文档库 最新最全的文档下载
当前位置:文档库 › 船体密性试验

船体密性试验

船体密性试验
船体密性试验

船体密性试验

1.密性试验时,焊缝区域应保持清洁和干燥,若外界气温低于0℃,应采取防冻措施;灌水或充气试验时,相邻的舱室应间隔或交叉地进行,以便检查所有水密部位。

2.若检查处所由于构架过密、空间狭窄,不便于进行检查时,则不应采用充气试验,而宜用灌水试验。

3.采用充气试验时,应在每个需试验的舱室外,设2只压力表和1只安全阀,压力表量程应不大于0.1 MPa(1 kgf/cm2)。

4.船体密性试验按规定试验后,船体结构无变形、焊缝无渗漏现象即为合格。

5.如试验时发现微量渗漏,经验船师同意,修复后可用涂煤油试验方法复试;如缺陷严重或范围较大,修复后应用同样方法复试。

6.密性试验方法按表1和表2的规定。

7.船体各部位的密性试验,应根据船体结构强度及对密性的不同要求,按表3.4.2.7的规定,分别采用灌水、冲水、淋水、充气、涂煤油等方法进行。

8.灌水试验可用充气试验代替。冲水试验可用涂煤油试验代替。表3-4所列灌水试验(除液体舱、海底阀箱外),在保证焊缝清洁且易于检查的情况下亦可用涂煤油试验代替。

表1

表2

船舶操纵性总结

2010年度操纵性总结 1.船舶操纵性含义 船舶操纵性是指船舶借助其控制装置来改变或保持其运动速率、姿态和方向的性能。 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3. 4.分析操舵后船舶在水平面运动特点。 船的重心G做变速曲线运动,同时船又绕重心G做变角速度转动,船的纵中剖面与航速之间有漂角。 5.漂角β的特性(随时间和沿船长的变化)。 船长:船尾处的速度和漂角为最大,向船首逐渐减小,至枢心P点处速度为最小且漂角减小至零,再向首则漂角和速度又逐渐增大,但漂角变为负值。 6. 7.作用在在船上的水动力是如何划分的。 船在实际流体中作非定常运动时所受的水动力,分为由于惯性引起的惯性类水动力和由于粘性引起的非惯性类水动力两类来考虑,并

忽略其相互影响。 8. 9.线性水动力导数的物理意义和几何意义。 物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它运动参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 位置导数:(Yv,Nv)船以u和v做直线运动,有一漂角-β,船首部和尾部所受横向力方向相同,都是负的,所以合力Yv是较大的负值。而首尾部产生的横向力对z轴的力矩方向相反,由于粘性的影响,使尾部的横向力减小,所以Nv为不大的负值。所以,Yv<0, Nv<0。 控制导数:(Yδ,Nδ)舵角δ左正右负。当δ>0时,Y(δ)>0,N(δ)<0。(Z轴向下为正)所以Yδ>0,Nδ<0。 旋转导数:(Yr,Nr) 总横向力Yr数值很小,方向不定。Nr数值较大,方向为阻止船舶转动。所以,Nr<0。 11. 12. 13. 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 在操舵不是很频繁的情况下,船舶的首摇响应线性方程式可近似

船体密性试验图设计规范

船体密性试验图设计规范 前言 1 范围 本规范规定了船体密性试验的设计依据、设计准则、设计内容和方法。 本规范适用于各类新建民用船舶的船体密性试验的设计。水面舰艇和修船可参照使用。 2 规范性引用文件 CCS《钢质海船入级与建造规范》2001版(第1分册) 3 定义和符号 下列定义和符号适用于本规范。 3.1定义 3.1.1充气试验 向密闭舱柜内注入压缩空气,并达到规定的压力和持续的时间后,通过向被检验的焊缝表面喷涂检验液(如用肥皂溶液时,在00C以下应加热),检查焊缝渗透情况。 相邻舱室不得同时作充气试验。 3.1.2压水试验 向密闭舱柜内注入淡水,达到规定的水位和持续的时间后,检查焊缝渗漏和结构变形情况。 3.1.3压水强度试验 向货舱、压载舱、深油舱等大型舱室注入淡水或海水,达到规定的水位,检查舱室结构的变形情况。该试验一般在下水后进行。 3.1.4灌水试验 向敞开的舱室区域灌水至门槛高度,检查焊缝渗透情况。 3.1.5压水、充气混合试验 向密闭的舱柜内灌水至人孔盖下缘,然后再注入压缩空气,检查焊缝渗透情况。

3.1.6冲水试验 用规定尺寸的喷嘴和一定压力的清洁水,按要求喷射被检验的焊缝,在另一侧检查焊缝的渗透情况。 3.1.7抽真空试验 在被检验的焊缝上喷涂检验液(如用肥皂溶液时,00C以下应加热),将真空盒覆盖在焊缝上,通过高速气流形成真空,检验焊缝渗透情况。 3.1.8涂煤油试验 在被检验的焊缝上先涂上白垩粉溶液,干燥后,在焊缝背面涂上适量的煤油。利用煤油的渗透力,通过观察白垩粉上是否产生煤油斑迹,检查焊缝的渗漏情况。 该试验方法一般适用于5000吨级以下中小型船舶。 3.2试验符号 A——充气试验 W——压水试验 S——压水强度试验 F——灌水试验 W+A——压水、充气混合试验 H——冲水试验 V——抽真空试验 K——涂煤油试验 4 设计依据 a)总布置图; b)船体分段划分图; c)船舶建造说明书; d)舱容图; e)有关国际公约、规则及船级社规范。 5 设计准则 5.1对所有有密性要求的船体舱室和舱柜结构都应设计经济、有效的试验方法。 5.2采用的试验方法应满足有关公约、规则、船级社规范的要求,并符合公司的施工工艺。

