文档库 最新最全的文档下载
当前位置:文档库 › 电力变压器及接地电阻试验报告书

电力变压器及接地电阻试验报告书

电力变压器及接地电阻试验报告书
电力变压器及接地电阻试验报告书

AA县BB乡易地扶贫搬迁工程新装配变电气设备试验报告书

XXXKVA电力变压器试验报告

委托方:AA县BB乡人民政府受托方:AA供电公司试验员:汪MOUM 田MOUM 试验负责人徐MOUM

使用仪表:ZC11d-10

使用仪器:RXCX2869变频串联谐振装置、RX4156绝缘油介测试仪

5、特性综合试验接地测试:使用仪器:ZC29b-2、变压器特性测试仪

6、结论:

MOUM

接地电阻试验报告

MOUM

单相变压器 实验报告

单相变压器 实验报告 1610900 杨凤妍 物理伯苓班 一、变压器空载特性 E 型 220V 110V 55V U1初级线圈电压/V 222.8 111.3 55.03 U2次级线圈电压/V 10.7 5.3 2.67 I1初级线圈电流/ mA 32 10.2 7.2 P1初级线圈功率/W 2.7 0.8 0.23 初级功率因数 0.384 0.709 0.609 计算初级视在功率/W 7.03125 1.12835 0.377668 环型 220V 110V 55V U1初级线圈电压/V 220.1 121.2 54.9 U2次级线圈电压/V 11.34 6.26 2.84 I1初级线圈电流/ mA 4.2 1.7 0 P1初级线圈功率/W 0.55 0.15 0 初级功率因数 0.6 0.753 计算初级视在功率/W 0.916667 0.199203 输入电压 测量参数

二、初级220V变压器负载特性 E型 环型

三、变压器为双路输出,在空载时测U1,U 1’ 同向串联或反相串联时的输出电压。(所用变压器为环型变压器)数据表格如下: 调压器 22V U2电压 1.522 U2‘电压 1.518 U2,U2’同向串联电压 3.029 U2,U2’反向串联电压 四、图像绘制 1、变压器带负载时,初级输入功率与负载R 的关系图。 024******** 10 20 30 40 50 60 P 1初级线圈功率/W P1-R 图(E 型变压器) R/Ω 024681012 140 10 20 30 40 50 60 P 1初级线圈功率/W P1-R 图(环型变压器) R/Ω

高密度电阻率法实验报告

工程物探实验报告 实验一:高密度电阻率法勘探 班级: _________________________ 姓名: _________________________ 学号: _________________________ 贵州理工学院资源与环境工程学院 2016年11月

1实验目的 了解电阻率法(高密度电阻率法)的方法原理、野外工作布置及装置形式;掌握高密度 电阻率法数据的采集、处理和解释,熟练操作高密度电阻率法软件。 2高密度电阻率法原理 高密度电阻率法属于直流电阻率法的范畴,它是在常规电法勘探基础上发展起来的一 种勘探方法,仍然是以岩土体的电性差异为基础,研究在施加电场的作用下,地下传导电 流的变化分布规律。相对于传统电法而言,高密度电阻率法其特点是信息量大。利用程控 电极转换器,由微机控制选择供电电极和测量电极,实现了高效率的数据采集,可以快速 采集到大量原始数 据。具有观测精度高、数据采集量大、地质信息丰富、生产效率高等特 点。一次布极可以完成 纵、横向二维勘探过程,既能反映地下某一深度沿水平方向岩土体 的电性变化,同时又能提供 地层岩性沿纵向的电性变化情况,具备电剖面法和电测深法两 种方法的综合探测能力。 该观测系统包括数据的采集和资料处理两部分,现场测量时,只需将全部电极设置在 一定间隔的 测点上,测点密度远较常规电阻率法大,一般从 1m~10m 。然后用多芯电缆将 其连接到程控式多路电 极转换开关上,电极转换开关是一种由单片机控制的电极自动换接 装置,它可以根据需要自动进行电 极装置形式、极距及测点的转换。测量信号 由电极转换 开关送入微机工程电测仪, 并将测量结果依次存入随 机存储器。将数据回放 送 入微机,便可按给定程序 对数据进行处理。高密度电 阻率法现场工作时是在 预先选定的测线和测点 上,同时布置几十乃至上 百个电极,然后用多芯电缆 将它们连 接到特制的电极转换装置,电极转换装置将这些电极组合成指定的电极装置和 电极距,进而用自动电测仪,快速完成多种电极装置和多电极距在观测剖面的多个测点上 的电阻率法观测。再配上相应的数据处理、成图和解释软件,便可及时完成给定的地质勘 | 説据处返邮分 説孫輕野汨分

