文档库 最新最全的文档下载
当前位置:文档库 › 平均值、方差、标准差

平均值、方差、标准差

平均值、方差、标准差
平均值、方差、标准差

平均值(Mean)、方差(Variance)、标准差(Standard Deviation) 对于一维数据的分析,最常见的就是计算平均值(Mean)、方差(Variance)和标准差(Standard Deviation)。

平均值

平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为:

以下面10个点的CPU使用率数据为例,其平均值为。

14 31 16 19 26 14 14 14 11 13

方差、标准差

方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为:

标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根:

为什么使用标准差

与方差相比,使用标准差来表示数据点的离散程度有3个好处:

表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为;两者相比较,标准差更适合人理解。

表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。

在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。

贝赛尔修正

在上面的方差公式和标准差公式中,存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。不过,使用N 所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1:

经过贝塞尔修正后的方差公式:

经过贝塞尔修正后的标准差公式:

公式的选择

是否使用贝塞尔修正,是由数据集的性质来决定的:如果只想计算数据集本身的离散程度(population),那么就使用未经修正的公式;如果数据集是一个样本(sample),而想要计算的则是样本所表达对象的离散程度,那么就使用贝塞尔修正后的公式。在特殊情况下,如果该数据集相较总体而言是一个极大的样本 (比如一分钟内采集了十万次的IO数据) ——在这种情况下,该样本数据集不可能错过任何的异常值(outlier),此时可以使用未经修正的公式来计算总体数据的离散程度。

R中平均值、方差与标准差的计算

在R中,平均值是通过mean()函数来计算的:

x <- c(14, 31, 16, 19, 26, 14, 14, 14, 11, 13)

mean(x)

方差则通过var()函数来计算:

x <- c(14, 31, 16, 19, 26, 14, 14, 14, 11, 13)

var(x)

标准差则通过sd()函数来计算:

x <- c(14, 31, 16, 19, 26, 14, 14, 14, 11, 13)

sd(x)

值得一提的是,R中所计算的方差和标准差是经过贝塞尔修正的;如果需要计算未经修正的结果,可以在R的计算结果上乘以(N-1)/N。

平均值与标准差的适用范围及误用

大多数统计学指标都有其适用范围,平均值、方差和标准差也不例外,其适用的数据集必须满足以下条件:中部单峰:

数据集只存在一个峰值。很简单,以假想的CPU使用率数据为例,如果50%的数据点位于20附近,另外50%的数据点位于80附近(两个峰),那么计算得到的平均值约为50,而标准差约为31;这两个计算结果完全无法描述数据点的特征,反而具有误导性。

这个峰值必须大致位于数据集中部。还是以假想的CPU数据为例,如果80%的数据点位于20附近,剩下的20%数据随机分布于30~90之间,那么计算得到的平均值约为35,而标准差约为25;与之前一样,这两个计算结果不仅无法描述数据特征,反而会造成误导。

遗憾的是,在现实生活中,很多数据分布并不满足上述两个条件;因此,在使用平均值、方差和标准差的时候,必须谨慎小心。

结语

如果数据集仅仅满足一个条件:单峰。那么,峰值在哪里峰的宽带是多少峰两边的数据对称性如何有没有异常值(outlier)为了回答这些问题,除了平均值、方差和标准差,需要更合适的工具和分析指标,而这,就是中位数、均方根、百分位数和四分差的意义所在。

标准差公式

标准差(Standard Deviation ) ,也称均方差(mean square error ),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用S (σ)表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 标准差也被称为标准偏差,或者实验标准差,公式如下两式: ()1 n x x S n 1 i 2 i --= ∑= 或 1 n n x x S 2 n 1i i n 1 i 2i -??? ??- =∑∑ == 即: () 1 n x x 1 n n x x S n 1 i 2 i 2 n 1i i n 1 i 2i --= -??? ??- = ∑∑∑ === 如是总体,标准差公式根号内除以n 如是样本,标准差公式根号内除以(n-1) 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1) 公式意义 所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一),再把所得值开根号,所得之数就是这组数据的标准差。 标准差越高,表示实验数据越离散,也就是说越不精确;反之,标准

差越低,代表实验的数据越精确 简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的集合{0, 5, 9, 14} 和{5, 6, 8, 9} 其平均值都是7 ,但第二个集合具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.07分,B组的标准差为2.37分(此数据时在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。

标准差σ的4种计算公式

标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中 标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中的Pooled standard deviation(合并标准差) 做数据分析,经常会碰到提到标准差σ这个概念,关于标准差σ的计算方式,目前,本人知道有4种标准差σ的计算方法,如下: 一,简易标准差σ的计算方式 上面是计算整体的标准差,如果是计算样本的标准差,这里的N, 应该为N-1. 一般情况下,都是计算样本的标准差。关于这个标准的详细运算公式和案例分析,可以参考附件,里面有比较详细的解释。 标准差的简易计算公式和案例分析.rar(28.19 KB, 下载次数: 1262) 二,XBAR-R管制图分析( X-R Control Chart)图中的Rbar/d2 算法 XBAR-R管制图分析( X-R Control Chart):由平均数管制图与全距管制图组成。 ●品质数据可以合理分组时,可以使用X管制图分析或管制制程平均;使用R管制图分析制程变异。 ●工业界最常使用的计量值管制图。