第六节 船舶密性试验

第六节船体密性试验 一、密性试验要求 (一)概述 检查船体外板及有密性要求的舱室的焊缝是否存在泄漏、渗漏情况的试验称为船体密性试验。 密性试验的传统方法是用灌水法。根据不同的部位,造船规范要求将水灌至规定的高度,使船体结构和焊缝处于一定的受压状态,然后,检查有关结构和焊缝,不应有变形和渗漏现象。由于它是属于实效性试验,且检查渗漏效应一目了然,在对舱室作密性试验的同时,又起到了强度试验的效果,因此历来为船检部门所接受。但是水压试验虽然可靠,验收又方便,但船厂在执行中困难不少,首先,舱室注水后,船体负荷增加,需要增加墩木的数量,尤其是油轮,舱容大,更难实施;第二,相领舱室要交叉注水,而每次注满舱与排水要化很的时间,增加船台建造周期;第三,江湖或海水排水后,清扫积存淤泥的人工多,而改用自来水成本又太高,舱室骨架经注水后,在死角与间隙中留有难以揩干的积水,会增加锈蚀;其次,舱室注水后若发现严重的渗漏缺陷,按补焊要求必须排水修补,重复注水致使试验时间更长。 为此,造船规范允许水压试验可以用充气试验代替,但由于充气试验无法兼作强度试验,故规范规定:“对于全部液舱均采用充气试验的船舶,在完成充气试验后,至少应对每种结构型式的液舱中的一个作水压试验。但对干货船中标准高度的双层底舱和液货船中远离货舱区域的液舱,如验船师对充气试验结果感到满意,可免作水压试验”。“当在船台上或干坞内进行水压试验有困难时,水压试验可在船舶下水后进行,但对船体的水下部分以及下水后无法检查的部位,应在下水前用适宜的方法进行检查,并使验船师满意”。船厂在建造批量船舶的首制船时,应执行此规定。然而,多年来的造船实践表明,对于按规范进行结构设计的船体强度是足够的,技术部门应征得验船师同意,可减少液舱水压试验的数量。 (二)船检规范的密性试验要求 按中国船级社的《钢质海船入级与建造规范》规定的船体密性试验部位和试验压头要求,见表3-31。 表3-31 船体密性试验部位与试验压头要求

船舶耐波性总结2

船舶耐波性总结 第一章耐波性概述 一、海浪的描述、、。 船舶耐波性是船舶在波浪中运动特性的统称,它包括船舶在波浪中所产生的各种摇荡运动以及由这些运动引起的抨击、飞溅、上浪、失速、螺旋桨飞车和波浪弯矩变化等性能,直接影响船舶在风浪作用下维持正常功能的能力。 二、6个自由度的摇荡运动 船舶任意时刻的运动可以分解为在Oxyz坐标系内船舶中心G沿三个坐标轴的直线运动及船体绕三个坐标轴的转动。而这些运动中又有直线运动和往复运动 垂荡对船舶航行影响最大,是研究船舶摇荡运动的主要内容。船舶摇荡是指船舶在风浪作用下产生的摇荡运动,他们的共同特点是在平衡位置附近做周期性的震荡作用。产生何种摇荡运动形式取决于船首方向与风浪船舶方向之间的夹角,称为遭遇浪向。 三、动力响应 船舶耐波性是船舶在风浪中性能的总的反应,它主要包括船舶摇荡、砰击、上浪、失速、螺旋桨飞车。 剧烈的横摇、纵摇和垂荡对船舶产生一系列有害的影响,甚至引起惨重后果,主要表现在以下三个方面: 1)、对适居性的影响; 2)、对航行使用性的影响; 3)、对安全性的影响; 船舶在风浪中产生摇荡运动时,船体本身具有角加速度和线加速度,因此属于非定常运动。 第二章海浪与统计分析 2-1 海浪概述 风浪的三要素:风速、风时、风区长度。 风浪要素定义:表观波长、表观波幅、表观周期。 充分发展海浪条件:应有足够的风时和风区长度。 海浪分类:风浪、涌浪、近岸浪。 风浪的要素表示方法:统计分析方法。

2-2规则波的特性 波面可以用简单的函数表达的波浪称为规则波。 A 0=cos kx -t ξξω() A k ξξω为波面升高,为波幅,为波数,为波浪圆频率。 在深水条件下,波长T c λ、周期和波速之间存在以下关系 : ≈ 2 =1.56T λ; c==1.25T λλ; 2= T πω; 2k=g ω 波浪中水质点的振荡,并没有使水质点向前移动,也没用质量传递。但是水 质点具有速度且有升高,因此波浪具有能量。余弦波单位波表面积的波浪所具有 的能量2A 1E=g 2 ρξ 2-3不规则波理论基础 一、不规则波的基本概念 1、确定性关系和统计关系 我们所讨论的不规则波引起的船舶摇荡运动等都是属于统计规律范畴之内的。 2、不规则波叠加原理 为了便于问题的讨论,我们假定不规则波是由许多不同波长、不同波幅和随机相位的单元波叠加而成的。考虑到不规则波的随机性,不规则波的波面升高方程为: An n 0n n n=1=cos k x -t+ξξωε∞ ∑() 随机相位n ε可以取0到2π间的任意值。 二、随机过程 1、随机过程 每一个浪高仪的记录代表一个以时间为变量的随机过程t ξ(),它是许多记录中的一个“现实”。所有浪高仪记录的总体表征了整个海区波浪随时间的变化,称为 “样集”。 2平稳随机过程 1)考虑时间12t=t t=t 、等处的统计特性,称为横截样集的统计特性。 2)考虑随时间变化的统计特性,称为沿着样集的统计特性。 3、各态历经性 对于平稳随机过程,当样集中每一个现实求得的统计特性都是相等的,而且样集在任一瞬时的所有统计特性等于在足够长时间间隔内单一现实的所有统计特性,满足这样条件的平稳随机过程称为具有各态历经性。 三、随机过程中的概率分布 1、随机性的数字特征