接地电阻测量实验报告范文

接地电阻测量实验报告范文 为了了解接地装置的接地电阻值是否合格、保证安全运行,同时根据配电设备维护规程的有关规定,我部于20xx 年3月1日上午8:00 对乐民原料部弓角田煤矿各变配电点的接地及其各变压器对地绝缘情况进行测量试验。试验过程及试验结果分析报告如下: 一、试验前的准备: 1、制订试验方案: 前期,我们组织机电队人员一起到现场查看接地装置,查找接地极的适合试验的位置,制订、讨论、修改试验方案,提出试验中的注意事项。 2、试验方法: 接地电阻表本身备有三根测量用的软导线,可接在E、P、C三个接线端子上。接在E端子上的导线连接到被测的接地体上,P端子为电压极,C端子为电流极(P、C都称为辅助接地极),根据具体情况,我们准备采用两种方式测量:(1)、将辅助接地极用直线式或三角线式,分别插入远离接地体的土壤中;(2)、用大于25cm×25cm的铁板作为辅助电极平铺在水泥地面上,然后在铁板下面倒些水,铁板的布放位置与辅助接地极的要求相同。两种方法我们都采取接地体和连接设备不 断开的方式测量,接地电阻电阻表将倍率开关转换到需要的量程上,用手摇发电机手柄,以每分钟120转/分以上的速度转时,使电阻表上的仪表指针趋于平衡,读取刻盘上

的数值乘以倍率即为实测的接地电阻值。 3、试验工具: 我们准备好ZC29B-2型接地电阻测试仪、ZC110D-10(0~2500MΩ)型摇表、万用表、铜塑软导线(BVR 1.5mm2)、测电笔、接地极棒和接地板等试验用具及棉纱等辅助材料。 二、试验过程: 1、3月1日上午,现场试验人员进行简单碰头,并进行分工:由帅锐进行测量、值班人员蔡富贵和彭余坤配合操作、陈应沫记录、班长方兴华负责监护; 2、8:45试验开始; 3、测量辅助接地极间及与测量接地体间的距离; 4、采取第一种方法,将接地极棒插入到土壤中并按照图纸接好线; 5、将测量接地体连接处与连接端子牢靠连接; 6、将导线与接地电阻表接好; 7、校正接地电阻表; 8、测量并记录数据;(试验数据见附表) 9、采取第二种方法,测量并记录数据; 10、整个试验过程结束。 恒鼎实业弓角田煤矿春季预防性试验设备外壳接地测试记录 恒鼎实业弓角田煤矿春季预防性试验变压器绝缘测试记录 使用仪器: ZC29B-2型接地电阻测试仪

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电力系统实验报告

成绩 课程作业 课程名称电力系统分析 院部名称机电工程学院 专业电气工程及其自动化 班级13级2班 学生姓名祥 学号1304102047 课程考核地点2234 任课教师静 金陵科技学院教务处制

实验一电力系统分析计算 一.实验目的 1.掌握用Matlab软件编程计算电力系统元件参数的方法. 2.通过对不同长度的电力线路的三种模型进行建模比较,学会选取根据电路要求选取模 型。 3.掌握多级电力网络的等值电路计算方法。 4.理解有名制和标幺制。 二.实验容 1.电力线路建模 有一回220kV架空电力线路,导线型号为LGJ-120,导线计算外径为15.2mm,三相导线水平排列,两相邻导线之间的距离为4m。试计算该电力线路的参数,假设该线路长度分别为60km,200km,500km,作出三种等值电路模型,并列表给出计算值。 2.多级电力网络的等值电路计算 部分多级电力网络结线图如图1-1所示,变压器均为主分接头,作出它的等值电路模型,并列表给出用有名制表示的各参数值和用标幺制表示的各参数值。 线路额定电压电阻 (欧/km) 电抗 (欧/km) 电纳 (S/km) 线路长度 (km) L1(架空线)220kv 0.08 0.406 2.81*10-6 200 L2(架空线)110kV 0.105 0.383 2.81*10-6 60 L3(架空线)10kV 0.17 0.38 忽略15 变压器额定容量P k(kw) U k% I o% P o(kW) T1 180MVA 893 13 0.5 175 T2 63MVA 280 10.5 0.61 60 三.实验设备 1.PC一台 2.Matlab软件 四.实验记录 1.电力线路建模 画出模型图,并标出相应的参数值。将计算结果填入下表