关于上面公式中用到的A2、A3、D2、D3、D4等常数请参考帖子下面的表格三,XBAR-s管制图分析( X-sControl Chart)中的Sbar/C4算法 XBAR-S 管制图分析( X-S Control Chart):由平均数管制图与标准差管制图组成。 ●与X-R管制图相同,惟s管制图检出力较R管制图大,但计算麻烦。 ●一般样本大小n小于等于8可以使用R管制图,n大于8则使用S管制图。 ●有电脑软件辅助时,使用S管制图当然较好。

方差与标准差

.方差与标准差

————————————————————————————————作者:————————————————————————————————日期:

§2、1 方差与标准差审核人:戴蔚 【目标导航】 1.经历刻画数据离散程度的探索过程,感受表示数据离散程度的必要性. 2.掌握方差和标准差的概念,卉计算方差和标准差,理解它们的统计意义. 3.经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验. 【要点梳理】 1.我们知道极差只能反映一组数据中两个之间的大小情况,而对其他数据的波动情况不敏感. 2.描述一组数据的离散程度可以采取许多方法,在统计中常采用先求这组数据的,再求这组数据与的差的的平均数,用这个平均数来衡量这组数据的波动性大小 3.设在一组数据X1,X2,X3,X4,……X N中,各数据与它们的平均数的差的平方分别是(X1- )2,(X2- )2,(X3- )2,……,(X n- )2,,那么我们求它们的平均数,即用S2= . 4.一组数据方差的算术平方根叫做这组数据的。 5.方差是描述一组数据的特征数,可通过比较其大小判断波动的大小,方差说明数据越稳定,6.为什么要这样定义方差? 7.为什么要除以数据的个数n? 8.标准差与方差的区别和联系? 【问题探究】 知识点1.探究计算数据方差和标准差的必要性 例1.质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径进行了检测,结果如下(单位:mm)A厂:40.0 ,39.9 ,40.0 ,40.1 ,40.2 ,39.8 ,40.0 ,39.9 ,40.0 ,40.1 B厂:39.8 ,40.2 ,39.8 ,40.2 ,39.9 ,40.1 ,39.8 ,40.2 ,39.8 ,40.2 思考探索:1、请你算一算它们的平均数和极差? 2、根据它们的平均数和极差,你能断定这两个厂生产的乒乓球直径同样标准吗? 3、观察根据上面数据绘制成的下图,你能发现哪组数据较稳定吗? 直径/mm 直径/mm

标准差

标准差 次数分布中的数据不仅有集中趋势,而且还有离中趋势。所谓离中趋势指的是数据具有偏离中心位置的趋势,它反映了一组数据本身的离散程度和差异性程度。标准差能综合反映一组数据的离散程度或个别差异程度。 例如,甲、乙两班学生各50人,其语文平均成绩都是80分,但甲班最高成绩98分,最低42分,而乙班最高成绩86分,最低60分。初步看出,两班语文成绩是不一样的,甲班学生的语文成绩个别差异程度大、水平参差不齐;而乙班学生的语文成绩差异程度小,语文水平整齐度大些。怎样用标准差这个特征量数来刻画一组数据的差异程度呢?下面介绍标准差的概念及计算。 一、标准差概念与计算 1.标准差定义与计算公式 一组数据的标准差,指的是这组数据的离差平方和除以数据个数所得商的算术平方根。若用S 代表标准差,则标准差的计算公式为: 标准差的平方,称为方差,用S2表示方差。 计算标准差时,首先要计算数据的平均数,接着要计算各数据与平均数之间的离差 平方,即()2,最后由公式(2-5)计算标准差S。 例如,4名儿童的身高分别是110厘米,100厘米,120厘米和150厘米,若求4名儿童身高数据的标准差时,其基本步骤如下: ①求平均数:(厘米) ②求离差平方和: )2=(110―120)2+(100―120)2+(120―120)2+(150―120)2 =100+400+0+900=1400(平方厘米) ③求标准差S:S= (厘米)