船舶操纵性与耐波性总结

船舶操纵性:是指船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变其航速、航向和位置的能力。航向稳定性:表示船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后能保持其原有平衡状态的性能。 回转性:表示船舶在一定舵角作用下作圆弧运动的性能。转首性:表示船舶应舵转首并迅速进入新的稳定状态的性能. 运动稳定性与机动性制约:小舵角下的航向保持性 、中舵角下的航向机动性 、大舵角下的紧急规避性 固定与运动坐标系的关系: 漂角:速度V 与OX 轴正方向的夹角β。舵角:舵与OX 轴之间的夹角δ。舵速角:重心瞬时速度矢量与O 0X 0轴之间的夹角ψ0。 线性水动力导数意义:船舶作匀速直线运动,在其他参数不变时,改变某一运动参数所引起的作用于船舶的水动力或矩对该参数的变化率。水动力导数:Xu= Yu= 通常可称对线速度分量u 的导数为线性速度导数.如:Xu 等。对横向速度分量v 的导数为位置导数,如:Yv 、Nv 等。对回转角速度r 的导数为旋转导数,如:Nr 、Yr 等。对各加速度分量和角加速度分量的导数为加速度导数Xu 。 ,对舵角δ的导数为控制导数,如:Y δ等。 稳定性:对处于定常运动状态的物体(或系统),若受到极小的外界干扰作用而偏离原定常运动状态;当干扰去除后,经过一定的过渡过程,看是否具有回复到原定常运动状态的能力。若能回复,则称原运动状态是稳定的。直线稳定性:船舶受到瞬时扰动以后,重心轨迹最终恢复成为一条直线,但航向发生了变化。方向稳定性:船舶受到的瞬时扰动消失以后,重心轨迹最终成为原航线平行的另一直线。位置稳定性:船舶受到瞬时扰动,当扰动消失以后,重心轨迹最终恢复成为与原来航线的延长线。 稳定衡准数:C=-Y V (mx G u 1-N r )+N V (mu 1-Y r );C>0 表示船舶在水平面的运动具有直线稳定性;C<0 则不具有直线稳定性。 影响航向稳定性的因素:(1)为改善其航向稳定性,应使Nr 、Yv 二者的负值增加,从C 的表达式可见,此二者之乘积的正值就越大,显然有利于改善稳定性。(2) Nv 对稳定性的影响较大。只要Nv 为正值,船舶就能保证航向稳定性 (3)若沿船纵向设置升力面(如鳍、舵等能产生升力的物体),则将其加在首或尾部都能使Nr 的负值增加,但若加在首部会使Nv 增加负值,而加在尾部会使Nv 变正,故升力面设置在尾部可使Nr 负值增加的同时又使Nv 值变正,故对航向稳定性的贡献比设置在首部要大。与几何形体的关系:增加船长可使Nr 负值增加,增加船舶纵中剖面的侧面积可使Nr 、Yv 的负值增加,增加Nv 的有效方法是,增加纵中剖面尾部侧面积,可采用增大呆木,安装尾鳍,使船产生尾倾等。 船舶回转性各参数:反横距:从船舶初始的直线航线至回转运动轨迹向反方向最大偏离处的距离为S1。正横距:从船舶初始直航线至船首转向90°时,船舶重心所在位置之间的距离为S2。该值越小,则回转性就越好。纵距:从转舵开始时刻船舶重心G 点所在的位置,至船首转向90°时船舶纵中剖面,沿原航行方向计量的距离S3。其值越大,表示船舶对初始时刻的操舵反应越迟钝战术直径:从船舶原来航线至船首转向180°时,船纵中剖面所在位置之间的距离DT 。其值越小,则回转性越好。定常回转直径:定常回转阶段船舶重心点圆形轨迹的直径D 进程R ′:自执行操舵点起至回转圈中心的纵向距离;R′=S3-D/2;它表示船舶对舵作用的应答性,R′越小则应答性越好 回转过程的三个阶段: 转舵阶段:指从开始转舵到舵转至规定角度δ0为止。运动特点:V 。 ≠0 ,r 。≠0 ,v=r=0;过渡阶段:指从转舵结束起到船舶进入定长回转运动为止。运动特点:V 。 、r 。 、V 、r 都不为零且随时间发生变化。 定长回转阶段:当作用于船体的力和力矩相平衡时,船舶就以一定的侧向速度V 和回转角速 度r 绕固定点作定长圆周运动。特点:V 。=r 。 =0,v 、r 为常数。 枢心点P :船舶回转过程中,在船上还存在一个横向速度分量为零的点,称为枢心点p 。枢心点是船舶纵中线上唯一的漂角为零的点;枢心点仅仅是因为船舶转向而存在的;船舶加速时,枢心点会向船舶运动的方向移动 。反操现象:是船舶不具有直线稳定性的一种特征,回转性与稳定性相矛盾。回转衡倾的原因:船舶回转过程中,船体上承受的侧向力其作用点高度各不相同,于是形成对ox 轴的倾侧力矩,产生回转横倾。 野本模型:T r 。+r 。 =K δ 其中 K 、T 为操纵性指数。用参数K 评估回转能力。大K 意味着回转性能好。用参数T 评估直线运动稳定性、初始回转能力和航线改变能力。小T 意味着好的直线运动稳定性、初始回转能力和航线改变能力。K= T= 希望船舶有大K 、小T (但相互矛盾)。T 的单位是S ,K 的单位是S -1 转首性指数p :表示操舵后,船舶行驶一倍船长时,由单位舵角引起的首相角改变量。 诺宾指数:若平>0.3则转首性满足要求。与船体惯性 回转阻尼 舵的回转力矩相关。 操纵性试验:分为模型试验和实船试验两种,模型试验又可分为自由自航模操纵性试验和约束模操纵性试验两种。船舶固有操纵性的试验方法:回转试验、回舵试验、零速启动回转试验、Z 试验、螺线与逆螺线试验、航向改变试验、制动试验和侧向推进装置试验。 回转试验: 1首先在预定的航线上保持船舶直航和稳定航速。 2在开始回转前约一个船长的航程范围内,测量船舶的初始参数,如:航速u 、初始航向角、初始舵角、螺旋桨的初始转速n 0等。 3以尽可能大的转舵速度将舵操至规定舵角δ0并把定舵轮。随后开始测量船舶运动参数随时间的变化,包括船舶的轨迹、航速、横倾角及螺旋桨的转速等。 4待首向角改变540°时,即可结束试验。 螺线试验:评价船舶的直线稳定性,在直航中给船舶以扰动,通过观察扰动去掉后船舶是否能够恢复直航来测定直线稳定性。 1.首先在预定航线上保持匀速直航,并在操舵前测出初始航速、舵角及螺旋桨转速。 2. 执行操舵,以尽可能快的速度将舵转至一舷规定的舵角(如右舷15°) 并保持舵角不变,使船进入回转运动,待回转角速度r 达到稳定值时,记录下r 和相应的舵角δ值。 3. 改变舵角值重复以上过程,测出定常r 值及相应δ值。舵角从右舷15°开始,并按下列次序改变:右15°→右10°→右5°→右3°→右1°→ 0°→左1°→左3°- 左5°→左10°→左15° Z 形操舵试验:测定船舶操舵响应的一种操纵性试验法。进行Z 形试验时,先使船以规定航速保持匀速直航,然后将舵转至右舷规定的舵角(如右舷10°) ,并保持之,则船即向右转向,当首向角达到某一规定的舵角值时(如右舷10°) 立即将舵向左转至与右舵角相等的左舵角(左舷10°) ,并保持之。当反向操舵后,船仍朝原方向继续转向,但向右转首角速度不断减小,直至消失。然后船舶应舵地再向左转向,当左转首向角与舵角值相同时,再向右操舵至前述之右舵角。该过程如此继续,到完成五次操舵为止。 航向改变试验是研究船舶在中等舵角时的转向性能的一种较简易而实用的试验方法。 回舵试验是船舶航向稳定性的定义试验。该试验方法实质为回转试验(或螺线试验)的延续 操纵性船模试验中必须满足的相似条件:1使自航船模与实船保持几何形状相似;2通常保持无因次速度、加速度参数相等,即u/V 、v/V 、rL/V 等相等;3在水动力相似方面,只满足傅汝德数Fn 相等,保证二者重力相似。 实际进行自航模试验时保持:船体几何形状相似;质量、重心位置及惯性矩相似;在决定模型尺度时要考虑临界雷诺数的要求;选择航速时满足傅汝德数相等;机动中保持舵角相等。 船舶固有操纵性指标:直接的判据:它是由自由自航试验直接测定的参数;间接的判据:如野本的K 、T 指数,诺宾的P 指数 操纵性衡准:1回转能力,由回转试验确定。船舶以左(右)350 舵角回转时,回转圈的纵距应

