文档库 最新最全的文档下载
当前位置:文档库 › Q系列TMA热机械分析仪 产品介绍

Q系列TMA热机械分析仪 产品介绍

Q系列TMA热机械分析仪 产品介绍
Q系列TMA热机械分析仪 产品介绍

机械加工工艺过程的组成

工艺 §概述 一.机械加工工艺过程的组成 1.工序——工人,在工作地对工件所连续完成的工艺过程。 2.安装——经一次装夹后所完成的工序容 装夹——定位——加工前工件在机床或夹具上占据一正确的位置 夹紧——使正确位置不发生变化 增加安装误差 增加装夹时间——应尽量减少安装次数 3.工位——工件与工装可动部分相对工装固定部分所占的位置 多工位加工——提高生产率、保证加工面间的相互位置精度4.工步——加工表面和加工工具不变条件下所完成的工艺过程 一次安装中连续进行的若干相同的工步→1个工步 用几把不同刀具或复合刀具加工→复合工步 5.走刀——每进行一次切削——1次走刀 二.工艺规程 1.工艺规程的作用——①指导生产 ②组织生产和管理生产 ③新建、扩建或改建工厂及车间 2.工艺规程的设计原则——①技术上的先进性 ②经济上的合理性 ③良好的劳动条件

§机械加工工艺规程设计 一.零件的工艺分析 1.零件技术要求分析 ①加工表面的尺寸精度 ②主要加工表面的形状精度 ③主要加工表面之间的相互位置精度 ④各加工表面粗糙度以及表面质量方面的其他要求 ⑤热处理要求及其它技术要求(如动平衡等)。 1)零件的视图、技术要否齐全——主要技术要求和加工关键 2)零件图所规定的加工要否合理 3)零件的选材是否恰当,热处理要否合理 2.零件结构及其工艺性分析 ①结构组成——外圆柱面、圆锥面、平面、螺旋面、齿形面、成形面 ②结构组合——轴类、套筒类、盘环类、叉架类、箱体类 ★分析刚度及其方向 ③结构工艺性——保证使用要求的前提下,能否以高生产率和低成本制造二.毛坯的选择 1.毛坯种类的选择 铸件、锻件、焊接件、型材、冲压件、粉末冶金件和工程塑料件2.确定毛坯的形状和尺寸——尽量与零件接近 毛坯加工余量——毛坯制造尺寸与零件相应尺寸的差值——加工总余量 毛坯公差——毛坯制造尺寸的公差 ①为工件安装稳定,有些毛坯需工艺凸台 ②为加工方便,一些零件作整体毛坯——半圆形零件→合成整圆 小零件(垫圈)→合成1件

全球最先进动态热机械分析仪DMA

全球最先进动态热机械分析仪 MICOFORCE 米力光 动态热机械分析仪DMA可以测量的材料范围非常的宽。如:弹性体、热塑性塑料、热固性流体、复合材料、涂料和胶粘剂、陶瓷、金属等。特别是高分子材料方面应用最为广泛,由于其粘弹本质,其机械性能具有温度和频率的依赖性。DMA测量的材料性能包括:模量、阻尼、玻璃化温度、软化温度、固化速率和固化度、粘度、凝胶点、吸声性和抗冲击性、蠕变、应力松弛等性能。橡胶动态热机械分析仪DMA,复合材料动态热机械分析仪DMA,金属动态热机械分析仪DMA,陶瓷动态热机械分析仪DMA.橡胶动态热机械分析仪可以用于聚氨酯、生胶, 母胶和混炼胶、天然橡胶、丁腈橡胶、未硫化橡胶、硫化橡胶、环保油丁苯橡胶、充芳烃油丁苯橡胶、锡偶联溶聚丁苯橡胶、塑性丁苯橡胶、反式异戊橡胶釜内合金TPIR、乳聚丁苯橡胶ESBR、溴化丁基橡胶BIIR、和子午线轮胎的动态弹性模量 BOSE Electroforce DMA是目前国际上动态力和静态力最高的、变范围应最宽、温度范围最大的材料动态热机械分析仪,适用于塑料、橡胶、复合材料、纤维、陶瓷、金属、食品、医药、轮胎、航空航天特种材料等众多高端科研领域。BOSE 公司是世界500强公司,采用了全世界最先进的电磁驱动技术,把静态力和动态力做到最高,使得仪器拥有无与伦比的驱动控制能力和测试精度,测试数据重复性特别好。 通过dma测试,可以得到材料的动态模量、损耗角、阻尼等动态粘弹性能,考察材料的动态性能随温度、频率、时间的依赖关系,了解材料的组成和内部结

