文档库 最新最全的文档下载
当前位置:文档库 › 糖代谢 重要知识点

糖代谢 重要知识点

糖代谢 重要知识点
糖代谢 重要知识点

一、糖的组成

1、蔗糖是以α-D-葡萄糖和β-D-果糖以α-1,2糖苷键连接形成的二糖。

2、麦芽糖是由2分子D-葡萄糖通过α-1,4糖苷键连接形成的二糖。

3、乳糖是由1分子D-半乳糖和1分子D-葡萄糖通过β-1,4糖苷键连接而成的二糖。

4、直链淀粉是由D-葡萄糖以α-1,4糖苷键连接而成,长约250-300个葡萄糖单位。

5、支链淀粉是由多个较短的1,4-糖苷键直链(不超过30个葡萄糖单位)结合而成;2个短直链之间的连接为1,6糖苷键。

6、糖原的结构与支链淀粉相似,由D-Glc以α-1,4和α-1,6 糖苷键相连。

7、纤维素是由D-葡萄糖以β-1,4糖苷键连接而成,不含支链。

二、糖的酶促降解

1、α-淀粉酶:在淀粉分子内部任意水解α-1,4糖苷键。(内切酶)

2、β-淀粉酶:从非还原端开始,水解α-1,4糖苷键,依次水解下一个β-麦芽糖单位(外切酶)

3、脱支酶(R酶):水解α-淀粉酶和β-淀粉酶作用后留下的极限糊精中的1.6-糖苷键。不能直接水解支链淀粉内部的α-1,6糖苷键

4、麦芽糖酶:催化麦芽糖水解为葡萄糖,是淀粉水解的最后一步。

5、淀粉的彻底水解需要上述水解酶的共同作用,其最终产物是葡萄

糖。

6、糖原的降解:是在转移酶、脱枝酶及磷酸化酶的协同催化下获得产物:葡萄糖-1-磷酸。

三、糖酵解

1、定义:糖酵解,亦称为EMP途径,是指:无氧条件下,1葡萄糖分解产生2丙酮酸,并伴随ATP生成的过程。

2、糖酵解中10步反应各自的特点,尤其是偶联的步骤极其磷酸化机理:一次脱氢、二次底物水平磷酸化。

3、(1)糖酵解中的三步反应不可逆。(2)关键酶:三步反应不可逆分别由己糖激酶、磷酸果糖激酶、丙酮酸激酶催化,因此这三种酶对酵解速度起调节作用,其中磷酸果糖激酶是最关键的酶。

4、糖酵解过程中产生能量的计算。

5、糖酵解反应部位:细胞的胞浆;反应条件:缺氧或无氧。

6、糖酵解的生理意义:(1)糖酵解是放能过程,供给生物体一部分能量。在无氧条件下迅速提供能量(1分子葡萄糖生成2分子ATP),供机体需要。如:剧烈运动、人到高原。有氧情况下1分子葡萄糖生成7分子ATP。(2)提供生物合成所需要的物质,产生的许多中间产物可作为合成脂肪、蛋白质等物质的碳架。(3)是糖的有氧氧化的前过程,亦是糖异生作用大部分逆过程。

四、糖的有氧氧化

1定义:糖的有氧氧化:是指体内组织在有氧条件下,葡萄糖彻底氧化分解生成CO2和 H2O的过程。

2、丙酮酸氧化脱羧生成乙酰辅酶A的反应部位——线粒体。

3、丙酮酸脱氢酶系:

(1)三种酶:丙酮酸脱羧酶(TPP)---E1、二氢硫辛酸乙酰基转移酶(硫辛酸、辅酶A) ---E2、二氢硫辛酸脱氢酶(FAD、NAD+) ---E3

(2)5种辅助因子:TPP、NAD+、硫辛酸、FAD、HSCoA

(3)一次脱氢、一次脱羧。

五、三羧酸循环(tricarboxylic acid cycle,TCA循环)

1、定义:又称柠檬酸循环(citric acid cycle) 或Krebs循环(Krebs cycle):乙酰辅酶A与草酰乙酸缩合成六碳三羧酸(即柠檬酸),经过一系列代谢反应,乙酰基被彻底氧化,草酰乙酸得以再生的过程称为三羧酸循环(发生在多个三羧酸之间)。

2、α-酮戊二酸氧化脱羧酶系:

(1)三种酶:α-酮戊二酸脱羧酶、二氢硫辛转琥珀酰基酶、二氢硫辛酸还原酶。

(2)六个辅助因子:辅酶A、FAD、NAD+、镁离子、硫辛酸、TPP (3)TCA循环包括脱水、加水、脱羧及脱氢等一系列反应。

3、TCA循环的要点

(1)一次底物水平磷酸化(琥珀酰CoA——琥珀酸)

(2)二次脱羧:

A、异柠檬酸氧化脱羧生成α-酮戊二酸

B、α-酮戊二酸氧化脱羧生成琥珀酰辅酶A

(3)三个不可逆反应:

A、乙酰CoA与草酰乙酸缩合形成柠檬酸;

B、异柠檬酸氧化脱羧生成α-酮戊二酸;

C、α-酮戊二酸氧化脱羧生成琥珀酰辅酶A。

(4)四次脱氢:

A、异柠檬酸氧化脱羧生成α-酮戊二酸(异柠檬酸脱氢酶);

B、α-酮戊二酸氧化脱羧生成琥珀酰辅酶(α-酮戊二酸脱氢酶系);

C、琥珀酸氧化脱氢生成延胡索酸(琥珀酸脱氢酶);

D、苹果酸脱氢生成草酰乙酸(苹果酸脱氢酶)。

4、TCA循环的能量计算

5、葡萄糖完全氧化产生的ATP计算

6、三羧酸循环的生理意义

7、三羧酸循环的调控位点:柠檬酸合成酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶

8、乙醛酸循环:

(1)定义:在异柠檬酸裂解酶的催化下,异柠檬酸被直接分解为乙醛酸,乙醛酸又在乙酰辅酶A参与下,由苹果酸合成酶催化生成苹果酸,苹果酸再氧化脱氢生成草酰乙酸的过程。乙醛酸循环是三羧酸循环的修改形式。

(2)反应部位:乙醛酸体(在植物、一些无脊椎动物和一些微生物中存在)

(3)乙醛酸循环在异柠檬酸处开了一条旁路,避开了三羧酸循环中的二次脱羧反应,因此一个乙醛酸循环可使2分子乙酰辅酶A转变成1

分子琥珀酸。

(4)乙醛酸循环的生物学意义

9、磷酸戊糖途径

(1)定义:磷酸戊糖途径(phosphopentose pathway,PPP) 又称磷酸已糖旁路(hexose monophosphate shunt, HMS,HMP)或Warburg-Dikens途径:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖为中间代谢物的过程。

(2)反应特点:

A、反应部位:在细胞质中进行。

B、反应底物: 6-磷酸葡萄糖,直接氧化脱氢和脱羧,不必经过糖酵解和三羧酸循环

C、重要反应产物:NADPH、5-磷酸核糖。

D、限速酶: 6-磷酸葡萄糖脱氢酶(G-6-PD)