船体密性试验图设计规范

船体密性试验图设计规范 1 范围 本规范规定了船体密性试验的设计依据、设计准则、设计内容和方法。 本规范适用于各类新建民用船舶的船体密性试验的设计。水面舰艇和修船可参照使用。 2 规范性引用文件 CCS《钢质海船入级与建造规范》2001版(第1分册) 3 定义和符号 下列定义和符号适用于本规范。 3.1定义 3.1.1充气试验 向密闭舱柜内注入压缩空气,并达到规定的压力和持续的时间后,通过向被检验的焊缝表面喷涂检验液(如用肥皂溶液时,在00C以下应加热),检查焊缝渗透情况。 相邻舱室不得同时作充气试验。 3.1.2压水试验 向密闭舱柜内注入淡水,达到规定的水位和持续的时间后,检查焊缝渗漏和结构变形情况。 3.1.3压水强度试验 向货舱、压载舱、深油舱等大型舱室注入淡水或海水,达到规定的水位,检查舱室结构的变形情况。该试验一般在下水后进行。 3.1.4灌水试验 向敞开的舱室区域灌水至门槛高度,检查焊缝渗透情况。 3.1.5压水、充气混合试验 向密闭的舱柜内灌水至人孔盖下缘,然后再注入压缩空气,检查焊缝渗透情况。 3.1.6冲水试验

用规定尺寸的喷嘴和一定压力的清洁水,按要求喷射被检验的焊缝,在另一侧检查焊缝的渗透情况。 3.1.7抽真空试验 在被检验的焊缝上喷涂检验液(如用肥皂溶液时,00C以下应加热),将真空盒覆盖在焊缝上,通过高速气流形成真空,检验焊缝渗透情况。 3.1.8涂煤油试验 在被检验的焊缝上先涂上白垩粉溶液,干燥后,在焊缝背面涂上适量的煤油。利用煤油的渗透力,通过观察白垩粉上是否产生煤油斑迹,检查焊缝的渗漏情况。 该试验方法一般适用于5000吨级以下中小型船舶。 3.2试验符号 A——充气试验 W——压水试验 S——压水强度试验 F——灌水试验 W+A——压水、充气混合试验 H——冲水试验 V——抽真空试验 K——涂煤油试验 4 设计依据 a)总布置图; b)船体分段划分图; c)船舶建造说明书; d)舱容图; e)有关国际公约、规则及船级社规范。 5 设计准则 5.1对所有有密性要求的船体舱室和舱柜结构都应设计经济、有效的试验方法。 5.2采用的试验方法应满足有关公约、规则、船级社规范的要求,并符合公司的施工工艺。 5.3采用的试验方法应具有可操作性。