实验报告册

实验一、实训台电气主接线模拟图的认知 【实验目的】 1.熟悉本实训装置电气主接线模拟图; 2.理解本实训装置电气主接线模拟图的设计理念; 【主要仪器设备】 THSPGC-1型工厂供电技术实训装置 【实验原理】 整个系统模拟图可分为以下两个部分(按电压等级): (1)35kV总降压变电所主接线模拟部分: 此部分采用两路35kV进线,其中一路正常供电,另一路作为备用,两者互为明备用,通过备自投自动切换。在这两路进线的电源侧分别设置了“WL1模拟失电”和“WL2模拟失电”按钮,用于模拟外部电网失电现象。 35kV母线有两路出线,一路送其他分厂,还在该段线路上设置了故障设置按钮,并在此输电线路上装设微机线路保护一台,通过设置线路选择及故障(三相短路)模拟单元,可以完成高压线路的微机继电保护实训内容。另一路经总降变降压为10kV供本部厂区使用。 10kV高压配电所中的进线也有两路:来自35kV总降压变电所的供电线路和从邻近变电站进来的备用电源。这两路进线之间互为暗备用关系。总降变T是按有载调压器设计的,通过有载调压分接头控制单元(模拟按钮、工业触摸屏)实现有载调压。在10kV母线上还接有无功自动补偿装置,母线上并联了4组三角形接法的补偿电容器组,对高压母线的无功进行集中补偿。 当低压负荷的变化导致10kV母线的功率因数低于设定值,通过无功功率补偿控制单元,实现电容器组的手动、自动补偿功能。除此外在10kV高压配电所的1#和2#母线上还有四路出线:一条线路去一号车间变电所;一条线路去二号车间变电所;一条线路去三号车间变电所;一条线路直接给高压模拟电动机使用,还在高压电动机进口处设置了进线故障(三相短路)并且于电动机供电线路上装设了微机电动机保护装置以及短路故障设置单元,可以完成高压电动机的继电保护实验内容。 该装置还配备微机备自投装置,可以完成进线备投和母联备投等功能。通过操作面板上的按钮和选择开关可以接通和断开线路,进行系统模拟倒闸操作。本装置用一对方形按钮来模拟断路器:当按下面板上的红色按钮时,红色指示灯亮,表示断路器合闸;当按下面板上的绿色按钮时,绿色指示灯亮,表示断路器分闸。用长柄带灯开关模拟隔离开关:当把开关拨至竖直方向时,红色指示灯亮,表示隔离开关处于合闸状态;当把开关逆时针旋转30度,指示灯灭,表示断路器处于分闸状态。 【实验/实训/实习步骤】 (1)按照正确顺序启动实训装置:依次合上实训控制柜上的“总电源”、“控制电源Ⅰ”和实训控制屏上的“控制电源Ⅱ”、“进线电源”开关。 (2)把无功补偿方式选择开关拨到自动状态。本节实训要求HSA-531微机线路保护装置、HSA-536微机电动机保护装置中的所有保护全部退出,微机备自投装置设置成应急备投状态。 (3)依次合上实训装置控制屏上的QS111、QS113、QF11、QS115、QF13、QS213、QF21、QS211、QS212、QF22、QS214、QS215、QF24、QS216、QF25给10kVⅠ段母线上的用户供电,接下来依次合上实训装置控制屏上的QS217、QF26、QS218、QF27给10kVⅡ段母线上的用户供电,在装置的控制柜上把电动机启动方式选择开关打到直接位置,然后按下电

变压器实验报告

专业:电子信息工程: 实验报告 课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二、预习要点 1.变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 3.如何用实验方法测定变压器的铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0), P0=f(U0)。 2.短路实验 测取空载特性U K=f(I K), P K=f(U K)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos φ2=1的条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1.空载试验

实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中的一相,其额定容量P N=76W,U1N/ U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01的交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下DT01面板上“开”的按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 U N,然后,逐次降低电源电压,在1.2~0.5U N的范围内,测取变压器的U0、I0、 P0共取6-7组数据,记录于表2-1中,其中U=U N的点必测,并在该点附近测的点应密些。为了计算变压器的变化,在U N 以下测取原方电压的同时,测出副方电压,取三组数据记录于表3-1中。 图3-1 空载实验接线图 COSφ2=1 U1= U N= 220 伏

华北电力大学实验报告

华北电力大学 实验报告 实验名称:超外差收音机安装与调试 一、实验目的 1.了解常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的 电子器件图书。能够正确识别和选用常用的电子器件,并且能够熟练使用万用表。 2.学习并掌握超外差收音机的工作原理 3.了解超外差式收音机的调试方法。

4.熟悉手工焊锡的常用工具的使用及其维护与修理,基本掌握手工电烙铁的焊 接技术。 二、实验原理图 三、元器件清单 元件型号数量位号元件型号数量位号 三极管9013 2只V6、V7 电阻56Ω1只R5 三极管9014 1只V5 电阻100KΩ2只R7、R10 三极管9018 4只V1、V2、V3、V4 电阻120KΩ1只R1 发光二极管红色1只LED 瓷片电容103 1只C2 磁棒及线圈4x8x80mm 1套T1 瓷片电容C1、C4、C5 振荡线圈TF10(红色)1只T2 瓷片电容223 7只C6、C7、C10 中频变压器TF10(黄色)1只T3 瓷片电容C11 中频变压器TF10(白色)1只T4 电解电容 4.7uF 2只C3、C8 中频变压器TF10(绿色)1只T5 电解电容100uF 3只C12、C13、C9 输入变压器蓝色1只T6 双联电容CBM-223PF 1只CA 扬声器0.5W 8Ω1只BL 耳机插座?3.5mm 1只CK 电位器10KΩ1只RP 装配说明书1分 电阻51Ω1只R8 机壳上盖1个 电阻100Ω2只R13、R15 机壳下盖1个 电阻120Ω2只R12、R14 刻度面板1块 电阻150Ω1只R3 调谐拨盘1只 电阻220Ω1只R11 电位器拨盘1只 电阻510Ω1只R16 磁棒支架1只