E、无ATP的产生和消耗

(3)磷酸戊糖途径的生物学意义

10、糖异生

(1)定义:非糖物质转化成糖代谢的中间产物后,在相应的酶催化下,绕过糖酵解途径的三个不可逆反应,利用糖酵解途径其它酶生成葡萄糖的途径。

(2)绕过糖酵解途径的三个不可逆反应的过程及其酶

(3)糖异生途径的意义

11、双糖的生成

(1)糖基的活化形式:糖核苷酸(UDPG、ADPG、GDPG等)

(2)糖核苷二磷酸在不同聚糖形成时,提供糖基和能量。植物细胞中蔗糖合成时需UDPG,淀粉合成时需ADPG和UDPG,纤维素合成时需GDPG和UDPG;动物细胞中糖元合成时需UDPG。

最早发现的糖核苷酸是UDPG,中文名称为尿苷二磷酸葡萄糖。

12、多糖的合成

(1)植物支链淀粉:由淀粉合成酶催化形成α-1,4糖苷键,需引物(Gn),ADPG供糖基。

(2)支链淀粉合成:淀粉合成酶催化形成α-1,4糖苷键;Q酶(分支酶)催化α-1,6糖苷键的形成,需引物(Gn),ADPG供糖基。(3)糖原生物合成:过程与植物支链淀粉合成过程相似,但引物是结合一个寡糖链的多肽,酶是糖原合成酶和分支酶,糖基供体是UDPG

生物化学糖代谢知识点总结材料

第六章糖代 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖 双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal) 多糖:淀粉,糖原(Gn),纤维素 结合糖: 糖脂,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代概况——分解、储存、合成

各种组织细胞 门静脉 肠粘膜上皮细胞 体循环 小肠肠腔 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径: SGLT 肝脏

过程 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代途径的调节主要是通过各种变构剂对三个关键酶进行变构 调节。 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H +

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 生理意义: 五、糖的有氧氧化 1、反应过程 ○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: 关键酶 调节方式 ? 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 ? 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn ) 丙酮酸 乙酰CoA ATP ADP 胞液 线粒体 丙酮酸 乙酰CoA NAD + , HSCoA CO 2 , NADH + H + 丙酮酸脱氢酶复合体

运动与糖代谢

运动营养学概念概述 生命在于运动,运动是人体需要特别的营养。随着社会的发展,“运动”正成为人们生活中不可或缺的重要组成部分。如何科学有效的为运动的人体补充合理的营养,使运动的目标得以实现,是运动营养学研究的根本目的。 21世纪是科学技术迅速发展的世纪,运动营养学也得到了飞速的发展,然而,当今竞技体育的竞争日趋激烈,运动员的竞技能力不仅受训练、遗传、健康状态、心理等多种因素的影响,合理营养也是其中的一个非常重要的因素。同时随着我国经济建设的发展和人们物质生活水平的提高,全民健身意识逐渐加强,由此给运动营养学工作提出了更新、更高的要求。为使我国竞技体育水平不断提高,并促进群众体育活动的广泛开展,提高全民族身体素质,对运动营养学的研究与应用做一系统的阐述是有必要的。 运动营养学是研究运动员的营养需要,利用营养因素来提高运动能力,促进体力恢复和预防疾病的一门科学。运动营养学是营养学的一个分支,是营养学在体育实践中的应用,所以有人将运动营养学视为应用营养学或特殊营养学。 营养是指人体从外部环境摄取、消化、吸收与利用食物和养料的综合过程。运动营养学研究运动员在不同训练和比赛情况下的营养需要、营养因素与机体功能、运动能力、体力适应以及防治运动性疾病的关系,从而提高运动能力。是运动医学的重要组成部分之一,它与运动生物化学、运动生理学、运动训练学、运动生物力学、运动员选材学、病理学、临床医学、营养与食品卫生学、食品化学、中医养生学、烹饪学等有着密不可分的确良联系。 合理营养有助于提高运动能力和促进运动后机体的恢复,合理营养支持运动训练,是运动员保持良好健康和运动能力的物质基础,对运动员的机能状态、体力适应、运动后机体的恢复和伤病防治均有良好的效果。合理营养为运动员提供适宜的能量;合理营养有助于剧烈运动后机体的恢复;合理营养可延缓运动性疲劳的发生或减轻其程度;合理营养有利于解决运动训练中的一些特殊医学问题(不同体育项目、不同环境、不同年龄期的特殊医学要求);合理的营养可保障肌纤维中能源物质(糖原)的水平稳定,减少运动性创伤的发生率。 运动营养学是营养学的一个分支,是营养学在体育实践中的应用,所以有人将运动营养学视为应用营养学或特殊营养学。 运动营养学是一门用营养学和生物化学的手段来研究和评估运动人体代谢及体能状况,并提供营养学强力恢复手段的学科。这门学科经过几十年的发展,已经成为一个相对独立的,在运动科学中成为研究热点的学科,并在竞技体育和全民健身运动中发挥增强体能和保证健康的作用。 1.我国运动营养学发展概况 我国历史悠久,文化源远流长。在古代就有专门为贵族营养服务的食医,同时对营养、运动与健康也有研究。古代养生运动有:五禽戏、八段锦、太极等。古典的养生学说,如《食经》、《食医心鉴》、《饮膳正要》等,用“食医同源”、“医膳功”的唯物主义观点,论述了食物的功用与合理营养的保健作用。 2.国际运动营养发展概况

糖的分解代谢

第八章(糖代谢)习题 一、选择题(指出下列各题中哪个是错的) 1.关于糖酵解 a.Mg2+与A TP形成复合物Mg2+-A TP参加磷酸化反应b.碘乙酸可阻抑糖酵解途径 c.砷酸盐可抑制糖酵解进行 d.2,3—二磷酸甘油酸作为辅因子起作用 e.最重要的调节酶是磷酸呆糖激酶 2.关于三羧酸循环 a.是糖、脂肪及蛋白质分解的最终途径 b.丙酮酸脱氢酶系分布在线粒体基质中 c.乙酰CoA及NADH可抑制丙酮酸脱氢酶系 d.环中所生成的苹果酸为L型 e.受A TP/ADP比值的调节 3.关于磷酸戊糖途径 a.碘乙酸及氟化物可抑制糖的氧化 b.6—磷酸葡萄糖脱氢的受体是NADP+ c.转酮酶需要TPP作为辅酶 d.该途径与光合作用碳代谢相通 e.5—磷酸核糖是联系核苷酸及核酸代谢的关键分子4.关于糖醛酸途径 a.参与糖醛酸合成的核苷酸为UTP b.由UDP-糖醛酸可合成黏多糖 c.人体内UDP-糖醛酸可以转化为抗坏血酸 d.糖醛酸途径与磷酸戊糖途径相通 e.糖醛酸具有解毒作用 二、判断是非(正确的写对,错误的写错) 1.发酵可以在活细胞外进行。 2.催化A TP分子中的磷酰基转移到受体上的酶称为激酶。 3.变位酶和差向异构酶是同工酶。 4.葡萄糖激酶受.G-6-P负调控。 5.动物体中乙酰CoA不能作为糖异生的物质。 6.分解糖原的去分枝酶和转移酶是同一个酶。 7.糖原合成时需要糖原起始合成酶及引发蛋白参与。 8.1,6—二磷酸果糖是磷酸果糖激酶的别构活化剂,可消除A TP对它的制。9.控制糖异生途径关键步骤的酶是丙酮酸羧化酶。 10.合成果聚糖的前体物质是蔗糖。 11.柠檬酸循环是分解与合成的两用途径。 ]2.转醛酶的作用机理中的关键步骤是形成希夫氏碱。 13.在糖类物质代谢中最重要的糖核苷酸是ADPG。 14.合成支链淀粉a(1→6)键的酶是R酶。 15.淀粉、糖原、纤维素的生物合成均需“引物”存在。 16.线粒体中存在两种异柠檬酸脱氢酶分别以NAD+和NADP+为电子受体。17.联系糖原异生作用与三羧酸循环的酶是丙酮酸羧化酶。 18.糖原异生作用的关键反应是草酰乙酸形成磷酸烯醇式丙酮酸的反应。