这样,我们大体可认为,这4名儿童身高差异程度,从平均角度来看,约相差18.71厘米。 2.标准差的计算中心方法 计算标准差的方法有三种,一是按公式逐步分析计算,如上述所示;二是以列表计算的方式;三是利用计算器或计算机进行计算。下面再举一例说明采用列表方式计算标准差S。 [例7] 已知8 位同学在某图形辨认测验中的成绩数据(见表2-2),计算这组数据的标准差。 [分析解答] 采用列表计算方式,应用公式(2-5)确定数据的标准差,详见表2-2。 表2-2 计算标准差S的示例 - () (1) = (2) () = 标准差在实际中有广泛的用途,同时对深化研究数据也具有重要的作用。如不同班级考试成绩的平均数和标准差,不同年度或不同学科测验分数的平均数和标准差,以及其他体能测试或心理测验数据的平均数和标准差,就是一些具体的应用。后续各章内容的学习,将经常用到平均数、标准差和方差这些概念。 由于标准差计算公式结构适合于代数处理,因此,许多具有统计功能的计算器,都有计算方差和标准差的相应功能。学习者只要花少量时间学习与掌握有关计算器的使用,即可以轻松自如地处理大量数据,求取平均数和标准差。 在利用公式(2-5)手工求标准差时,如表2-2所示,由于平均数有小数,这使计算离差平方的数据更加复杂,小数点的位数加倍增加,同时四舍五入的计算误差以及出错的可能性都有所增加。为克服这个弊病,我们可从公式(2-5)出发,通过代数演算,推导出另一个与公式(2-5)等价的新公式,即公式(2-6)。这一新公式对计算标准差来讲,不用通过计 算平均数以及离差平方和,用原始数据直接计算标准差,因而在许多情况下,具有更简便、准确的特点。其计算公式:

平均数、众数、中位数、极差、方差、标准差

平均数、众数、中位数、极差、方差、标准差 说明6个基本统计量(平均数、众数、中位数、极差、方差、标准差)的内涵,学生学习过程中可能产生的困难及主要原因、应对策略. 首先,结合简单实例认真把握这6个基本统计量的内涵。 一、平均数、众数、中位数是刻画一组数据的“平均水平”的数据代表。(八上《第八章数据的代表》)平均数分算术平均数和加权平均数,算术平均数是指n个数据的和的平均值,学生理解与计算都不成问题,只要注意细心运算就是其中的取标准值后的简便算法也都是在小学早已熟练的(公式: x=1/n(x1+x2+x3+……+xn);而加权平均数是一组数据里的各个数据乘各自的“权”之后的平均数。此处理解“权”的概念可能产生很大困难,因为“权”的理解的确不易,若是照搬教材直接给出其定义,学生会迷惑成团,再进行应用更是不可思议。所以应对措施:讲好、用好加权平均数就要先举例、后分析、再给出定义,比如:某同学的一次考试各科成绩如下:语文110、数学105、英语106、物理95、化学90、政治86、历史98、地理66、生物89,你可以先让学生算算各科的平均数,再按中考计分法将语、数、英各取120%,物、化、政各取100%,史、地、生各取40%后的平均值算出,两个结果一比较,学生就会很容易发现不同的原因是加入了所谓的“权”,这样,不仅通俗易懂,而且对“权”内涵的理解和应用就不再困难。众数是一组数据中出现次数最多的数。其内涵很好理解和掌握,就是结合实际应用也顺理成章,如商店老板进货号多大的男鞋好?那当然是“众数”(调查数据最多的号)所代表的。 中位数顾名思义是一组数据中间位置的数,但考虑一组数可能有偶数个或奇数个,所以要注意强调取中位数的方法。教材上给出的内涵很好:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。如一组数据1.5,1.5,1.6,1.65,1.7,1.7,1.75,1.8的中位数

标准差σ的4种计算公式

标准差σ的4种计算公式

标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中的Pooled standard deviation(合并标准差) 做数据分析,经常会碰到提到标准差σ这个概念,关于标准差σ的计算方式,目前,本人知道有4种标准差σ的计算方法,如下: 一,简易标准差σ的计算方式 上面是计算整体的标准差,如果是计算样本的标准差,这里的N, 应该为N-1. 一般情况下,都是计算样本的标准差。关于这个

关于上面公式中用到的A2、A3、D2、D3、D4等常数请参考https://www.wendangku.net/doc/2e18131295.html,/thread-476-1-1.html帖子下面的表格 三,XBAR-s管制图分析( X-sControl Chart)中的Sbar/C4算法 XBAR-S 管制图分析( X-S Control Chart):由平均数管制图与标准差管制图组成。

●与X-R管制图相同,惟s管制图检出力较R 管制图大,但计算麻烦。 ●一般样本大小n小于等于8可以使用R管制图,n大于8则使用S管制图。 ●有电脑软件辅助时,使用S管制图当然较好。 关于上面公式中用到的A2、A3、D2、D3、D4等常数请参考https://www.wendangku.net/doc/2e18131295.html,/thread-476-1-1.html帖子下面的表格 四,Minitab中所使用的Pooled standard

deviation(合并标准差) Minitab中所使用的Pooled standard deviation,这个标准差的计算和一般的不一样,这个是Minitab默认的,相关的计算公式可以参考《Minitab: Pooled standard deviation》https://www.wendangku.net/doc/2e18131295.html,/thread-288-1-1.html Minitab: Pooled standard deviation(合并标准差), Rbar, Sbar Pooled standard deviation(合并标准差) is a way to find a better estimate of the true standard deviation given several different samples taken in different circumstances where the mean may vary between samples but the true standard deviation (precision) is assumed to remain the same. It is calculated by where sp is the pooled standard deviation,