接地电阻的测量实验报告

湘潭大学实验报告 姓名:** 学号:***** 班级(专业):采矿工程**班 课程:矿山电工学 实验名称:接地电阻的测量 实验日期:2013年12月4日

实验四接地电阻的测量 一、实验目的: 1、使学生掌握接地的种类、意义与接地方法。 2、使学生熟悉接地电阻测量仪的使用方法与测量方法。 二、主要知识点: 1、接地的概念与作用: 接地是电力系统为了满足系统运行的需要和保护设备或人身安全而常用的一种技术。接地靠接地装置来实现。接地装置主要由下列两部分组成: (1)接地体。接地体又叫做接地极,是指埋入地中直接与大地接触的金属导体。 (2)接地线。接地线是指电力设备与接地体相连接的金属导线。 接地体又分为人工接地体与自然接地体两种。人工接地体是指专门敷设的金属导体接地极,自然接地体是指直接与大地接触的各种金属构件,如建筑物的钢筋混凝土基础,金属导管等。被水泥包围住的导体只要是埋在地中也算接地体,因为受潮后的水泥的导电能力和上壤差不多。 电力系统的接地可分为正常接地和故障接地两类,正常接地又可分工作接地和保护接地两种。工作接地是为了满足系统运行的需要而装设的接地;其作用如下: ⑴降低人体的接触电压。在中性点绝缘的系统中,当一相接地,而人体又触及加一相时,人体所受到的接触电压将超过相电压而成为线电压,即为相电压的√3倍。当中性点接地时,因中性点的接地电阻很小,或近似于零,与地间的电位差亦近似于零,这时当一相碰地,而人体触及加一相时,人体的接触电压接近或等于相电压,因此降低了人体的接触电压。 ⑵迅速切断故障设备。在中性点绝缘系统中,当一相接地时接地电流很小,因此,保护设备不能迅速动作切断电流,故障将长期持续下去,对人体是危险的。 在中性点接地系统中就不同了,当一相接地时,接地电流成为很大的单相短路电流,保护设备能准确而迅速动作切断电源,使人体不致有触电危险。 ⑶降低电气设备和电力线路的设计绝缘水平。 如上所述,因中性点接地系统中一相接地时,其它两相的对地电压不会升高至相电压的√3倍,而是近似于或等于相电压。因此在中性点接地系统中,电气设备和线路在设计时,其绝缘水平只按相电压考虑。故降低了建设费用,节约了投资。 保护接地主要包括有防止人身触电的保护接地、防雷接地、防静电接地及防电磁场屏蔽接地等。 故障接地是指电力设备的带电体与大地之间的绝缘遭受损坏时,导体与大地相接触,电流直接流入大地(短路)。如电力设备的对地绝缘损坏,发生击穿,对地(外壳)短路,或者电场线路绝缘子闪络、断线、导线接地短路等,都是故障接地。 理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全.但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到。在实践中,可利用埋设在地下的各种金属管道(易燃体管道除外)和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体。由于人工接地装置与自然接地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资。 在中性点接地的三相四线制中,零线常采用重复接地。 在有重复接地的低压供电系统中,当发生接地短路时,能降低零线的对地电压;当零线断线发生断裂时,能使故障程度减轻,照明线路能避免因零线断线而引起的烧毁灯泡的

电力系统分析 实验报告 南昌大学

实验报告 实验课程:电力系统分析 学生姓名:李瑞欣 学号:6101113078 专业班级:电气工程及其自动化132 指导老师:徐敏 2015年 12月日

南昌大学实验报告 学生姓名:李瑞欣学号:610113078 专业班级:电气132 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 一、实验项目名称 电力网数学模型模拟实验 二、实验目的与要求: 本实验通过对电力网数学模型形成的计算机程序的编制与调试,获得形成电力网数学模型:节点导纳矩阵的计算机程序,使数学模型能够由计算机自行形成,即根据已知的电力网的接线图及各支路参数由计算程序运行形成该电力网的节点导纳矩阵。通过实验教学加深学生对电力网数学模型概念的理解,学会运用数学知识建立电力系统的数学模型,掌握数学模型的形成过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。 三、主要仪器设备及耗材 计算机、软件(已安装,包括各类编程软件C语言、C++、VB、VC等、应用软件MATLAB等)、移动存储设备(学生自备,软盘、U盘等) 四、实验步骤 1、将事先编制好的形成电力网数学模型的计算程序原代码由自备移动存储设备导入计算机。 2、在相应的编程环境下对程序进行组织调试。 3、应用计算例题验证程序的计算效果。 4、对调试正确的计算程序进行存储、打印。 5、完成本次实验的实验报告。 五、实验数据及处理结果 运行自行设计的程序,把结果与手工计算结果相比较,验证所采用方法及所编制程序运行的正确性。 实验数据 见《电力系统分析》(上册)72页例4-1

接地电阻测量实验报告通用范本

内部编号:AN-QP-HT374 版本/ 修改状态:01 / 00 In Order T o Standardize The Management, Let All Personnel Enhance The Executive Power, Avoid Self- Development And Collective Work Planning Violation, According To The Fixed Mode To Form Daily Report To Hand In, Finally Realize The Effect Of Timely Update Progress, Quickly Grasp The Required Situation. 编辑:__________________ 审核:__________________ 单位:__________________ 接地电阻测量实验报告通用范本