生物化学复习思考题

生物化学复习思考题(2009年) 第二章蛋白质 什么是蛋白质?蛋白质有哪些生理功能? 蛋白质有哪些分类方法? 蛋白质中含氮量一般有多少?1克蛋白氮相当于多少蛋白质? 氨基酸有哪些构型?组成蛋白质的氨基酸是什么构型的? 组成蛋白质的氨基酸有哪些?熟记各种氨基酸的代号。 氨基酸有哪些分类方法? 氨基酸在什么情况下带负电和正电?什么叫做氨基酸的等电点? 氨基酸有哪三个重要的反应? 哪些氨基酸可以吸收紫外光? 什么叫做构象?什么叫做构型? 解释名词:肽、肽键、二肽、寡肽、多肽、氨基酸残基、氨基末端、羧基末端 什么叫做蛋白质的一级结构? 什么叫做肽单位?肽单位有哪些性质? 什么叫做α-碳原子的二面角? 什么叫做蛋白质的二级结构?二级结构有哪些类型? 什么叫α-螺旋和β-折叠?平行和反平行β-折叠有何区别? 试述α-角蛋白的结构. 什么叫做超二级结构?超二级结构有哪些类型? 解释名词:结构域、三级结构、四级结构、亚基、亚单位、均一的亚基、不均一的亚基 维持蛋白质高级结构的力有哪些? 什么是二硫键?二硫键是怎样形成的? 蛋白质是生物大分子,为什么在水溶液中还很稳定? 蛋白质在什么情况下带正电和负电?什么叫做蛋白质的等电点? 解释名词:变性、复性、沉淀、可逆沉淀、不可逆沉淀、盐析 蛋白质变性的本质是什么? 第三章酶化学 什么叫酶?与一般的催化剂比较,酶有哪些相同之处和不同点? 酶的反应专一性有哪些种类?什么叫绝对专一性、相对专一性、基团专一性、键专一性、立体异构专一性? 酶的惯用法命名有哪些方式? 国际酶学委员会将酶分为哪几类?水解酶类与裂解酶类有何区别? 什么叫做简单酶和结合酶? 解释名词:酶蛋白、辅因子、辅酶、辅基、全酶、活性中心、结合部位、催化部位。 酶分子活性中心以外的必需基团有什么功能? 解释名词:酶原、致活素、靠近、定向、底物形变、共价催化、亲核催化、亲核剂 什么叫酶促反应初速度? 10. 影响酶促反应的因素有哪些? 底物浓度怎样影响酶促反应?米氏方程表示了什么关系? 米氏常数Km有什么意义? 某一酶促反应的速度从最大速度的10%提高到90%时,底物浓度应是原来的多少倍?

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径:

过程 2 H 2 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变 构调节。 生理意义: 五、糖的有氧氧化 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶 调节方式 ① 别构调节 ② 共价修饰调节 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 第一阶段:糖酵解途径 G (Gn ) 丙酮酸胞液

糖代谢习题及答案

第七章糖代谢 一、选择题 ( )1、一摩尔葡萄糖经糖的有氧氧化过程可生成的乙酰辅酶a a 1摩尔; b 2摩尔; c 3摩尔; d 4摩尔; e 5摩尔。( )2、由己糖激酶催化的反应的逆反应所需的酶就是 a 果糖二磷酸酶; b 葡萄糖—6—磷酸酶; c 磷酸果糖激酶; d 磷酸化酶。 ( )3、糖酵解的终产物就是 a 丙酮酸; b 葡萄糖; c 果糖; d 乳糖; e 乳酸。( )4、糖酵解的脱氢步骤反应就是 a 1,6—二磷酸果糖→3—磷酸甘油醛+磷酸二羟丙酮; b 3—磷酸甘油醛→磷酸二羟丙酮; c 3—磷酸甘油醛→1,3—二磷酸甘油酸; d 1,3—二磷酸甘油酸→3—磷酸甘油酸; e 3—磷酸甘油酸→2—磷酸甘油酸。 ( )5、反应:6—磷酸果糖→1,6—二磷酸果糖需要哪些条件? a 果糖二磷酸酶、ATP与二价MG离子; b 果糖二磷酸酶、ADP、无机磷与二价MG离子; c 磷酸果糖激酶、ATP与二价Mg离子; d 磷酸果糖激酶、ADP、无机磷与二价Mg离子; e ATP与二价Mg离子。 ( )6、糖酵解过程中催化一摩尔六碳糖裂解为两摩尔三碳糖的反应所需的酶就是 a 磷酸己糖异构酶; b 磷酸果糖激酶; c 醛缩酶;d磷酸丙糖异构酶;e 烯醇化酶。 ( )7、糖酵解过程中NADH+ H+的去路 a 使丙酮酸还原成乳酸; b 经α—磷酸甘油穿梭系统进入线粒体氧化; c 经苹果酸穿梭系统进入线粒体氧化; d 2—磷酸甘油酸还原为3—磷酸甘油醛; e 以上都对。 ( )8、底物水平磷酸化指 aATP水解为ADP与无机磷;b 底物经分子重排后形成高能磷酸键,经磷酸基团转移使ADP磷酸化为ATP c 呼吸链上H传递过程中释放能量使ADP磷酸化形成ATP; d 使底物分子加上一个磷酸根; e 使底物分子水解掉一个ATP。 ( )9、缺氧情况下,糖酵解途径生成的NADH+ H+的去路 a 进入呼吸链氧化供能; b 丙酮酸还原成乳酸; c 3—磷酸甘油酸还原成3—磷酸甘油醛; d 醛缩酶的辅助因子合成1,6—二磷酸果糖;