方差、标准差、均方差、均方误差的区别及意义

方差、标准差、均方差、均方误差的区别及意义 百度百科上的方差定义如下: (方差)是用概率论和统计方差来度量随机变量或一组数据的离散程度概率论中的方差用来衡量随机变量与其数学期望(即平均值)之间的偏离程度统计学中的方差(样本方差)是每个数据与其平均值之差的平方和的平均值在许多实际问题中,研究方差,即偏离的程度具有重要意义。如果 看这样一段文字,可能会有点费解。首先,从公式开始。对于一组随机变量或统计数据, 的期望值用E(X)表示,即随机变量或统计数据的平均值, ,然后在找到期望值之前将每个数据与平均值之间服从正态分布。那么我们就不能通过方差直接确定学生偏离平均值多少分。通过标准差,我们可以直观地得到学生分数分布在0.6826范围内的概率,大约等于34.2%*2 3,均方差是多少? 标准偏差,在中国环境中通常也称为均方误差,不同于均方误差(均方误差 是距离每个数据真实值的平方的平均值,即误差平方的平均值)。计算公式在形式上接近方差。它的根叫做均方根误差,在形式上接近标准偏差)。标准偏差是偏离平均值的平方的平均值后的平方根,用σ

表示标准差是方差的算术平方根 从上面的定义,我们可以得到以下几点:1 .均方偏差是标准偏差,标准偏差是标准偏差2,均方误差不同于均方误差 3,均方误差是距离每个数据真实值的平方和的平均值 。例如,我们想测量房间的温度,不幸的是我们的温度计不够精确。因此,有必要测量5次以获得一组数据[x1,x2,x3,x4,x5]。假设温度的实际值是x,数据和实际值之间的误差e是x-Xi ,那么均方误差MSE= 一般来说,均方误差是数据序列和平均值之间的关系,而均方误差是数据序列和实际值之间的关系,所以我们只需要了解实际值和平均值之间的关系

平均值、方差、标准差

平均值(Mean)、方差(Variance)、标准差(Standard Deviation) 对于一维数据的分析,最常见的就是计算平均值(Mean)、方差(Variance)和标准差(Standard Deviation)。 平均值 平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为: 以下面10个点的CPU使用率数据为例,其平均值为。 14 31 16 19 26 14 14 14 11 13 方差、标准差 方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为: 标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根: 为什么使用标准差 与方差相比,使用标准差来表示数据点的离散程度有3个好处: 表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为;两者相比较,标准差更适合人理解。 表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。 在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。 贝赛尔修正 在上面的方差公式和标准差公式中,存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。不过,使用N 所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1: 经过贝塞尔修正后的方差公式: 经过贝塞尔修正后的标准差公式:

如何理解方差和标准差的意义

如何理解方差和标准差的意义? 随机变量X的方差为: ,方差的平方根称为标准差,它描述随机变量取值与其数学期望值的离散程度,描述随机变量稳定与波动,集中与分散的状况。标准差大,则随机变量不稳定,取值分散,预期数学期望值的偏离差大,在量纲上它与数学期望一致。 在实际问题中,若两个随机变量X,Y,且E(X),E(Y)或比较接近时,我们常用来比较这两个随机变量。方差值大的,则表明该随机变量的取值较为离散,反之则表明他较为集中。同样,标准差的值较大,则表明该随机变量的取值预期期望值的偏差较大,反之,则表明此偏差较小。随机变量X的数学期望和方差有何区别和联系? 随机变量X的数学期望E(X)描述的是随机变量X的平均值,而方差刻画的是随机变量X与数学期望的平均离散程度。方差大,则随机变量X与数学期望的平均离散程度大,随机变量X 取值在数学期望附近分散;方差小,则随机变量X与数学期望的平均离散程度小,随机变量X取值在数学期望附近集中。 方差是用数学期望来定义的,方差是随机变量X函数的数学期望,所以,由随机变量函数的数学期望的计算公式我们得到: 若X为离散型,则有(2.3) 若X为连续型,则有(2.4) 在实际问题中,我们经常用来计算方差。由此可以得到:随机变量X与数学期望不存在,则方差一定不存在。 若随机变量X与数学期望存在,方差也可能不存在。 切比雪夫不等式的意义是什么?有哪些应用? 切比雪夫不等式有两种等价形式的表达形式:或。它反映了随机变量在数学期望的邻域的概率不小于。如果随机变量的分布不知道,只要知道它的数学期望和方差,我们就可以利用切比雪夫不等式估计概率。 它的应用有以下几个方面: 已知数学期望和方差,我们就可以利用切比雪夫不等式估计在数学期望的邻域的概率。 已知数学期望和方差,对确定的概率,利用切比雪夫不等式求出,从而得到所需估计区间的长度。 对n重贝努力试验,利用切比雪夫不等式可以确定试验次数。 它是推导大数定律和其他定理的依据。 解题的具体步骤: 首先,根据题意确定恰当的随机变量X,求出数学期望E(X)与D(X); 其次,确定的值, 最后,由切比雪夫不等式进行计算和证明。 注:(一)相关系数的含义 1.相关系数刻画随机变量X和Y之间的什么关系? (1)相关系数也常称为“线性相关系数”。这是因为,实际相关系数并不是刻画了随机变量X和Y之间的“一般”关系的程度,而只是“线性”关系的程度。这种说话的根据之一就在于,当且仅当X和Y有严格的线性关系是才有达到最大值1.可以容易举出例子说明:即使X 和Y有严格的函数关系但非线性关系,不仅不必为1,还可以为0. (2)如果,则解释为:随机变量X和Y之间有一定程度的“线性关系而非严格的线性关系” 2.相关系数刻画了随机变量X和Y之间的“线性相关”程度. 3. 的值越接近1, Y与X的线性相关程度越高;