接地电阻测量实验报告通用范本 使用指引:本报告文件可用于为规范管理,让所有人员增强自身的执行力,避免自身发展与集体的工作规划相违背,按固定模式形成日常报告进行上交最终实现及时更新进度,快速掌握所需了解情况的效果。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 为了了解接地装置的接地电阻值是否合格、保证安全运行,同时根据配电设备维护规程的有关规定,我部于20xx年3月1日上午8:00 对乐民原料部弓角田煤矿各变配电点的接地及其各变压器对地绝缘情况进行测量试验。试验过程及试验结果分析报告如下: 一、试验前的准备: 1、制订试验方案: 前期,我们组织机电队人员一起到现场查看接地装置,查找接地极的适合试验的位置,制订、讨论、修改试验方案,提出试验中的注意事项。

防雷接地电阻测试报告

建(构)筑物防雷装置检测报告 被检单位 地址 检测日期 有效时间 签收人 检测单位 检测单位地址 检测单位电话邮编

防雷接地电阻测试报告 防雷与接地方案 测试地点: 测试日期:年月日天气: 检测单 位: 一接地电阻测试说明 在防雷保护工程中,对接地电阻要求相当严格,接地电阻如果没有达到标准容易造成所保护设备损坏,给用户带来人身伤害和财产损失,因此根据《中华人民共和国气象法》规定:对已做过的防雷工程,每年在雷雨季节到来之前,应该有专业人员进行检测,提前找出隐患,避免造成不必要的损失。 二接地电阻测量仪说明 在检测接电电阻过程中我们选用DER2571系列接地电阻测量仪,本仪器安全性能符合国际标准IEC61010—1:1990,其执行标准为:Q/HKY 05-2001。 (1)性能特点 ●适于测量个种接电装置的接地电阻和地电压,还可以测量土壤电阻率及低阻导体的电阻值。 ●采用同步检测等先进技术,抗干扰能力强。 ● 3 1/2LCD数字显示,分辨率高,示值准确。 ●电池供电,有欠压指示。 ●被测接地极开路或电流极辅助接地电阻大雨各量程上限值时,显示屏左下角有“OPEN CIRCUIT”指标。 ●操作便捷,携带方便,耗电省。 ●具有防震、防尘、防潮结构,适应恶劣工作环境。 (2)技术指标 ●测量范围: 0.00~19.99欧姆;20.0~199.9欧姆;200~1999欧姆。 ●准确度: 基本误差:《±(5%+2d) 地电压引入的测量误差:≤±2%AC 50 HZ ≤5V 电压极辅助接地电阻Rp和电流极辅助接地电阻Rc引入的测量误差:≤±2% Rp≤5K欧姆 Rc≤1K欧姆(量程0.00~19.99欧姆) Rc≤10K欧姆(量程20.0~199.9欧姆;200~1999欧姆) 三接地电阻测量方法 (1)设备检查及更换 仪表在接通电源工作时,若显示欠压指示,表示电池电量不足,应更换新电池。(2)接地电阻的测量

单相变压器实验报告

单相变压器实验报告 一、实验目的 1.学习测定变压器的相对极性、变比。 2.通过空载实验和短路实验计算变压器的主要参数。 3.测定变压器外特性。 4.测定变压器效率特性。 二、实验设备 1.单相交流可调电源 2.单相变压器 3.交流电压表、交流电流表 4.功率表 5.万用表 6.温度计 三、实验原理图 图1 单相变压器相对极性测定图2 单相变压器空载实验图3 单相变压器短路实验图4 单相变压器外特性实验 图5 变压器效率特性实验 四、实验内容 R d R d

1.相对极性的测定 表1 相对极性的测定实验数据 结论: 2.空载实验 表2单相变压器空载实验 3. 表3 单相变压器短路实验 室温T=℃ 4.外特性实验 表4 变压器外特性实验数据 5.效率特性实验 表5 变压器效率特性实验数据 五、实验结果与分析 1.计算变比 K=U/U 1U1.1U22U1.2U2 2.绘出空载特性曲线和计算激磁参数

激磁参数: 2o m o P r I = = o m o U Z I = = m X == 3. 绘出短路特性曲线和计算短路参数 短路参数: 'K K K U Z I = = '2K K K P r I = = 'K X = 折算到低压侧: ' 2K K Z Z K == ' 2K K r r K == '2K K X X K == 换算到基准工作温度75℃时的阻值: 75234.575 234.5K c K r r θ θ ?+==+ 75K c Z ?==

4.利用空载和短路实验测定的参数,画出被试变压器折算到低压侧的“Г”型等效电路。 5.效率特性曲线

电力电子实验报告答案

电力电子技术实验指导书 电力系 2013年3月

目录 第一章电力电子技术实验的基本要求和安全操作说明 1. 实验的基本要求 (2) 2. 实验前的准备 (2) 3. 实验实施 (2) 4. 实验总结 (3) 5.实验安全操作规程 (3) 第二章电力电子技术实验 实验一三相桥式全控整流电路实验 (4) 实验二三相全控桥式有源逆变电路实验 (7) 实验三交直交变频电路实验 (10) 实验四直流斩波电路的性能研究 (13)

