,流动为层流,此区称为层流区; (2)当Re≥4000时,一般出现湍流,此区称为湍流区; (3)当2000< Re <4000 时,流动可能是层流,也可能是湍流,与外界干扰有关,该区称为不稳定的过渡区。 10 .雷诺数的物理意义 答:Re反映了流体流动中惯性力与粘性力的对比关系,标志流体流动的湍动程度。其值愈大,流体的湍动愈剧烈,内摩擦力也愈大。 11.湍流黏度与黏度的区别

相关文档