标准差和标准偏差

标准差和标准偏差 1)首先给出计算公式 标准差:σ=(1) 标准偏差:s =(2)方差就是标准偏差的平方 这下大家就困惑了,这两个公式分别表示什么意义?他们分别在什么情况下用?这两个公式是怎么来的? 2)公式由来 标准差又叫均方差、标准方差,这个大家都不陌生,它是各数据偏离平均数的距离的平均数,是距离均差平方和平均后的方根,用σ表示。。说白了就是表示数据分本离散度的一个值。计算公式也很好理解,从一开始接触我们用的看的都是这个公式。 那么第二个公式,怎么来的呢?其实标准偏差从样本估计中来的。比如我们有一批数据,共10000个点,他们服从正太分布,很容易计算出它的均值和标准差。在这里我们叫做样本均值和样本标准差。表示如下: 样本均值:1 1n i i X X n ==∑ 样本方差:2211()n n i i s X X n ==-∑ 这两个公式就是大家常用的公式。那么现在我们认为,我们想用采集到的这10000个样本估计数据的真实分布,想要求出其均值μ和方差2σ。 对于均值μ,我们容易通过期望获得:

但是对于方差,我们知道 2 1 2 () n i i X X σ = - ∑ 是服从卡分分布2 1 n χ - 的(这一点请查阅卡分分布的 定义)。因此有下面的公式: 这个公式的第一个等号后面是利用期望的性质,试图构造卡分分布来求解。第二个等号后面是利用卡分分布的均值计算出来的。请自行查阅卡方分布的定义和性质。 这么一来,我们就能看出,X是μ的无偏估计,而2 n s则不是2σ的无偏估计。但是我们 可以通过对样本方差进行重新构造,从而是2 n s就是2σ的无偏估计。我们定义:这样我们重新来求解方差的期望: 这样一来,2s就是2σ的无偏估计,这也就是这个公式的由来。 3)这两个公式的应用。 在实际中,公式(2)用的更多。因为当样本容量比较小的时候,公式(1)会过小的估计实际标准差;如果样本容量较大,公式(1)和公式(2)很接近。这时候公式(1)叫做渐近无偏估计,当然还是比不上公式(2)的无偏估计喽。 看了上面这段话,你可能还不知道该用哪个。其实是这样的:如果我们想求一批数据的标准差,那么自然就用公式(1)。如果我们是利用现在的样本估计真实的分布,那么就用公式(2)。 4)在EXCEL中,方差是VAR(),标准偏差是STDEV(),函数里解释是基于样本,分母是除的N-1,其实就是公式(2)。还有个VARP()和STDEVP(),基于样本总体,分母是N,也就是说你关注的就是这批数据。 在Excel透视表中 标准偏差为=STDEVA()

《方差与标准差》教案

2.2 方差与标准差(教案) 学习目标: 1、了解方差的定义和计算公式。 2. 理解方差概念的产生和形成的过程。 3. 会用方差计算公式来比较两组数据的波动大小。 4. 经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验。 学习重、难点 重点:方差产生的必要性和应用方差公式解决实际问题。掌握其求法, 难点:理解方差公式,应用方差对数据波动情况的比较、判断。 学习过程 一、情景创设: 乒乓球的标准直径为40mm ,质检部门从A 、B 两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm ): A 厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1; B 厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2. 你认为哪厂生产的乒乓球的直径与标准的误差更小呢? (1) 请你算一算它们的平均数和极差。 (2) 是否由此就断定两厂生产的乒乓球直径同样标准? 今天我们一起来探索这个问题。 探索活动 通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动 算一算 把所有差相加,把所有差取绝对值相加,把这些差的平方相加。 想一想 你认为哪种方法更能明显反映数据的波动情况? 二、新知讲授: 讲授新知: (一)方差 定义:设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是 2221)()(x x x x --,,…,, , 2)(x x n -我们用它们的平均数,即用 ])()()[(1222212x x x x x x n x n -++-+-= 来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance ),记作2s 。 意义:用来衡量一批数据的波动大小 在样本容量相同的情况下,方差越大,说明数据的波动越大, 越不稳定 归纳:(1)研究离散程度可用2S (2)方差应用更广泛衡量一组数据的波动大小 (3)方差主要应用在平均数相等或接近时