第一章电力电子技术实验的基本要求 和安全操作说明 一、实验的基本要求 电力电子技术既是一门技术基础课,也是实用性很强的一门课。电力电子实验是该课程理论教学的重要补充和继续,而理论则是实验教学的基础学生在实验中应学会运用所学的理论知识去分析和解决实际问题,提高动手能力;同时,通过实验来验证理论,促进理论和实际的结合。学生在完成指定的实验后,应具备以下能力: 1.掌握电力电子变流装置主电路、触发电路和驱动电路的构成及调试方法,能初步设计和应用这些 电路。 2.熟悉并掌握基本实验设备、测试仪器的性能及使用方法。 3.能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题。 4.能够综合实验数据、解释实验现象,编写实验报告。 二、实验前的准备 实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至有可能损坏实验装置。因此,实验前应做到: 1、复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识。 2、阅读本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;明确实验过程中应注意的问题。 3、写出预习报告,其中应包括实验系统的详细接线图、实验步骤、数据记录表格等。 三、实验实施 在完成理论学习、实验预习等环节后,就进入实验实施阶段。实验时要做到以下几点: 1、实验开始前,指导教师要对学生的预习报告作检查,要求学生了解本次实验的目的、内容和方法,只有满足此要求后,方能允许实验。 2、指导教师对实验装置作介绍,要求学生熟悉本次实验使用的实验设备、仪器,明确这些设备的功能与使用方法。 3、按实验小组进行实验,实验小组成员应进行明确的分工,以保证实验操作协调,记录数据准确可靠,每个人的任务应在实验进行中实行轮换,以便实验参加者能全面掌握实验技术,提高动手能力。 4、按预习报告上的实验系统详细线路图进行接线,一般情况下,接线次序为先主电路、后控制电路;先串联,后并联。 5、完成实验系统接线后,必须进行自查。串联回路从电源的一端出发,按回路逐项检查各仪器、设备、负载的位置、极性等是否正确;并联支路则检查其两端的连接点是否在指定的位置。距离较远的两连接端必须选用长导线直接跨接,不得用两根导线在实验装置上的某接线端进行过渡连接。 6、实验时,应按实验教材所提出的要求及步骤,逐项进行实验和操作。测试记录点的分布应均匀;改接

高密度电法实验报告

电法勘探实验 1 实验题目: 已知地下异常体的走向和大概的深度,判断异常体的具体位置,电阻性质。 2 实验所用设备: 高密度电法仪一台; 设备电源一台; 电法信号专用电缆7根; 电极57根; 笔记本电脑一台; 图1 电法实验的参数设置 3 实验方案 将56个电极垂直异常体走向布设,电极距为0.5米。另将一个电极接在仪器上作为接地电阻。先测量接地电阻,无异常后,进行视电阻率的测量,仪器工作完毕,测量结束。由于时间限制,未进行第二条测线的布设及测量。 测线排列的位置坐标(RTK测量): 起点(第1个电极的位置):X=4003159.244 Y=544036.212 H=64.806 中间点(第28个电极的位置):X=4002171.428 Y=544041.923 H=64.587 终点(第56个电极的位置):X=4003184.042 Y=544047.734 H=64.806

4 实验分析: 实验过程中,按垂直于异常体的走向方向布线。由于埋藏深度不超过10米。所以我们将电极距设置为0.5米,56个电极距可以测量18层。这样可以测量出地下9米之内的视电阻率情况。 首先,我们对起伏较大的坏点进行了剔除。 图2 注:图中红色的点为坏点,予以去除。 然后将除去坏点的数据体进行反演,结果如下: 图3 反演后所得的参数

我们挑选出迭代次数为1和4的两幅图,也就是均方根误差最大和最小的两幅图进行对比。 图4 迭代一次后所得的图像

图5:迭代四次后所得的图像 5 实验结论 从图4和图5均可看出,在距离原点16米到20米地区域,深度1到4米之间出现蓝色低阻区域,所以推测在17米到18米范围内,深度1.59米到2米之间,有低阻异常体的存在。推测可能是铺设的供水或供暖管道。

成都理工大学电力系统分析实验报告

电力系统分析实验报告 学院:核技术与自动化工程学院 专业:电气工程及其自动化 姓名: 学号: 班级: 指导教师:顾民 日期:2014年12月15日

实验一 MATPOWER软件在电力系统潮流计算中的应用实例 一、仿真系统基本介绍: MATLAB在电力系统建模和仿真的应用主要由电力系统仿真模块(Power System Block set简称PSB)来完成。Power System Block是由TEQSIM公司和魁北克水电站开发的。PSB是在SIMULINK环境下使用的模块,采用变步长积分法,可以对非线性、刚性和非连续系统进行精确的仿真,并精确地检测出断点和开关发生时刻。PSB程序库涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本元件和系统仿真模型。通过PSB可以迅速建立模型,并立即仿真。PSB程序块程序库中的测量程序和控制源起到电信号与SIMULINK程序之间连接作用。PSB程序库含有代表电力网络中一般部件和设备的SIMULINK程序块,通过PSB可以迅速建立模型,并立即仿真。 1、字段base MV A是一个标量,用来设置基准容量,如100MV A。 2、字段bus是一个矩阵,用来设置电网中各母线参数。 ①bus_i用来设置母线编号(正整数)。 ②type用来设置母线类型, 1为PQ节点母线, 2为PV节点母线, 3为平衡(参考)节点母线,4为孤立节点母线。 ③Pd和QD用来设置母线注入负荷的有功功率和无功功率。 ④Gs、Bs用来设置与母线并联电导和电纳。 ⑤base KV用来设置该母线基准电压。 ⑥VM和Va用来设置母线电压的幅值、相位初值。 ⑦V max和V min用来设置工作时母线最高、最低电压幅值。 ⑧area和zone用来设置电网断面号和分区号,一般都设置为1,前者可设置范围为1~100,后者可设置范围为1~999。 3、字段gen为一个矩阵,用来设置接入电网中的发电机(电源)参数。 ①bus用来设置接入发电机(电源)的母线编号。 ②Pg和Qg用来设置接入发电机(电源)的有功功率和无功功率。 ③P max和P min用来设置接入发电机(电源)的有功功率最大、最小允许值。 ④Q max和Q min用来设置接入发电机(电源)的无功功率最大、最小允许值。 ⑤VG用来设置接入发电机(电源)的工作电压。 1.发电机模型 2.变压器模型 3.线路模型 4.负荷模型 5.母线模型 二、电力系统模型: 电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路、动力系统、电力系统和电力网简单示意如图