船舶密性试验作业指导书

1目的 严格控制影响船体密性试验质量的各种因素及安全因素,保证船体密性试验质量。

2适用范围 本作业指导书适用于船体主要用作船体舱室密性试验的工艺指导。 3术语 -------- 4职责 严格按工艺要求对船体舱室进行密性试验及做好试验记录,对舱室的水密性负责。 5实施 5.1密性前必须熟悉图纸及工艺要求,选择合适的方法及参数,检查仪表是否正常,带齐必备的工具。 5.2密试前应了解密试舱及其相邻舱室的结构特点,有无油水污物,有关工序施工是否结束报验合格,对复杂、狭小舱室或局部区域应分阶段做密试。 5.3试验前应先检查受试的舱室的完工程度,完工内容包括以下几部分; 5.3.1结构的装配和焊接工作全部完成,焊缝已经检查合格,不合格的焊缝已经返修符合要求。 5.3.2舱内人孔盖座的安装完毕。 5.3.3舱内钢质直梯的安装完毕。 5.3.4舱口围板、支柱及水密舱口盖的安装完毕。 5.3.5伸入舱内的通风管主体的安装完毕。 5.3.6位于舱室密性构件上的属具、座架、管子法兰等的安装完毕。 5.3.7平台、甲板和舱壁上覆盖层紧固螺丝的安装完毕。 5.3.8火工矫正完毕。 5.3.9装配“马脚”的清除、焊补及打磨已完毕。 5.3.10若以上某项工作必须在密试后才能完成,则位于该部分的船体应按规定标准作补充试验。 5.4密试封舱前应了解舱内是否有人或火种,确保安全。 5.5密试部位的焊缝,应清除焊渣、油污、锈蚀等,并保持清洁。 5.6检漏必须仔细,用锤击法暴露泄漏点,注意堵漏孔有否遗漏。 5.7对压水试验应注意以下几个问题: 5.7.1灌水的舱室部位应视具体情况适当增加墩们和支撑,以防船体变形。

密性试验大纲

Page 1 of 1 上海华润大东船务工程有限公司 HUARUN DADONG DOCKYARD CO. , LTD. 驳船密性试验大纲 一、概述 本船密性试验按《Rules And Regulations For The Construction And Classification Of Inland Navigation Vessels》1984(3-6)中的有关要求进行。 二、试验要求 1、由于本船特殊性,密性试验分两步进行: 封盖内底板之前,外板对接焊缝、水密肋板角焊缝进行煤油涂检试验;内底板封盖后,根据船检及船东要求,船体首尾尖舱进行压水试验,其余舱室进行气压试验。 三、试验方法及步骤 密性试验前,船体各部位应清洁,焊缝应清除氧化皮和焊渣,不得对水密焊缝涂刷油漆。 1、煤油试验 1.1试验部位焊缝的检查面上,先涂上薄层白垩粉水溶液,其宽度不小于40~50mm。检漏工作应在白垩粉干燥后进行; 1.2 煤油试验持续时间,水平焊缝30min,垂直焊缝45min。 2、充气试验 2.1试验时,每个试验舱室安装压力表两只,表要经过检验。 2.2试验时,先将试验舱室内空气压力加到0.2bar,关闭进气阀保 持大约10到15分钟,经船东、船检检验后再将压力减到0.15 bar,关闭阀门开始用肥皂水做密性试验。 3、压水试验 3.1试验压力:水柱至空气管顶,至少高出舱壁甲板0.5m。 四、试验顺序 全船共分13个舱室,其中1、13号舱室为压水试验, 充气试验顺序为: 第一批:3、5、7、9、11号舱室; 第二批:2、4、6、8、10、12号舱室。 舱室编号如附图所示。

船舶耐波性能实验——阻尼系数测量

船舶耐波性能试验 —阻尼系数测量试验 学生姓名: 学号: 学院:船舶与建筑工程学院班级: 指导教师:

一、船模横摇试验的目的 上风浪中航行最易发生横摇,而且横摇的幅度较大,不仅影响船 员生活和工作的各个方面,严重的横摇还会危及船舶的安全乃至倾覆失事。因此,在有关耐波性的研究中,首先关注的是要求设计横摇性能优良的船舶。 由于船舶在波浪中横摇运动的复杂性,理论计算尚未达到可用于实际的程 度,因而模型试验是目前预报船舶横摇最可靠的方法。 本教学试验由下列两部分组成,即: 1.船模在静水中的横摇衰减试验,目的是确定船的固有周期以及作用在船 体上的水动力系数,如附连水惯性矩及阻尼系数等。据此可根据线性运动方程计算船舶在风浪中的横摇频率响应曲线。 2.船模在规则波中的横摇试验,目的是确定船的横摇频率响应函数,可用 于预报船舶在中等海况下的横摇统计特性,对于高海况的预报数值则偏高,这是由于非线性影响的缘故。 二.实验原理 通过《船舶原理》课程的学习,我们知道船舶的横摇运动方程可以表示为: 式中,表示横摇角、横摇角速度、横摇角加速度;Ixx’表示船 舶在水中的横摇惯性矩,等于船舶在空气中的横摇惯性矩Ixx 与船舶在水中的横摇附加惯性矩之和;N为阻尼力矩系数;D为排水重量;h为横稳性高度;αm0为有效波倾;ω为波浪圆频率。 引入横摇衰减系数γ和横摇固有(圆)频率ωФ ωФ2=Dh/Ixx’ 横摇运动方程可以写成: 静水中自由横摇 考虑船舶在初始时刻浮于静水面上,并伴有一个静横倾角φ0,但不受波浪的作用,该船舶随后将作自由横摇运动,其表达式可以写成 式中,无因次衰减系数μ和相位超前角β为