方差、标准差、均方差、均方误差的区别及意义

一、百度百科上方差是这样定义的: (variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 看这么一段文字可能有些绕,那就先从公式入手, 对于一组随机变量或者统计数据,其期望值我们由E(X)表示,即随机变量或统计数据的均值, 然后对各个数据与均值的差的平方求和,最后对它们再求期望值就得到了方差公式。 这个公式描述了随机变量或统计数据与均值的偏离程度。 二、方差与标准差之间的关系就比较简单了

根号里的内容就是我们刚提到的 那么问题来了,既然有了方差来描述变量与均值的偏离程度,那又搞出来个标准差干什么呢 发现没有,方差与我们要处理的数据的量纲是不一致的,虽然能很好的描述数据与均值的偏离程度,但是处理结果是不符合我们的直观思维的。 举个例子:一个班级里有60个学生,平均成绩是70分,标准差是9,方差是81,成绩服从正态分布,那么我们通过方差不能直观的确定班级学生与均值到底偏离了多少分,通过标准差我们就很直观的得到学生成绩分布在[61,79]范围的概率为,即约等于下图中的%*2 三、均方差、均方误差又是什么

标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方和的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。 从上面定义我们可以得到以下几点: 1、均方差就是标准差,标准差就是均方差 2、均方误差不同于均方误差 3、均方误差是各数据偏离真实值的距离平方和的平均数 举个例子:我们要测量房间里的温度,很遗憾我们的温度计精度不高,所以就需要测量5次,得到一组数据[x1,x2,x3,x4,x5],假设温度的真实值是x,数据与真实值的误差 e=x-xi 那么均方误差MSE= 总的来说,均方差是数据序列与均值的关系,而均方误差是数据序列与真实值之间的关系,所以我们只需要搞清楚真实值和均值之间的关系就行了。

强度标准差计算公式

直接转的:看看对你有帮助没有。 Sfcu=[(∑ fcu?i2-n?mfcu2)/(n-1)]1/2 公式表述显示不明,用语言表述下,即公式中的2和1/2都应为上角表,分别表示平方和根号(开平方)。 语言表述如下:fcu.i的平方求和再减去n 乘以fcu平均值的平方,用他们的差再除以(n-1)这样得出的除数开方;也可以是fcu.i-fcu平均值差的平方求和得出的数再除以(n-1)这样得出的除数开方。当Sfcu<0.06fcu,k时,取Sfcu=0.06fcu,k 具体参数表述如下: fcu,k一混凝土立方体抗压强度标准值 fcu为设计强度标准值 mfcu为平均值 n为试块组数 Sfcu为n组试块的强度值标准差 fcu.i : 第i组试块的立方体抗压强度值

在线规范网https://www.wendangku.net/doc/2e18131295.html, 协助网站:给排水On Line 5.4 混凝土强度换算及推定 5.4.1 混凝土强度换算值可采用以下三类测强曲线计算: 1 统一测强曲线:由全国有代表性的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±15.0%,相对标准差(er)不应大于18.0%。 2 地区测强曲线:由本地区常用的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±14.0%,相对标准差(er)不应大于17.0%。 3 专用测强曲线:由与结构或构件混凝土相同的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±12.0%,相对标准差(er)不应大于14.0%。 4 平均相对误差(δ)和相对标准差(er)的计算应符合本规程附录F的规定。 5 各检测单位应按专用测强曲线、地区测强曲线、统一测强曲线的次序选用测强曲线。 5.4.2 地区和专用测强曲线应与制定该类测强曲线条件相同的混凝土相适应,不得超出该类测强曲线的适用范围。应经常抽取一定数量的同条件试件进行校核,当发现有显著差异时,应及时查找原因,并不得继续使用。 5.4.3 符合下列条件的混凝土应采用本规程附录G进行测区混凝土强度换算: 1 混凝土采用的材料、拌和用水符合国家现行的有关标准; 2 不掺引气型外加剂; 3 采用普通成型工艺; 4 采用符合现行的《铁路混凝土与砌体工程施工质量验收标准》(TB10424)规定的模板; 5 自然养护或蒸汽养护出池后经自然养护7d以上,且混凝土表层为干燥状态; 6 龄期为14~1000d; 7 抗压强度为10~60MPa。 5.4.4 当有下列情况之一时,测区混凝土强度值不得按本规程附录G换算,但可制定专用测强曲线或通过试验进行修正,专用测强曲线的制定方法宜符合本规程附录F的有关规定:

spss教程均值比较检验与方差分析

第二章均值比较检验与方差分析 在经济社会问题的研究过程中,常常需要比较现象之间的某些指标有无显著差异,特别当考察的样本容量n比较大时,由随机变量的中心极限定理知,样本均值近似地服从正态分布。所以,均值的比较检验主要研究关于正态总体的均值有关的假设是否成立的问题。 ◆本章主要内容: 1、单个总体均值的 t 检验(One-Sample T Test); 2、两个独立总体样本均值的 t 检验(Independent-Sample T Test); 3、两个有联系总体均值均值的 t 检验(Paired-Sample T Test); 4、单因素方差分析(One-Way ANOVA); 5、双因素方差分析(General Linear Model Univariate)。 ◆假设条件:研究的数据服从正态分布或近似地服从正态分布。 在Analyze菜单中,均值比较检验可以从菜单Compare Means,和General Linear Model得出。如图2.1所示。 图2.1 均值的比较菜单选择项 §2.1 单个总体的t 检验(One-Sample T Test)分析 单个总体的 t 检验分析也称为单一样本的 t 检验分析,也就是检验单个变量的均值是否与假定的均数之间存在差异。如将单个变量的样本均值与假定的常数相比较,通过检验得出预先的假设是否正确的结论。