变压器油实验报告

绝缘油质试验报告 试验单位郝滩变试验原因送检委托日期2015年10月30日 名称项目330kV主变(#3主变) 杂质无 游离碳无 水份mg/L 9.2 酸价KOH毫克/克油0.008 水溶性酸PH 5.4 闪点℃148 介损tg?20℃ 90℃ 1.22% 击穿电压(kV) I 69 II 68 III 70 IV 69 V 68 VI 69 平均68.8 结论合格 审核:秦勤试验:江涛

充油电器设备油中溶解气体色谱分析报告 委托单位郝滩变分析原因送检取样日期2015年10月30日样品说明分析日期2015年10月30日 项目 分析结果ul/l 设备名称330kV主变(#3主变) 氢H20 氧O2/ 一氧化碳CO 2 二氧化碳CO2141 甲烷CH40.56 乙烷C2H60 乙烯C2H40 丙烷C3H8/ 乙炔C2H20 丙烯C3H6/ 总烃(C1+C2) 0.56 结论正常 备注 审核:秦勤试验:江涛

绝缘油质试验报告 试验单位郝滩变试验原因送检委托日期2015年12月19日 名称项目330kV主变 (#2主变试验后) 330kV主变 (#3主变试验后) 杂质无无 游离碳无无 水份mg/L 9.1 9.2 酸价KOH毫克/克油0.008 0.008 水溶性酸PH 5.4 5.4 闪点℃148 147 介损tg?20℃ 90℃ 1.21% 1.20% 击穿电压(kV) I 70 68 II 67 69 III 70 70 IV 69 68 V 71 70 VI 69 69 平均69.3 69 结论合格合格 审核:秦勤试验:江涛

充油电器设备油中溶解气体色谱分析报告 委托单位郝滩变分析原因送检取样日期2015年12月18日样品说明分析日期2015年12月18日 项目 分析结果ul/l 设备名称 330kV主变 (#2主变试验后) 330kV主变 (#3主变试验后) 氢H20 0 氧O2/ / 一氧化碳CO 2 2 二氧化碳CO2139 142 甲烷CH40.54 0.56 乙烷C2H60 0 乙烯C2H40 0 丙烷C3H8/ / 乙炔C2H20 0 丙烯C3H6/ / 总烃(C1+C2) 0.54 0.56 结论正常正常 备注 审核:秦勤试验:江涛

接地电阻测试报告

接地电阻测量结果分析 曾宪奎 摘要:本文通过对乌江渡发电厂接地网改造前、后工频接地电阻测量结果分析比较,阐述了地处高土壤电阻率的水电厂,充分利用水库中水位相对稳定,水深有一定的保证和水具有良好的导电性能以及弱腐蚀等特点,敷设水下接地网,增大接地网的散流面积。将工频接地电阻降低到0.3064~0.3281Ω,满足设计值≤0.35Ω,保证安全生产,达到接地网改造的目的。 关键词: 地网构成; 接地电阻测量; 比较与分析 1 概述 乌江渡发电厂位于乌江峡谷石灰岩和页岩高电阻率地区,分为一厂和二厂,一厂增容后装机容量3×250MW, 220kV GIS出线4回架空线路,110kV出线6回架空线路。二厂装机容量2×250MW,220kVGIS出线3回架空线路。一厂和二厂分别接入系统运行,共用一个接地网。1980年设计计算的单相接地短路电流为12200A,接地电阻设计值为0.5Ω,计算值为0.325Ω。五台机组分别于1979、1981、1982、2003年并网发电,老接地网已运行近23年。通过近几年对乌江渡发电厂工频接地电阻的监测发现,地网接地电阻有逐年上升的趋势,为保证扩建后若最大单相短路电流上升,不影响电气主设备的安全稳定运行,2004年我们敷设了水库接地网,同时对两厂接地网进行了有效连接,从而使工频接地电阻和接地电位分布得到有效的改善,满足了安全运行要求。 2 接地网构成 2.1 乌江渡发电厂接地网构成如图1所示,主要由三部分组成: 2.1.1 一厂接地网 2.1.2 二厂接地网 2.1.3 水库接地网