人体的新陈代谢-知识点

第二节人体的新陈代谢 1.食物的消化和吸收 (1).消化系统的组成 (2).食物的消化和吸收 ①消化有物理性消化和化学性消化。物理性消化主要通过牙齿的咀嚼和胃肠的蠕动;化学性消化主要是利用消化酶,使食物中的营养成分通过化学变化变成可吸收的物质。 ②食物中各种成分的消化。食物中的水、无机盐、维生素不经消化能直接被吸收;食物纤维不能被消化;淀粉、蛋白质和脂肪最终分别被消化分解成葡萄糖、氨基酸、甘油和脂肪酸。 ③小肠是食物消化吸收的主要场所,与其相适应的结构特点有:(1)小肠长,有皱襞,内壁形成小肠绒毛,可扩大小肠内表面积;(2)小肠绒毛内含丰富的毛细血管和毛细淋巴管,有利于营养物质的吸收;(3)小肠内含有多种消化腺分泌的消化酶,能对食物中的各种成分进行彻底的消化。 ④吸收是指营养物质进入循环系统的过程。 2.酶在生命活动中的重要作用 (1)酶的概念:酶是生物活细胞所产生的具有催化作用的蛋白质,是一种生物催化剂。酶能使生物体内的化学反应迅速地进行,而本身并不发生变化,这一点与无机催化剂相似。 (2)酶的特点: ①高效性:酶的催化效率一般是无机催化剂的107~1013倍。 ②专一性:一种酶只能催化一种或一类化合物的化学反应。 ③不稳定性:高温、低温以及过酸、过碱,都会影响酶的活性。也就是说,酶的催化作用需要适宜的条件。温度、pH都会影响酶的活性。 (3)酶的作用:酶具有多样性,高效性及专一性等作用特点.对于生物体内的新陈代谢的正常进行是必不可少的。 3.消化酶在人体消化过程中的作用 (1)食物中各种营养成分的消化过程 食物中的各种营养成分,除了水、无机盐、维生素等可以直接被消化道吸收外,其他如糖类、蛋白质、脂肪等结构复杂、不溶于水的大分子有机物,必须在消化道内经过消化,分解成溶于水的有机物小分子,才能被消化道壁吸收。糖类、蛋白质、脂肪这三大有机物的消化过程必须在各种消化酶的催化作用下才能完成,它们的具体途径为: (2)消化酶在人体消化过程中的作用 ①口腔中的唾液含有唾液淀粉酶,口腔可以使食物中的部分淀粉分解成麦芽糖。 ②酸性的胃液中有胃蛋白酶,它能将蛋白质分解成多肽。 ③小肠中的消化液包括肠液、胰液和胆汁,肠液和胰液中含有分别能消化糖类、蛋白质和脂肪的消化酶;胆汁虽然不含消化酶,但它可以对脂肪起乳化作用,

糖代谢复习题2答案

糖代谢复习题答案 一.填空 1. (己糖激酶,磷酸果糖激酶,丙酮酸激酶) 2. (2,30或32) 3. (丙酮酸脱氢酶,二氢硫辛酸转乙酰基酶,二氢硫辛酸脱氢酶,NAD+,TPP, FAD, CoA, 硫辛酸) 4. (4,NAD+,FAD) 5.(酵解,EMP) 6.(竞争性抑制剂) 7.(线粒体内膜,CO2) 8.(柠檬酸) 9. (异柠檬酸脱氢酶,α-酮戊二酸脱氢酶,C1 ,C4) 10.(草酰乙酸,CO2和草酰乙酸) 11.(异柠檬酸裂解酶,苹果酸合成酶) 12.(克立氏循环(Cori循环),消耗) 13.(糖原合成酶,糖原磷酸化酶) 14.(甘油醛-3-磷酸脱氢酶甘油酸-1,3-二磷酸) 15.(烯醇化) 16.(2,30或32与2题重复) 17.(2) 18.(葡萄糖,细胞溶胶) 19.(CO2,NADPH,戊糖磷酸) 20.(TPP,二碳单位(羟乙基) ) 21.(肝脏, 肾脏) 22.(丙酮酸,丙酮酸→乳酸) 二、是非题 l.错。葡萄糖激酶对葡萄糖的专一性强,但亲和力低,只有在进食以后,肝细胞内葡萄糖浓度增加时才起作用,主要在肝脏用于糖原合成。 2.对。ATP是果糖磷酸激酶(PFK)的底物,也是别构抑制剂。在PFK上有两个ATP结合位点:底物结合位点和调节位点。在ATP浓度高时,ATP除了与位点1结合外,还可

以与位点2结合,使酶构象发生改变,降低酶活力。 3.错。F- 2,6- dip是肝脏磷酸果糖激酶(PFK)有效的别构活化剂。 4. 错。丙酮酸脱羧酶受磷酸化的共价调节,酶分子中一个特殊的丝氨酸残基被磷酸化后酶 失去活性,去磷酸化后恢复活性。 5.错。从丙酮酸等小分子前体物质合成葡萄糖即糖异生,并非糖酵解途径的简单逆行,其中 7步反应是可逆的,另外3步不可逆反应需要由不同的酶来催化。 6.对。戊糖磷酸途径分为氧化阶段和非氧化阶段,氧化阶段的3步反应产生还原能,非氧化 阶段进行分子重排,不产生还原能。, 7.错。乙醛酸循环只存在于植物和微生物体内,动物体内缺少有关的酶类,因此不存在乙醛 酸循环。 8.对。肝糖原降解后生成的葡萄糖-1-磷酸经变位酶的作用生成葡萄糖-6-磷酸,再在葡萄糖 -6-磷酸酶(酯酶)作用下转变成葡萄糖,直接补充血糖。而肌肉组织缺乏葡萄糖-6-磷酸酶,它只能进行糖酵解生成乳酸,在肝脏中通过糖异生作用,间接转化成血糖。 9.错。磷酸戊糖途径本身不涉及氧的参与,但该途径产生大量的NADPH, NADPH可以将电子 最终交给O2,使NADP+得到再生,以维持磷酸戊糖途径的持续进行。 10.对。柠檬酸循环具有双重作用,一方面它是绝大多数生物体进行氧化供能的主要途径, 另一方面柠檬酸循环中的各种中间体为细胞进行物质合成提供碳骨架。 11.错。从丙酮酸等小分子前体物质合成葡萄糖即糖异生,并非糖酵解途径的简单逆行,其中7步反应是可逆的,另外3步不可逆反应需要由不同的酶来催化。 12.错。三羧酸循环的所有中间产物均可循环再生,每一轮循环彻底降解一分子乙酰CoA。13.对。每一轮三羧酸循环可以产生一分子FADH2、三分子NADH·H+和一分子GTP,但不能直接产生ATP。 14.对。(与6题重复)戊糖磷酸途径分为氧化阶段和非氧化阶段,氧化阶段的3步反应产生还原能,非氧化阶段进行分子重排,不产生还原能。 15.错。乙醛酸循环有琥珀酸的净生成,而TCA循环中没有。 三、选择题(下列各题均有五个备选答案,试从其中选出一个) 1.(D) 葡萄糖激酶对葡萄糖的专一性强,但亲和力低,只有在进食以后,肝细胞内葡萄糖浓度增加时才起作用,主要在肝脏用于糖原合成。 2.(B)糖酵解过程是在细胞质中进行的,在缺氧条件下,产生的胞质NADH无法将电子 交给O2,故不可能进入呼吸链氧化供能。甘油酸-3-磷酸不能直接转变为甘油醛-3-