例1:根据2002年我国不同行业的工资水平(数据库SY-2),检验国有企业的职工平均年工资收入是否等于10000元,假设数据近似地服从正态分布。 首先建立假设:H0:国有企业工资为10000元; H1:国有企业职工工资不等于10000元 打开数据库SY-2,检验过程的操作按照下列步骤: 1、单击Analyze →Compare Means →One-Sample T Test,打开One-Sample T Test 主对话框,如图2.2所示。 图2.2 一个样本的t检验的主对话框 2、从左边框中选中需要检验的变量(国有单位)进入检验框中。 3、在Test Value框中键入原假设的均值数10000。 4、单击Options按钮,得到Options对话框(如图2.3),选项分别是置信度(默认项是95%)和缺失值的处理方式。选择后默认值后返回主对话框。 图2.3 一个样本t检验的Options对话框 5、单击OK,得输出结果。如表2.1所示。 表2.1(a).数据的基本统计描述 One-Sample Statistics

计算全距平均差方差和标准差

计算全距、平均差、方差和标准差 一、全距 R(range) 全距是一组数据中的最大值(maximum)与该组数据中最小值(minimum)之差,又称极差。 R=Xmax-Xmin 一般用于研究的预备阶段,用它检查数据的分布范围,以便确定如何进行统计分析 原始数据计算公式 三、四分位差(Quartile) 四分位差是第一个四分位数与第三个四分位数之差计算公式为 Q=Q 3-Q 1 四、方差与标准差 方差:又称为变异数、均方,是每个数据与该组数据平均数之差乘方后的均值,是表示一组数据离散程度的统计指标。 样本的方差用表示,总体的方差用表示。 标准差是方差的算术平方根。一般样本的标准差用 S 表示,总体的标准差用表示。 标准差和方差是描述数据离散程度的最常用的差异量。 分组数据方差与标准差的计算公式 方差与标准差的性质 ?方差是对一组数据中各种变异的总和的测量,具有可加性和可分解性特点。 ?标准差是一组数据方差的算术平方根,它不可以进行代数计算,但有以下特性: 总体方差、标准差或者方差、标准才差的合成 ?方差具有可加性的特点。当已知几个小组数据的方差或标准差时,可

以计算几个小组联合在一起的总的方差或标准差。 ?需要注意的是,只有在应用同一种观测手段,测量的是同一种特质,只是样本不同的数据时,才能计算合成方差或标准差。 方差和标准差的优点: 方差与标准差是表示一组数据离散程度的最好指标,其值越大,离散程度越大。 应用方差和标准差表示一组数据的离散程度,须注意必须是同一类数据(即同一种测量工具的测量结果),而且被比较样本的水平比较接近。 优点: ?反应灵敏。每个数据发生变化,方差与标准差也随之变化 ?有一定计算公式的严密确定 ?容易计算 ?受抽样变动的影响小 ?简单明了 ?方差具有可加性(区分变异源,组间/组内) 五、差异系数(coefficient of variation) 差异系数指标准差与其算术平均数的百分比,它是没有单位的相对数。用CV表示。 何种情况下运用差异系数: ?两个或两个以上样本所测特质不同,即所使用的观测工具不同,如何比较两者的离散程度? ?即使使用同一种观测量具,但样本水平相差较大,如何比较其离散程度? 差异系数的作用 ?比较不同单位资料的差异程度 ?比较单位相同而平均数相差较大的两组资料的差异程度 ?可判断特殊差异情况

方差和标准差 知识讲解

方差和标准差——知识讲解 责编:杜少波 【学习目标】 1. 了解方差和标准差的概念,会计算简单数据的方差,体会它们刻画数据离散程度的意义; 2. 知道可以通过样本的方差来推断总体的方差.能解释统计结果,根据结果作出简单的判断和预测; 3. 能综合运用统计知识解决一些简单的实际问题. 【要点梳理】 要点一、方差和标准差 1.方差 在一组数据12,,n x x x …,中,设它们的平均数是x ,各数据与平均数的差的平方的平均数()[] 222212 )(...)(1 x x x x x x n S n -++-+-= 叫做这组数据的方差. 方差越大,说明数据的波动越大,越不稳定. 要点诠释: (1)方差反映的是一组数据偏离平均值的情况. 方差越大,稳定性越差;反之,则稳定性越好. (2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2 k 倍. 2.标准差 一般地,一组数据的方差的算术平方根 称为这组数据的标准差. 要点诠释: (1)标准差的数量单位与原数据一致. (2)一组数据的方差或标准差越小,这组数据的离散程度越小,这组数据就越稳定. 要点二、方差和标准差的联系与区别 联系:方差和标准差都是用来衡量一组数据偏离平均数的大小(即波动大小)的指标,常用来比较两组数据的波动情况. 区别:方差是用“先平均,再求差,然后平方,最后再平均”的方法得到的结果,主要反映整组数据的波动情况,是反映一组数据与其平均值离散程度的一个重要指标,每个数据的变化都将影响方差的结果,是一个对整组数据波动情况更敏感的指标. 在实际使用时,往往计算一组数据的方差,来衡量一组数据的波动大小. 方差的单位是原数据单位的平方,而标准差的单位与原数据单位相同. 【典型例题】 类型一、方差和标准差 1. 一组数据-2,-1,0,1,2的方差是( ) A .1 B .2 C .3 D .4