船舶操纵性与耐波性复习

漂角:船舶重心处速度与动坐标系中ox轴之间的夹角,速度方向顺时针到ox轴方向为正。首向角:船舶纵剖面与固定坐标系OX轴之间的夹角,OX到x轴顺时针为正 舵角:舵与动坐标系ox轴之间的夹角,偏向右舷为正 航速角:重心瞬时速度与固定坐标系OX轴的夹角,OX顺时针到速度方向为正 浪向角:波速与船速之间的夹角。 作用于船体的水动力、力矩将与其本身几何形状有关(L、m、I),与船体运动特性有关(u、v、r、n),也与流体本身特性有关(密度、粘性系数、g)。 对线速度分量u的导数为线性速度导数,对横向速度分量v的导数为位置导数,对回转角速度r的导数为旋转导数,对各角速度分量和角加速度分量的导数为加速度导数,对舵角的导数为控制导数。 直线稳定性:船舶受瞬时扰动后,最终能恢复指向航行状态,但是航向发生了变化; 方向稳定性:船舶受瞬时扰动后,新航线为与原航线平行的另一直线; 位置稳定性:船舶受瞬时扰动后,最终仍按原航线的延长线航行; 具备位置稳定性的必须具备直线和方向稳定性,具备方向稳定性的必定具有直线运动稳定性。 1.定常回转直径 2.战术直径 3.纵距 4.正横距 5.反横距 回转的三个阶段 一、转舵阶段二、过度阶段三、定常回转阶段 耦合特性:船舶在水平面内作回转运动时会同时产生横摇、纵摇、升沉等运动,以及由于回转过程中阻力增加引起的速降。以上所述可理解为回转运动的耦合,其中以回转横倾与速降最为明显。 Tr r Kδ += 回转性指数K是舵的转首力矩与阻尼力矩系数之比,表征船舶转首性, 应舵指T 是惯性力矩数系数与阻尼力矩系数之比, 由T=I/N可见:参数T是惯性力矩与阻尼力矩之比,T值越大,表示船舶惯性大而阻尼力矩小;反之,T值越小,表示船舶惯性小而阻尼力矩大。 由K=M/N可见:参数K是舵产生的回转力矩与阻尼力矩之比,K值越大,表示舵产生的回转力矩大而阻尼力矩小;反之,K值越小,表示舵产生的回转力矩小而阻尼力矩大。 K值越大,相应回转直径越小,回转性越好.T为小正值时,船舶具有良好的航向稳定性. K表示了回转性,T表示了应舵性和航向稳定性。舵角增加:K、T同时减小;吃水增加:K、T 同时增大;尾倾增加:K、T同时减小;水深变浅:K、T同时减小;船型越肥大:K、T 同时增大。 船舶操纵性设计的基本原则是:给定船的主尺度(即船的惯性),以提供必要和足够的流体动力阻尼及舵效,使之满足设计船舶所要求的回转性、航向稳定性和转首性。通常最常用的办法是改变舵面积,因为舵既有明显的航向稳定作用,又会产生回转力矩。

船舶操纵性总结

哈尔滨工程大学船舶操纵性总结 1.船舶操纵性含义:P1 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3.对于船舶的水平面运动,绘制固定坐标系和运动坐标系。 4.分析操舵后船舶在水平面运动特点。 5.漂角β的特性(随时间和沿船长的变化)。 6.坐标原点在船的重心处时,船舶的运动方程的推导。 7.作用在在船上的水动力是如何划分的。 8.粘性水动力方程线性展开式及无因次化。 9.线性水动力导数的物理意义和几何意义。

物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 11.船舶操纵水平面运动的线性方程组推导及无因次化。 12.写出MMG方程中非线性水动力的三种表达式。 13.首摇响应二阶线性K-T方程推导。 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 15.画图说明船舶在作直线航行时(舵角δ=0),若受到某种扰动后, 其重心运动轨迹的四种可能情况,并说明三种稳定性之间的关系。 16.影响稳定性的因素有哪些? 17.船舶回转过程的三个阶段及船舶在各个过程运动特点(速度、加 速度信息) 18.船舶回转运动主要特征参数。 19.影响定常回转直径的5个因素是什么? 20.推导船舶定常回转时横倾角的确定公式。 21.按照操舵规律由线性响应方程求解舶的回转角速度和艏向角。 22.如何获得船舶的水动力导数? 可以通过理论数值计算、经验公式估算和拘束模型的水动力试验三种方法来获得船舶的水动力导数。

船舶操纵专业英语

船舶操纵专业英语100个单词 1.船舶操纵ship handling 2.船舶操纵性能ship maneuverability 3.定常旋回steady turning . 4.进距advance 5.横距transfer 6.旋回初径tactical diameter 7.旋回直径final diameter 8.滞距reach 9.反移量kick 10.漂角drift angle 11.转心pivoting point 12.横倾list 13.方形系数block coefficient 14.舵面积比rudder area ratio 15.操纵性指数maneuverability indices 16.追随性指数turning lag index 17.旋回性指数turning ability index 18.新航向距distance to new course 19.静航向稳定性statical course stability 20.动航向稳定性dynamical course stability 21.船舶保向性course keeping ability 22.船舶惯性inertia effect 23.紧急停船距离crash stopping distance 24.最短停船距离shortest stopping distance 25.制动纵距head reach 26.制动横距lateral deviation 27.蛇航制动法zig zag stop manoeuvre 28.旋回试验turning test 29.螺旋试验spiral test 30.停船试验stopping test 31.操纵性试验manoeuvring test 32.正螺旋试验direct spiral test 33.逆螺旋试验reverse spiral test 34.固定螺距螺旋桨fixed pitch propeller 35.可变螺距螺旋桨controllable pitch propeller 36.阻力resistance 37.摩擦阻力frictional resistance 38.兴波阻力wave resistance 39.剩余阻力residual resistance 40.涡流阻力eddy-making resistance 41.污底阻力fouling resistance 42.附体阻力appendage resistance 43.空气阻力air resistance 44.汹涛阻力rough water resistance 45.推力thrust 46.吸入流suction current 47.排出流discharge current 48.转距torque 49.滑失slip 50.滑失比slip ratio 51.机器功率machinery horse power 52.收到功率delivered horse power 53.有效功率effective horse power 54.舵力rudder force 55.一字锚flying moor 56.伴流wake 57.舵效steerage 58.首缆head line 59.首横缆fore breast 60.首倒缆fore spring 61.尾缆stern line 62.尾横缆aft breast 63.尾倒缆aft spring 64.吊拖leading ahead 65.顶推pushing 66.傍拖towing alongside 67.尾找风stern to wind 68.受限水域confined water 69.浅水效应shallow water effect 70.岸壁效应bank effect 71.首下沉bow sinkage 72.尾下沉stern sinkage 73.岸吸suction 74.岸推repulsion 75.富余水深under keel clearance 76.船间效应interaction 77.海上船速sea speed 78.备车速度stand by speed 79.串视线transit line 80.墩底striking the bottom 81.单锚泊riding at single anchor 82.八字锚open mooring