细胞中的元素和化合物 知识点汇总

组成细胞的元素 1.细胞中常见的化学元素有20多种。根据含量的多少,分为大量元素和微量元素。 2.大量元素有_等。 3.微量元素有_等。 4.构成细胞的元素中,最基本的元素是;其中4种元素含量最多。 鲜重状态下,4种基本元素的含量是O > C > H > N ; 干重状态下,4种基本元素的含量是C > O > N > H。 组成细胞的化合物 1.细胞中的化合物包括:________和________。 细胞中的无机物主要包括____________和____________,_________是细胞中含量最多的化合物,______________大多数以___________的形式存在。 2.水在细胞中以_____________和___________两种形式存在,其中_____________是细胞结构的重要组成成分,_____________占细胞中水的绝大部分,以形式存在,可以自由流动。 3.细胞中无机盐的主要功能包括维持___________________________________________,维持____________________________________________________。 细胞中的水 自由水/结合水的比值对生命活动的影响 (1)当自由水/结合水比值高(即自由水含量高时),代谢强度高,抗寒、抗旱性等抗逆性差。如种子萌发时,先要吸收大量的水分,以增加自由水的含量,并加快代谢速度。 (2)当自由水/结合水比值低(即结合水含量高时),抗寒、抗旱性强,代谢强度差。如冬季,植物吸水减少时,细胞内结合水相对含量升高,由于结合水不易结冰和蒸腾,从而使植被抗寒性加强。 自由水和结合水的存在及其功能的验证 (1)鲜种子放在阳光下暴晒,重量减轻―→自由水散失,代谢减弱。 (2)干种子用水浸泡后仍能萌发―→失去自由水的种子仍保持其生理活性。 (3)干种子放在试管中,用酒精灯加热,试管壁上有水珠―→失去结合水。种子浸泡后不萌发―→失去结合水的细胞丧失生理活性。 [特别提醒] 一般情况下,温度略升高,自由水含量将升高,反之则自由水含量降低。相同条件下,自由水含量高的细胞,代谢旺盛。结合水含量高的细胞代谢较弱。 环境恶化——自由水↓,结合水↑。 细胞衰老——自由水↓,结合水↑。生命活动增强——自由水↑,结合水↓。 细胞中的无机物 1.含量:无机盐在生物体中含量很少,仅占细胞鲜重的1%-1.5%。 2.存在形式:大部分以离子形式存在。少数无机盐与其他化合物结合,如Mg2+是叶绿素的成分缺

糖代谢思考题

糖代谢思考题 一、名词解释 糖酵解作用糖的有氧氧化三羧酸循环磷酸戊糖途径糖异生作用 二、填空 1、在直链淀粉中各葡萄糖之间的连接键是(),支链淀粉中分支点处的连接键为() 2、糖消化的起始部位在()主要部位在() 3、糖酵解是在()中进行。 4、糖酵解过程中有()()()三个限速酶,其催化的反应均为()反应 5、有氧时一分子葡萄糖降解形成丙酮酸时共生成()个A TP分子。无氧时一分子葡萄糖降解形成丙酮酸时共生成()个A TP分子。 6、丙酮酸脱氢酶系包括()()()种酶 7、三羧酸循环在()进行的 8、三羧酸循环中有()次脱氢反应,生成()分子NADH和()分子FADH2。 循环中有()次底物水平磷酸化,生成一分子()。 9、磷酸戊糖途径反应部位在() 10、磷酸戊糖途径的过程分()()两个阶段 11、生物体A TP的生成方式有()和()两种水平。 三、选择题 1.目前一般认为哪种酶是三羧酸循环速度的主要调节点? A.柠檬酸合酶 B.顺乌头酸酶 C.异柠檬酸脱氢酶 D.苹果酸脱氢酶 E.琥珀酸脱氢酶 2.丙酮酸氧化分解时,净生成ATP分子数是: A.12.5ATP B.15ATP C.18ATP D.21ATP E.10ATP 3.下述哪个产能过程不在线粒体? A.三羧酸循环 B.脂肪酸β-氧化 C.电子传递 D.糖酵解 E.氧化磷酸化 4.下述有关糖原代谢叙述中,哪个是错误的?

A.cAMP激活的蛋白激酶促进糖原合成 B.磷酸化酶激酶由磷酸化作用被活化 C.磷酸化酶b由磷酸化作用被活化 D.肾上腺素和胰高血糖素活化腺苷环化酶从而使cAMP水平升高 E.磷蛋白磷酸酶抑制剂的活性受蛋白激酶A调控 5.下述哪步反应通过底物水平磷酸化方式生成一分子高能磷酸化合物? A.柠檬酸→α-酮戊二酸 B.α-酮戊二酸→琥珀酸 C.琥珀酸→延胡索酸 D.延胡索酸→苹果酸 E.苹果酸→草酰乙酸 6.在草酰乙酸+NTP→NDP+磷酸烯醇式丙酮酸+CO2反应中,NTP代表: A.ATP B.CTP C.GTP D.TTP E.UTP 7.磷酸戊糖途径的限速酶是: A.6-磷酸葡萄糖酸脱氢酶 B.内酯酶 C.6-磷酸葡萄糖脱氢酶 D.己糖激酶 E.转酮醇酶 8.6-磷酸果糖激酶-1的最强变构激活剂是 A.AMP B.ADP C.2,6-双磷酸果糖 D.ATP E.1,6-双磷酸果糖 四、简答 1、写出糖酵解的具体过程(写出各物质的结构式)?糖酵解的生物学意义? 2、糖酵解生成的丙酮酸有哪些去路? 3、写出三羧酸循环的具体过程(写出各物质的结构式)?TCA生物学意义? 4、糖异生的反应过程? 5、糖原的生物合成过程? 6、简述磷酸戊糖途径的生理意义。 7、比较糖的有氧氧化与无氧酵解的特点。 8、简述6-磷酸葡萄糖的代谢途径及其在糖代谢中的作用。

知识要点 第八单元 糖代谢

第八单元糖代谢 分解代谢:酵解(共同途径)、三羧酸循环(最后氧化途径)、磷酸戊糖途径、糖醛酸途径等。合成代谢:糖异生、糖原合成、结构多糖合成以及光合作用。可转化成多种中间产物,这些中间产物可进一步转化成氨基酸、脂肪酸、核苷酸。糖的磷酸衍生物可以构成多种重要的生物活性物质:NAD、FAD、DNA、RNA 、ATP。分解代谢和合成代谢,受神经、激素、别构物调节控制。 一、糖酵解 (一)酵解与发酵 1.酵解(glycolysis,在细胞质中进行) 酵解酶系统将Glc降解成丙酮酸,并生成ATP的过程。它是动物、植物、微生物细胞中Glc分解产生能量的共同代谢途径。在好氧有机体中,丙酮酸进入线粒体,经三羧酸循环被彻底氧化成CO2和H2O,产生的NADH经呼吸链氧化而产生ATP和水,所以酵解是三羧酸循环和氧化磷酸化的前奏。若供氧不足,NADH 把丙酮酸还原成乳酸(乳酸发酵)。 2.发酵(fermentation) 厌氧有机体(酵母和其它微生物)把酵解产生的NADH上的氢,传递给丙酮酸,生成乳酸,则称乳酸发酵。若NAPH中的氢传递给丙酮酸脱羧生成的乙醛,生成乙醇,此过程是酒精发酵。有些动物细胞即使在有O2时,也会产生乳酸,如成熟的红细胞(不含线粒体)、视网膜。 (二)糖酵解过程(Embden-Meyerhof Pathway,EMP) (1)葡萄糖磷酸化形成G-6-P 此反应基本不可逆,调节位点。△G0= - 4.0Kcal/mol使Glc活化,并以G-6-P 形式将Glc限制在细胞内。催化此反应的激酶有,已糖激酶和葡萄糖激酶。 已糖激酶:专一性不强,可催化Glc、Fru、Man(甘露糖)磷酸化。己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。 葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。Glc激酶是一个诱导酶,由胰岛素促使合成, 肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。 (2)G-6-P异构化为F-6-P 由于此反应的标准自由能变化很小,反应可逆,反应方向由底物与产物的含量水平控制。此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C1移至C2,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的β断裂,形成三碳物是必需的。 (3)F-6-P磷酸化,生成F-1.6-P 此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶。 (4)F-1.6-P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP) 该反应在热力学上不利,但是,由于具有非常大的△G0负值的F-1.6-2P的形成及后续甘油醛-3-磷酸氧化的放能性质,促使反应正向进行。同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。