标准差在人类生活中的应用及其意义

标准差在人类生活中的应用及其意义 摘要:生物统计是运用数学逻辑来分析和解释生物界数量资料的一门学科。标准差,中文环境中又常称均方差,但不同于均方误差,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 关键词:概率统计;标准差;成活率;水稻 引言:标准差,在概率统计中最常使用作为统计分布程度上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数

的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质: 为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。 标准计算公式: 假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值为μ, 标准差也被称为标准偏差,或者实验标准差,公式为 。 简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的集合 {0,5,9,14} 和 {5,6,8,9} 其平均值都是7 ,但第二个集合具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 1.资料整理: 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。 例如,A、B两组各有6位学生测试疏导的成活率,A组的成活率为95、85、75、65、55、45,B组的成活率为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为18.71分,B组的标准差为2.37分(此数据是在R统计软件中运行获得),说明A组学生测得的水稻成活率之间的差距要比B组学生测得的之间的差距大得多。 如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP); 如是抽样(即估算样本方差),根号内除以(n-1)(对应excel

计算平均值,方差,标准差的使用C++程序

#include #include #include using namespace std; void input(double*score,int n) { int i; for(i=0;i>score[i]; } } double Aver(double *score,int n) { int i; double Sum=0; for(i=0;i

{ Sum+=*(score+i); } return Sum/n; } int main(void) { double *score,sum=0; int n,i=0; double wc; cout<<"请输入仪器误差:"; cin>>wc; cout<<"请输入项数:"; cin>>n; score=new double[n]; input(score,n); for(;i

cout< #include #include using namespace std; void input(double*score,int n) { int i; for(i=0;i>score[i]; } }

方差 — 标准差

方差(Variance) [编辑] 什么是方差 方差和标准差是测度数据变异程度的最重要、最常用的指标。 方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。 标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。 [编辑] 方差的计算公式 设总体方差为σ2,对于未经分组整理的原始数据,方差的计算公式为: 对于分组数据,方差的计算公式为: 方差的平方根即为标准差,其相应的计算公式为: 未分组数据: 分组数据: [编辑]

样本方差和标准差 样本方差与总体方差在计算上的区别是:总体方差是用数据个数或总频数去除离差平方和,而样本方差则是用样本数据个数或总频数减1去除离差平方和,其中样本数据个数减1即n-1 称为自由度。设样本方差为,根据未分组数据和分组数据计算样本方差的公式分别为: 未分组数据: 分组数据: 未分组数据: 分组数据: 例:考察一台机器的生产能力,利用抽样程序来检验生产出来的产品质量,假设搜集的数据如下: 根据该行业通用法则:如果一个样本中的14个数据项的方差大于0.005,则该机器必须关闭待修。问此时的机器是否必须关闭? 解:根据已知数据,计算

因此,该机器工作正常。 方差和标准差也是根据全部数据计算的,它反映了每个数据与其均值相比平均相差的数值,因此它能准确地反映出数据的离散程度。方差和标准差是实际中应用最广泛的离散程度测度值。 ?函数VAR假设其参数是样本总体中的一个样本。如果数据为整个样本总体,则应使用函数VARP来计算方差。 ?参数可以是数字或者是包含数字的名称、数组或引用。 ?逻辑值和直接键入到参数列表中代表数字的文本被计算在内。 ?如果参数是一个数组或引用,则只计算其中的数字。数组或引用中的空白单元格、逻辑值、文本或错误值将被忽略。 ?如果参数为错误值或为不能转换为数字的文本,将会导致错误。 ?如果要使计算包含引用中的逻辑值和代表数字的文本,请使用VARA 函数。 ?函数VAR 的计算公式如下: 其中x 为样本平均值AVERAGE(number1,number2,…),n 为样本大小。 示例 假设有10 件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行抗断强度检验。 如果将示例复制到一个空白工作表中,可能会更容易理解该示例。 STDEV(number1,number2,...) Number1,number2,...为对应于总体样本的 1 到255 个参数。也可以不使用这种用逗号分隔参数的形式,而用单个数组或对数组的引用。 注解 ?函数STDEV 假设其参数是总体中的样本。如果数据代表全部样本总体,则应该使用函数STDEVP来计算标准偏差。 ?此处标准偏差的计算使用“n-1”方法。

相关文档