2.2 一厂、二厂接地网主要由自然接地体和大坝迎水面敷设的人工接地体构成。水库接地网采用120mm2镀锌钢绞线在距大坝约400m处的水库内敷设一个面积约20万㎡的水下接地网。然后用三根120mm2铜绞线引出后分别与一厂、二厂接地网相连接。 3 工频接地电阻测量 3.1 测量依据 根据《接地装置工频特性参数的测量导则》(DL-475-92)、《水力发电厂接地设计技术导则》(DL/T-5091-1999)以及《接地系统的土壤电阻率、接地阻抗和地面电位测量导则》(GB/T17949-2000)。 3.2 “参考原点”的确定 如何确定测量间距的参考原点,即电流极和电压极距离从地网的那一点算起是接地测量布线合理与否的第一个问题。但对于大型水电站来说,由于水工枢纽布置范围很大,地网边缘就很难确定。根据国家标准《接地系统的土壤电阻率、接地阻抗和地面电位测量导则》的要求,宜确定“电气中心”。 由乌江渡发电厂接地网(见图1)构成可知,主要由一厂、二厂接地网以及水库接地网构成。 假设: R 1------一厂接地电阻 I 1 -------流入一厂地网电流 R 2------二厂接地电阻 I 2 -------流入二厂地网电流 R 3------水库接地电阻 I 3 -------流入水库地网电流 R ij ------三个地网间互电阻 则有: U 1=I 1 R 1 +I 2 R 12 +I 3 R 13 U 2=I 1 R 12 +I 2 R 2 +I 3 R 23 U 3=I 1 R 13 +I 2 R 23 +I 3 R 3 又设地网近似为等电位则: U=U 1=U 2 =U 3 I=I 1+ +I 2 +I 3 由于 U=IR 则: I=R-1U 将接地电阻测量值R 1=0.47Ω、R 2 =0.831Ω、R 3 =0.514Ω(理论值) 代入后得到: R 12=0.17Ω、R 13 =0.127Ω、R 13 =0.16Ω 通过计算可知,各个接地网电流占总电流的百分数分别为: 一厂地网入地电流I 1 占总电流的百分数为43.41%; 二厂地网入地电流I 2 占总电流的百分数为17.76%; 水库地网入地电流I 3 占总电流的百分数为 38.83%。 由此可以看出,乌江渡发电厂地网“电气中心”近似在一厂接地网和水库接地网几何中心连线上,且偏于一厂地网一侧。因此,我们将工频接地电阻测量参考原点选择在大坝顶的一点。至于参考原点的定位问题相对于电流极距离3000m而言影响也就很小了。 3.3 接地电阻测量电流极距离 乌江渡发电厂全厂接地网总面积约50万㎡,等值半径约为800m。与电流极距离3000m之比为3.75D。而地网最大长度约为1250m,与电流极距离3000m之比为2.4D。基本满足水电站接地

南昌大学电力系统分析实验报告..

南昌大学实验报告 实验类型:□验证□综合□设计□创新实验日期:实验成绩:一、实验项目名称 电力网数学模型模拟实验 二、实验目的与要求: 本实验通过对电力网数学模型形成的计算机程序的编制与调试,获得形成电力网数学模型:节点导纳矩阵的计算机程序,使数学模型能够由计算机自行形成,即根据已知的电力网的接线图及各支路参数由计算程序运行形成该电力网的节点导纳矩阵。通过实验教学加深学生对电力网数学模型概念的理解,学会运用数学知识建立电力系统的数学模型,掌握数学模型的形成过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。 三、主要仪器设备及耗材 计算机、软件(已安装,包括各类编程软件C语言、C++、VB、VC等、应用软件MATLAB等)、移动存储设备(学生自备,软盘、U盘等) 四、实验步骤 1、将事先编制好的形成电力网数学模型的计算程序原代码由自备移动存储设备导入计算机。 (1)编程思想 I 无变压器支路的节点导纳矩阵计算方法。 以下语句用于输入题目已知节点之间的导纳和阻抗值: z=input('请输入由节点号对应的阻抗形成的矩阵:z='); y=input('请输入由节点号对应导纳形成的矩阵:y='); %其中,即为i节点对地导纳,两节点之间无直接相连的通路则输入为0,输入为inf(即无穷大),也输入为inf。

以下语句用于计算无变压器支路的节点导纳矩阵:for(i=1:n) for(j=1:n) Y(i,i)=sum(y(i,:),2)+sum(1./z(i,:),2); if j==i Y(i,j)=Y(i,i); else Y(i,j)=-1/z(i,j); end end end %其中,对角线元素 = +=+ 非对角线元素 II变压器支路的等值电路 1:k 当节点a,b间接有变压器支路时(见图 1),当然可以用∏型等值电路,然后按照 上述原则形成导纳矩阵。但在实际应用程 序中,往往直接计算变压器支路对导纳矩 阵的影响。根据图1-5-1可以写出节点a,b 的自导纳和节点间的互导纳增量分别如 下: 节点a的自导纳改变量式(I-1): 图1 变压器支路的∏型等值电路 kz k*kz/(1-k) kz/(k-1) j j i z i

相关文档