高考生物知识点之细胞的代谢

高考生物知识点之细胞的代谢考试要点 (1)物质出入细胞的方式Ⅱ (2)酶在代谢中的作用Ⅱ (3)ATP在能量代谢中的作用Ⅱ (4)光合作用的基本过程Ⅱ (5)影响光和作用速率的环境因素Ⅱ (6)细胞呼吸Ⅱ (7)探究影响酶活性的条件Ⅱ (8)绿叶中色素的提取和分离Ⅱ 知识网络构建 重点知识整合 一、酶的本质、特性以及酶促反应的因素 1. 核酸与蛋白质的关系

1.有关酶的实验探究思路分析 [重点] (1)探究某种酶的本质 (2)验证酶的专一性。 ①设计思路:酶相同,底物不同(或底物相同,酶不同) ②设计方案示例: 结论:淀粉酶只能催化淀粉水解,不能催化蔗糖水解,酶具有专一性。 (3)验证酶的高效性。 (4)探究酶作用的最适温度或最适pH。 ①实验设计思路:

? ????底物+T 1pH 1+酶液底物+T 2pH 2+酶液 底物+T 3 pH 3 +酶液? ? ? 底物+T n pH n +酶液――→检测 底物的分解 速度或存在量 ②操作步骤: 2.影响酶促反应的因素 (1)温度和pH : ①低温时,酶分子活性受到抑制,但并未失活,若恢复最适温度,酶的活性也升至最高;高 温、过酸、过碱都会导致酶分子结构被破坏而使酶失活。 ②温度或pH 是通过影响酶的活性来影响酶促反应速率的。 ③反应溶液pH 的变化不影响酶作用的最适温度;反应溶液温度的变化也不改变酶作用的最适pH 。 (2)底物浓度和酶浓度: ①在其他条件适宜、酶量一定的条件下,酶促反应速率随底物浓度增加而加快, 但当底物达

到一定浓度后,受酶数量和酶活性限制,酶促反应速率不再增加。如图甲。 ②在底物充足,其他条件适宜的条件下,酶促反应速率与酶浓度成正比。如图乙。 3.有关酶的疑难问题点拨 (1)酶并非都是蛋白质,某些RNA也具有催化作用,因此酶的基成单位是氨基酸和核糖核苷酸。 (2)酶促反应速率不等同于酶活性。 ①温度和pH通过影响酶活性,进而影响酶促反应速率。 ②底物浓度和酶浓度也能影响酶促反应速率,但并未改变酶活性。 (3)在探究酶的最适温度(最适pH)时,底物和酶应达到相同温度(pH)后才混合,以使反应一开始便达到预设温度(pH)。 二 ATP的合成利用与能量代谢 1.ATP的形成及与光合作用、细胞呼吸的关系(重难点) (1)ATP的形成途径: (2)植物产生ATP的场所是叶绿体、细胞质基质和线粒体,而动物产生ATP的场所是细胞质基质和线粒体。 注:浙科版把细胞基质称作细胞溶胶。 (3)光合作用的光反应产生的ATP用于暗反应中C3的还原,而细胞呼吸产生的ATP用于除C3还原之外的各项生命活动。 (4)光能是生物体进行各项生命活动的根本能量来源,而ATP是生命活动的直接能量来源。

生物化学-生化知识点_第五章 糖与糖代谢.

①①①糖与糖代谢 §5.1 糖的生物学作用:上册P1 (1章) 糖类是细胞中非常重要一类物质,在几乎所有重要生理过程中都有举足轻重的作用。 ①①①糖的生物学作用: ①1①生物体的结构成分:动植物躯壳,如纤维素和甲壳素(昆虫和甲壳类动物 的外骨骼)。 ①2①能源物质:贮存能源的糖类,如淀粉、糖原和葡萄糖。 ①3①转变为其他物质(碳源物质):为合成其他生物分子如氨基酸、核苷酸和脂 肪酸等提供碳骨架。 ①4①作为细胞识别的信息分子:大多数蛋白质是糖蛋白,如免疫球蛋白、激素、 毒素、凝集素、抗原以至酶和结构蛋白。在糖蛋白中起信息分子作用的为糖链。如B-型血外端的半乳糖用α- 半乳糖苷酶(来自海南产的咖啡豆中)切除掉,则B-抗原活性丧失,呈现O-型血的典型特征。 糖在几乎所有重要生理过程中都有举足轻重的作用。 1.生命开始,卵细胞受精、细胞凝集、胚胎形成,细胞的运转和粘附。 2.细胞间的相互识别,通讯与相互作用。 3.免疫保护(抗原与抗体),代谢调控(激素与受体),形态发生、发育,器 官的移植。 4.癌症发生与转移,衰老、病变等过程。 糖是生物体内重要信息物质,在细胞识别、信号传递与传导、免疫过程、细胞通讯和代谢调控中都扮演重要作用。糖生物学已发展成为生命科学研究的重要内容。 ①①①糖的结构特点: 糖的分子结构比蛋白质和核酸复杂。如葡萄糖有4个不对称碳原子,成环后C 又形成α、β两个异头体结构,葡萄糖同分异构体有25=32个。结构复杂多样的糖1 分子成为携带生物信息的极好载体。多肽与核酸携带信息仅依赖于其组成单体的种类、数量和连接顺序,而糖链携带信息除单体种类、数量和排列外还有分支结构和异头碳构型。因此糖的聚合体单位重量携带的信息量比蛋白质和核酸大的多。 ①①①糖工程: 糖工程即糖类药物的研究,包括药用寡糖及类似物的合成,糖蛋白及糖脂中糖的改性修饰,糖与蛋白的联结等内容。糖类药物的研究与开发在极快发展,如“抗粘附”类寡糖药物的研究,其原理为细胞感染首先是入侵病原体表面的糖蛋白(粘附蛋白)识别正常人细胞表面的寡糖(配体),继而发生粘附作用。若引入与寡糖结构(配体)相同或类似的游离寡糖,并使它们与病原体上的粘附蛋白结合即可避免病原体对细胞的感染,而成为“抗粘附”类寡糖药物,此类药物在与病原体的粘附蛋白结合后会被排出体外而防止感染。如已开发出对付幽门螺旋杆菌的药物,可防治胃炎、胃溃疡和十二指肠溃疡;已鉴定了与人体发炎过程及癌细胞转移密切相关的粘附蛋白E-Selectin中四糖的结构等。 糖工程研究内容首先进行天然产物(如粘附蛋白)的分离和纯化,然后进行微量寡糖的分析,确认结构,最后进行寡糖的合成,为此已发展了寡糖的液相和