玻璃钢渔船船体密性试验方法

玻璃钢渔船船体密性试验方法 SC/T8125-2003 2004-03-01 1.范围 本标准规定了以玻璃纤维为增强材料,以不饱和聚酯树脂,环氧树脂等合成树脂为基体材料,以手糊成型的玻璃钢渔船船体的密性试验方法。 本标准适用于玻璃钢渔船的密性试验。 2.试验条件 2.1 密性试验应在船体完工或试验部位成型,其表面的巴可儿(barcol)硬度值达到40以上方可进行。 2.2 密性试验应在常温下进行,若环境温度低于0℃时,则采取防冻措施。 2.3 密性试验前,位于试验部位密性构件上的放泄塞、人孔座板、各类座架、管子与电缆支架、管系通舱件、阀座等应安装完整,且验收合格。试验部位应清洁,不得涂敷油漆、水泥或其他影响试验的涂敷料 3.试验要求 3.1 冲水试验 3.1.1 下列部位应作冲水试验: a)高于灌水高度部分的船体外板。 b) 水密舱壁,水密平台及轴遂 c) 舱壁水密门(安装后) d) 风雨密门,其他风雨密关闭设备(如舷窗等) e) 各层甲板、舱壁、上层建筑端壁及第一层甲板室围壁、舱口围版和舱口盖等。 3.1.2 冲水试验部位不应有渗漏现象。 3.2 灌水试验 3.2.1 表1中所列部位应进行灌水试验。试验时应将水灌至表中规定的高度。4h后,在该水柱高度下,有关船体结构和四周角隅不应有变形和渗漏现象。 表1 3.2.2 对于船长小于10m 的船舶,当内部没有水密舱壁时,可利用舷外水压力代替灌水试验,对船长大于10 m的船舶,经有关部门同意,也可利用舷外水压力代替灌水试验。 3.3 气压试验 3.3.1 3.2.1所要求的灌水试验可以用气压试验代替。 3.3.2 对全部液舱均采用气压试验的船舶,在气压试验完成后,至少应对每种结构形式的液舱中的一个

耐波性习题

耐波性作业 一、某船实测的纵摇幅值的统计表如下。 雷利用分布的参数为j K j j a P R ∑ ==1 2) (θ,其中j a )(θ是第j 间隔中的幅值平均值。要 求: (1)作直方图; (2)假定纵摇幅值满足雷利分布,即R a a a e R f 2 2)(θθθ- ?= ,在直 方图上作出)(a f θ曲线。 (3)计算平均纵摇角R a 886.0=θ;三一平均纵摇角R a 416.1)(3/1=θ; 十一平均纵摇角R a 8.1)(10/1=θ 二、按不规则波上的纵摇估算表计算下列船舶的纵摇统计特性

(V g e 2 ,180ω ωωβ+ ==)。 已知:三一平均波高4)2(3 /1=A ρ米;船速 V=6.37米/秒。 其中波谱)(ωρS 按12届ITTC 单参数公式计算。 三、已知某船船长L=147.18米,船宽B=20.40米,排水量D=16739吨,型深H=12.40米,重心高度z g =8.02米,初稳性高度h=1.2米, 阻尼系数2μ=0.12。 (1) 求横摇固有周期; (2) 横摇的放大因数为() 2 2 2 2411 φ φ μα φΛ+Λ-= mo A , 请按下列波浪频率计算横摇放大因数,ω=0, 0.1,0.3,0.4,0.458, 0.5,0.6,0.7,0.9,1.1,1.3,∞。 四、排水量为10000吨,初稳性高度h 为0.90米的船舶的横摇固有

周期为14秒。若在重心的上面2米处减少1000吨的重量,问新的横摇周期是多少?(稳心M 的位置认为不变,由于重心的改变,要求绕新的GX 轴的转动惯量)。 五、已知某船横摇周期T=13秒,初稳性高度h=1米,无因次阻尼衰减系数μ=0.10,计算: (1)使船发生共振的波长; (2)若波浪最大倾角为4 /10534.0-=λ α(弧度),求共振时最大振幅; (3)假使该船由于载荷分布发生改变(排水量不变),总的质量惯性矩降低了10%,欲使固有周期不变,问初稳性高度改变了多少?在此新情况下,假定阻尼力矩系数2N 保持不变,试求共振横摇角度。 六、已知某货船的船宽B=20.40米,吃水T=8.04米,重心高度z g =8.02米,初稳性高度h=1.20米,舭龙骨比A b /LB=0.033,航行I 类航区。试计算该船的横摇角。 七、已知某船吃水T=8.02米,垂向棱形系数χ=0.70,计算该船的纵摇固有周期。 八、试按“实船试验数据分析表”,利用下表数据,计算某船纵摇幅

船舶操纵性总结

哈尔滨工程大学船舶操纵性总结 1. 船舶操纵性含义:P1 2. 良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3.对于船舶的水平面运动,绘制固定坐标系和运动坐标系 ? 1-1-3表示籍舶操纵运动的参数GS中各运勒参数都为it値) 4. 分析操舵后船舶在水平面运动特点。 5. 漂角B的特性(随时间和沿船长的变化)。 6. 坐标原点在船的重心处时,船舶的运动方程的推导。 7. 作用在在船上的水动力是如何划分的。 8. 粘性水动力方程线性展开式及无因次化。 9. 线性水动力导数的物理意义和几何意义。物理意义:各线性水动力导数

表示船舶在以u=u0 运动的情况下,保持其它参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10. 常见线性水动力导数的特点。 11. 船舶操纵水平面运动的线性方程组推导及无因次化。 12. 写出MMG 方程中非线性水动力的三种表达式。 13. 首摇响应二阶线性K-T 方程推导。 14. 一阶K、T 方程及K、T 含义,可应用什么操纵性试验测得。 15. 画图说明船舶在作直线航行时(舵角3 =0),若受到某种扰动后, 其重 心运动轨迹的四种可能情况,并说明三种稳定性之间的关系。 16. 影响稳定性的因素有哪些 17. 船舶回转过程的三个阶段及船舶在各个过程运动特点(速度、加速度信 息) 18. 船舶回转运动主要特征参数。 19. 影响定常回转直径的5 个因素是什么 20. 推导船舶定常回转时横倾角的确定公式。 21. 按照操舵规律由线性响应方程求解舶的回转角速度和艏向角。 22. 如何获得船舶的水动力导数 可以通过理论数值计算、经验公式估算和拘束模型的水动力试验三