细胞的代谢知识点归纳

细胞的代谢知识点归纳标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

“细胞的代谢”知识点归纳 考试要点 1、物质出入细胞的方式Ⅱ 2、酶在代谢中的作用Ⅱ 3、ATP在能量代谢中的作用Ⅱ 4、光合作用的基本过程Ⅱ 5、影响光和作用速率的环境因素Ⅱ 6、细胞呼吸Ⅱ 7、探究影响酶活性的条件Ⅱ 8、绿叶中色素的提取和分离Ⅱ 知识网络构建 重点知识整合 一、酶的本质、特性以及酶促反应的因素 1、核酸与蛋白质的关系 2、有关酶的实验探究思路分析【重点】(1)探究某种酶的本质

(2)验证酶的专一性 ①设计思路:酶相同,底物不同(或底物相同,酶不同) ②设计方案示例: 结论:淀粉酶只能催化淀粉水解,不能催化蔗糖水解,酶具有专一性。 (3)验证酶的高效性 (4)探究酶作用的最适温度或最适pH ①实验设计思路: ②操作步骤: 3、影响酶促反应的因素 (1)温度和pH: ①低温时,酶分子活性受到抑制,但并未失活,若恢复最适温度,酶的活性也升至最高;高温、过酸、过碱都会导致酶分子结构被破坏而使酶失活。 ②温度或pH是通过影响酶的活性来影响酶促反应速率的。 ③反应溶液pH的变化不影响酶作用的最适温度;反应溶液温度的变化也不改变酶作用的最适pH。 (2)底物浓度和酶浓度:

①在其他条件适宜、酶量一定的条件下,酶促反应速率随底物浓度增加而加快,但当底物达到一定浓度后,受酶数量和酶活性限制,酶促反应速率不再增加。如图甲。 ②在底物充足,其他条件适宜的条件下,酶促反应速率与酶浓度成正比。如图乙。 4、有关酶的疑难问题点拨 (1)酶并非都是蛋白质,某些RNA也具有催化作用,因此酶的基成单位是氨基酸和核糖核苷酸。 (2)酶促反应速率不等同于酶活性。 ①温度和pH通过影响酶活性,进而影响酶促反应速率。 ②底物浓度和酶浓度也能影响酶促反应速率,但并未改变酶活性。 (3)在探究酶的最适温度(最适pH)时,底物和酶应达到相同温度(pH)后才混合,以使反应一开始便达到预设温度(pH)。 二、ATP的合成利用与能量代谢 1、ATP的形成及与光合作用、细胞呼吸的关系【重难点】 (1)ATP的形成途径: (2)植物产生ATP的场所是叶绿体、细胞质基质和线粒体,而动物产生ATP的场所是细胞质基质和线粒体。 (3)光合作用的光反应产生的ATP用于暗反应中C3的还原,而细胞呼吸产生的ATP用于除C3还原之外的各项生命活动。

糖代谢-复习题

自测复习题:糖代谢 1.下面哪一个是糖酵解过程中的关键酶() A.醛缩酶B.异柠檬酸脱氢酶 C.丙酮酸激酶D.丙酮酸脱氢酶系E.磷酸甘油酸激酶 2.一分子葡萄糖彻底氧化生成CO2和H2O需经几次底物水平磷酸化 A.3 B.4 C.6 D.8 E.10 3.两分子乳酸异生为一分子葡萄糖需几分子ATP( ) A. 0 B 4 C 6 D 12 4.决定每摩尔葡萄糖有氧氧化生成38还是36摩尔ATP的关键步骤是: A. 丙酮酸氧化成乙酰CoA B. 3-磷酸甘油醛氧化成1,3-二磷酸甘油酸 C. 苹果酸氧化成草酰乙酸 D. 琥珀酸氧化成延胡索酸 5.三羧酸循环的限速酶是() A、丙酮酸脱氢酶 B、顺乌头酸酶 C、琥珀酸脱氢酶 D、延胡索酸酶 E、异柠檬酸脱氢酶 6.由己糖激酶催化的反应的逆反应所需要的酶是() A、果糖二磷酸酶 B、葡萄糖-6-磷酸酶 C、磷酸果糖激酶 D、磷酸化酶 7.下列关于糖酵解的叙述,错误的是: A. 所有反应在胞液完成 B. 可以产生ATP C. 是由葡萄糖生成丙酮酸的过程 D. 不耗氧 E. 是成熟红细胞中葡萄糖的主要代谢途径 8.糖酵解和糖异生途径中都有的酶是: A.三磷酸甘油醛脱氢酶 B.已糖激酶 C.丙酮酸激酶 D.果糖二磷酸激酶 E.丙酮酸羧化酶 9.三羧酸循环主要在细胞的哪个部位进行?() A、胞液 B、细胞核 C、线粒体 D、微粒体 E、高尔基体 10.NADPH为合成代谢提供还原势,NADPH中的氢主要来自() A、糖酵解 B、柠檬酸循环 C、磷酸己糖支路 D、氧化磷酸化 11.丙酮酸激酶是何途径的关键酶() A.磷酸戊糖途径 B.糖异生 C.糖的有氧氧化 D.糖原合成与分解 E.糖酵解 12.三羧酸循环的限制酶是() A.丙酮酸脱氢酶 B.顺乌头酸酶 C.琥珀酸脱氢酶 D.异柠檬酸脱氢酶 13.糖原分解的关键酶是( ) A.分支酶 B.磷酸化酶 C.葡萄糖6-磷酸酶 D.磷酸化酶b激酶 14.下列代谢途径中,不在线粒体进行的是( ) A.三羧酸循环 B.酮体氧化 C.糖酵解 D.尿素合成 15.下列关于糖酵解的描述正确的是() A所有反应都是可逆的 B 在细胞液中进行C净生4分子ATP D不消耗ATP E 终产物是丙酮酸 16.1分子葡萄糖酵解时净生成多少分子ATP() A. 1 B. 2 C. 3 D. 4 E. 5 17.一分子丙酮酸进入TAC及呼吸链氧化时形成( ) A. 生成3分子二氧化碳 B. 生成5分子水 C. 净生成3分子水 D. 生成15分子ATP 18.正常空腹时血糖的来源有( ) A. 消化道内吸收 B.肝糖原分解 C.乳酸循环 D.糖异生作用

糖代谢作业

糖代谢作业 1、简述葡萄糖无氧分解的基本途径、关键酶的调节及其生理意义。 2、简述葡萄糖有氧氧化的三个阶段。 糖的有氧氧化分为三个阶段,第一阶段为葡萄酸至丙酮酸(糖酵解过程),反应在细胞液中进行;第二阶段是丙酮酸进入线粒体被氧化脱羧成乙酰辅酶A,反应在线粒体膜上进行;第三阶段是乙酰辅酶A进入三羧酸循环生成CO2和H2O 第一阶段:糖酵解 糖酵解第一阶段:葡萄糖的磷酸化 葡萄糖 3步 1,6,—二磷酸果糖 第二阶段:糖的裂解过程 1,6,—二磷酸果糖 2步两分子的磷酸丙糖 第三阶段:产能阶段 两分子的3—磷酸甘油醛 5步两分子丙酮酸 总反应式 G+2NAD+2ADP+2Pi 2丙酮酸+2NADH+2H +2ATP +2H2O 特点:1、整个过程无氧参加; 2、三个关键酶;(己糖激酶、磷酸果糖激酶、丙酮酸激酶) 3、从葡萄糖开始净生成2分子ATP, 4、一次脱氢,辅酶为NAD+,生成NADH+H+。 第二阶段:丙酮酸的氧化脱羧—乙酰CoA的生成 总反应式: TPP,FAD, 硫辛酸,Mg2+ 丙酮酸脱氢酶系三种酶 E1-丙酮酸脱羧酶(也叫丙酮酸脱氢酶) E2-二氢硫辛酸乙酰基转移酶 E3-二氢硫辛酸脱氢酶。 六种辅助因子焦磷酸硫胺素(TPP)、硫辛酸、 COASH、FAD、NAD+、Mg2+ 第三阶段:三羧酸循环 总反应式: CH3COSCoA+3NAD++FAD+GDP+Pi+2H2O 2CO2+CoASH+3NADH+3H+ +FADH2+GTP 特点:1、需氧 2、不可逆:三个限速酶(柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合

体) 3、两次脱羧、四次脱氢(三次受体是NAD,一次是FAD)、一次底物水平磷酸化 4、共产生10molATP 三羧酸循环第一阶段:柠檬酸生成 1)缩合反应柠檬酸合酶 2)柠檬酸异构化为异柠檬酸顺乌头酸酶 第二阶段:氧化脱羧 3)异柠檬酸氧化生成α-酮戊二酸异柠檬酸脱氢酶,生成一分子还原型NADH 4)α-酮戊二酸氧化脱羧生成琥珀酰CoA α-酮戊二酸脱氢酶复合体,生成一分子还原型NADH 5)琥珀酰CoA生成琥珀酸琥珀酰CoA合成酶,生成一分子CoASH 第三阶段:草酰乙酸再生 6)琥珀酸脱氢生成延胡索酸琥珀酸脱氢酶,生成一分子FADH2 7)延胡索酸加水生成苹果酸延胡索酸酶, 8)草酰乙酸的再生苹果酸脱氢酶,生成一分子还原型NADH 3、简述三羧酸循环过程及其调节。 4、详细列表计算1分子葡萄糖经过有氧氧化净生成多少A TP? 其中底物水平磷酸化和氧化磷酸化各 生成多少?P243 5、简述磷酸戊糖途径的反应过程、调节及其生理意义。 6、简述糖原的合成与分解及其调节。 糖原合成:葡萄糖、半乳糖和果糖等在体内相应酶的作用下合成糖原的过程。 合成部位:组织定位:主要在肝脏、肌肉 细胞定位:胞液 途径: 1.葡萄糖磷酸化生成6-磷酸葡萄糖 ATP ADP 葡萄糖己糖激酶; 6-磷酸葡萄糖 葡萄糖激酶(肝) 2.6-磷酸葡萄糖磷酸葡萄糖变位酶 1-磷酸葡萄糖 3.1- 磷酸葡萄糖转变成尿苷二磷酸葡萄糖 4. α-1,4-糖苷键式结合 糖原n + UDPG 糖原合酶糖原n+1 + UDP 5.糖原分枝的形成(分支酶)

运动与健康的关系

运动与健康的关系 有句古话,叫“流水不腐,户枢不蠹”。说的是自然界中的一个现象,但是揭示了一个真理:“用进废退”。对于健康而言,说运动是金何尝不可。按中医理论,运动可使全身气机条达,血脉流通,才能不生疾病或少生病。肌肉在运动中变得发达有力,骨骼在运动中变得坚强和结实。所以说,最好的保健秘方,不是灵丹妙药,而是运动。运动在健身防病中有以下诸多功效。 1.运动与防病 (1)运动可预防心血管疾病。运动锻炼,特别是有氧运动,可以提高心血管血液的输出量,增强心肌的收缩力,改善全身的血液供给。全身的血管也在运动中得到有节奏的收缩和扩张,弹性增强,减少动脉硬化;虽然在运动中心脏为了使身体得到足够的血液供应,心跳加快,以便在单位时间内搏出更多的血,但是当运动停止以后,心跳反而比正常为慢,而这种慢心率对健康长寿大有益处。再则运动需要消耗能量,促进脂肪的燃烧和利用,因而可避免肥胖和高脂血症,也就减少了心血管疾病的危险性。 (2)运动能防治糖尿病。有人说糖尿病是一种富贵病,其实,糖尿病确确实实是由于缺乏运动引起的疾病,在中国、芬兰和美国等不同国家的研究发现,即使中等程度的体力活动,也几乎足以防止60%Ⅱ型糖尿病病例的发生。那么,缺乏锻炼为什么会引发糖尿病呢?简单地说,运动可刺激胰岛素的分泌,加速细胞对糖的氧化和利用。当肌肉缺乏运动锻炼时,便会抑制胰岛素的分泌,长久下去,便会导致糖代谢的紊乱,而诱发糖尿病。另外,运动也加速脂肪的氧化,故而少得肥胖病。已知在糖尿病的发病过程中,肥胖也是一个重要的原因,因为脂肪也是一种内分泌腺体,脂肪细胞,尤其是大脂肪细胞能分泌一种脂抑胰岛素,可降低胰岛素的活性,从而使细胞不能很好的利用糖。 (3)运动能预防骨质疏松。骨质疏松是威胁中老年人的一种多发病,而运动是增强钙吸收的最有效办法。美国骨科专家Frost提出了一个新观点:在骨质疏松的发病机制中,非机械因素(钙、维生素D、激素等缺乏)并非是最主要的,而在神经系统调控下的肌肉质量(包括肌块质量和肌力)才是决定骨强度(包括骨量和骨结构)的重要因素。缺钙者只有参加适量的体育锻炼,使骨骼承重,才能提高补钙的效果。有关研究指出,骨相关激素、钙、维生素D 可决定3%—10%的骨强度,而运动对骨强度的影响可达40%。这一理论可解释为什么久卧病床、或多数肌肉衰退性疾病的患者,即使补钙也无法阻止骨质减少的现象。研究者认为,通过运动锻炼,增强骨承受负荷及肌肉牵张的能力,结合使用骨合成性药物等.可达到刺激骨生成,恢复被丢失的骨质及维持一定骨强度水平的目的。所以,补钙结合适当的负重运动,是防止骨质疏松最有效的方法。 (4)运动能防癌。有关研究指出,经常性的运动锻炼可使大肠癌的罹患率减少一半。因为久坐不动必然导致肠蠕动缓慢,形成便秘,而宿便中的毒素,主要是蛋白质的分解产物、细菌毒素以及重金属离子等,对肠壁的刺激而诱发肠粘膜细胞的突变引起癌症。运动能增强

相关文档
相关文档 最新文档