耐波性论文

关于耐波性理论的一些浅见 【摘要】船舶动力学的研究历来是由两个主要理论:操纵性和耐波性。 船舶在海水中的航行必将伴随波浪,耐波性的研究对于保证船舶的安全,维持船舶工作时环境的稳定,保证其功能,都具有重大的意义。 【关键词】耐波性理论;船舶动力学;流体力学;运动;操纵性 【前言】耐波性能力的措施 1976 年,St.Denis提出描述耐波性能所需的四个主要条件。这些都是: 使命: 什么船将要完成的目标。这艘船在海上的作用。 环境: 条件下,这艘船操作。这可以称为海况、风速、地理区域或它们的组合。 船舶的反应: 这艘船对环境条件的响应。反应是环境和容器特性的函数。 耐波性能标准: 船上的响应的既定的限制。这些都基于船舶运动和经历,加速度,包括舒适标准,例如噪音、振动和晕船、如非自愿的速度减少,基于性能值和可观察到的现象,如弓浸泡。 显然,钻探和一艘渡轮有着不同的任务,在不同的环境下运作。性能标准也会不同。都可算是适航,虽然出于不同的原因,根据不同的标准。 在船舶设计中,先确定船舶在波浪中的行为是重要的。这可以通过计算,发现通过物理模型测试,最终测量船上的船只。计算可以简单的形状如矩形驳船进行解析,但需要由计算机进行任何现实形船。 一些这些计算或模型试验的结果称为响应振幅运算符(RAO) 的传递函数。浮动结构他们将需要所有六个运动和所有相对波标题计算。 一影响耐波性因素: 以下许多因素会影响耐波性或更正确的船响应。 大小: 更大的船一般会比一个较小的低运动。这是因为海浪的相对与船舶的大小更低。 位移: 重船一般会降低运动,要比一个轻一点。既然波的能量每艘船舶是相同的,并提供激振力,具有更大质量的船将有较低的加速度。 稳定性: 稳定的船舶会倾向于跟随波的配置更接近于一个不稳定的。这意味着一个更稳定的船舶一般有较高的加速度,但较低的振幅的运动。 干舷: 更大的船的干舷是不太可能出现在巨大的甲板上。甲板浸水往往是耐波性标准,因为它会影响一些船只的任务能力。 二耐波性的应用 在船舶设计中,先确定船舶在波浪中的行为是重要的。这可以通过计算,通过物理模型测试,最终测量船上的船只。计算可以对简单的形状如矩形驳船进行解析,但需要由计算机进行任何现实形船的计算。这些计算或模型试验的结果称为响应振幅运算符(RAO) 的传递函数。浮动结构他们将需要所有六个运动和所有相对波总计算。 船舶运动对确定船员、旅客、船舶系统部件、安全货物和结构元件的动态载荷是非常重要的。过度的船舶运动可能会妨碍船舶完成其任务的能力,如小型艇或飞机的部署和恢复。衡量一个人的完成特定任务而车载移动船舶发生工作间断(MII)。它给出了一个指示的事件,即当一个站立的人将要寻找支持,以保持平衡。工作间断的测量是时时刻刻都在进行中的。

船舶操纵性试验方法

船舶操纵性试验方法 船舶操纵性是在“船舶原理”各学科中新近发展起来的、并且还不很完善的一门学科。对于操纵性,可简单地理解为船舶按照驾驶者的意图去保持或改变船舶运动状态的性能。就我国内河水运航道目前的状况和船舶驾驶者的实用角度来讲,较为实用的实船操纵性试验主要有以下几种:①定常回转性试验;②航行稳定性试验;③实船航行制动性试验; ④Z形操纵试验。 1 船舶定常回转性试验 船舶定常回转性试验的目的是评价船舶回转的迅速程度和所需要的水域大小,从而使驾驶者掌握船舶在港湾、狭窄江面或航道上安全地回旋、转向并在紧急情况下正确地进行避让,防范碰撞事故的能力。定常回转性试验是船舶实船试验中典型的操纵性试验。大多数船舶在交船试验中都必须进行此项试验。 船舶定常回转性试验的方法很多,内河船舶常采用轨迹观察法和轨迹测量法测试。 前一种方法主要考核船舶在满车(100%的主机转速)满舵角条件下回转的安全性,对定常回转性直径作定性观察,主要定量的测量参数是船舶回转式的最大动力横倾角和定常回转性时的最大静力横倾角(船舶在稳定回转时的最大横倾角)。

后一种方法,是我们要详细介绍的,即轨迹测量法:轨迹测量的具体实施办法有许多种,较为常用的是经纬仪交会法。该方法的主要优点是:①比较适合我国目前内河航道的要求,只要有足够的助航段(主机转速稳定后,船舶进入直航时的距离能保证有60~100倍的船长),在满车满舵的工况下,被测船舶或船队能回旋540°~720°的航道宽度即可。②通过测量船舶在试验航行时的船位测点,并将船位测点的数据经计算机或人工数据分析处理,就可以绘出船舶在操纵航行过程中的实际运动轨迹,从而定量地得到船舶在规定工况下的定常回转直径、回转时最大动力横倾角、定常回转时最大静力横倾角、定常回转时的平均角速度及回转率(定常回转直径与船长之比)等。③该测量方法还同时可以用于船舶诸如航速、横移、船舶制动性等试验,并减少了架设测量仪器等繁琐工作。 试验的具体做法分为以下几步进行: 1.1 检查完成该项试验所必须具备的条件 (1)被检船舶必须具备的条件:①被检船舶的各项工程应全部竣工,系泊试验合格、倾斜试验完成、稳性计算合格并取得船检认可。②被检船舶应处于设计装载状态,船舶纵倾应与设计要求一致,无横倾。③被测船舶若为双桨船,其左右主机转速应能调整一致,船舶驾驶室的舵角指示器应进行校对,使实际操舵角与指示舵角相符。

相关文档