构信息,指导材料配方设计和新材料研发。由于材料动态力学测试的目的是要考察试样的微观内部结构和组成对材料实际宏观应用性能的影响,因此一款高性能和高精度的动态力学分析仪是十分必要的,而dma则是您的最佳选择! 由于Electroforce3550的动态力高,因此,除了常规的塑料树脂类材料测试外,还擅长测试各种金属、橡胶、弹性体、高强度复合材料、金属陶瓷等的动态拉伸、压缩、剪切等动态力学性能。 主要特点: 力值高,不仅满足常规聚合物塑料测试,更满足橡胶弹性体、金属陶瓷等各类材料的动态测试需要,最高力值15KN. 应变大,高应变范围,适合弹性体的动态拉伸应变、疲劳动态测试,,最大位移50mm. 一个电机控制,动态测试更稳定,性能更强大。 可配置各种脉冲动态载荷,例如轮胎脉冲、三角波、矩形波等类型的载荷,模拟实际力学状态。 世界500强制造,质量可靠。 技术参数: 动态力最高15000N,静态力高达10000N; 应变范围达50mm; 低温-150°C,高温可达1500摄氏度;

常用机械加工工艺术语概述(doc 18页)

常用机械加工工艺术语概述(doc 18页)

常用机械加工工艺术语(英汉对照) 1 工艺基本概念 1.1 一般概念 1.1.1数控加工:numerical control machining 根据被加工零件图样和工艺要求,编制成以数码表示的程序输入到机床的数控装置或控制计算机中,以控制工件和工具的相对运动,使之加工出合格零件的方法。 1.2生产对象 1.2.1 原材料:raw material 投入生产过程以创新产品的物质。 1.2.2主要材料:primary material; direct material 构成产品实体的材料。 1.2.3辅助材料:auxiliary material; indirect material 在生产中起辅助作用而不构成产品实体的材料。 1.2.4代用材料:substituent 在使用功能上能够代替原设计要求的材料。它具有被代替材料所具备的全部或主要性能。

1.2.5易损材料:quick-wear material 在正常使用条件下,容易损坏或失效的材料。 1.2.6废料:waste material 在制造某种产品过程中,剩下的而对本生产对象不再有用的材料。 1.2.7型材:section 金属或非金属材料通过拉制、轧制或压制等方法所获得的具有特定几何形状截面的材料。 1.2.8板材:plate 金属或非金属材料通过轧制或压制等方法而获得的各种不同厚度的板状材料。 1.2.9棒材:bar stock 金属或非金属材料通过拉延、轧制工艺获得的圆、方、六角形截面的材料。 1.2.10铸件:casting 将熔融金属浇入铸型,凝固后所得到的金属制件或毛坯。 1.2.11锻件:forgings 金属材料经过锻造变形而得到的工件或毛坯。 1.2.12焊接件:weldment 用焊接方法而得到的结合件。 1.2.13模压件:molded parts 利用模具压制的工件。 1.2.14冲压件:stamping 用冲压的方法制成的工件或毛坯。 1.2.15合格品:accepted product;;conforming article 通过检验质量特性符合标准要求的制品。 1.2.16不合格品: defective unit; non conforming article 通过检验,质量特性不符合标准要求的制品。 1.2.17废品:discard 不能修复又不能降级使用的制品。 1.2.18返修品:rewotking parts 通过修复或重行加工,质量特性符合标准要求的制品。 1.2.19样品:specimen ; sample 用于材料试验分析,产品质量对照及商品宣传的单个或多个物品。 1.2.20工件:workpiece

动态热机械分析测试

动态热机械分析测试 一、实验目的 1.熟悉动态力学分析仪(DMA)的的使用方法和工作原理,了解不同样品的测试方法和 手段。 2.通过聚合物PP 动态模量和力学损耗与温度关系曲线的测定,了解线性非结晶聚合物不 同的力学状态。 3.掌握玻璃化转变温度Tg 的求取并根据曲线得出一些结论,分析材料的热力学性质。 二、实验原理 动态热机械分析仪是研究物质的结构及其化学与物理性质最常用的物理方法之一,分析表征力学松弛和分子运动对温度或频率的依赖性,主要用于评价高聚物材料的使用性能、研究材料结构与性能的关系、研究高聚物的相互作用、表征高聚物的共混相容性、研究高聚物的热转变行为等。主要包括:①高聚物的玻璃化转变以及熔融行为;②高聚物的热分解或裂解以及热氧化降解;③新的或未知高聚物的鉴别;④释放挥发物的固态反应及其反应动研究;⑤高聚物的吸水性和脱水性研究,以及对水、挥发组分和灰分等的定量分析;⑥高聚物的结晶行为和结晶度;共聚物和共混物的组成、形态以及相互作用和共混相容性的研究。 所谓动态力学是指物质在交变载荷或振动力的作用下发生的松弛行为,所以DMA 就是研究在程序升温条件下测定这种行为的方法,高聚物是一种粘弹性物质,因此在交变力的作用下其弹性部分及粘性部分均有各自的反应,而这种反应又随温度的变化而改变。高聚物的动态力学行为能模拟实际使用情况,而且它对玻璃化转变、结晶、交联、相分离以及分子链各层次的运动都十分敏感,所以它是研究高聚物分子运动行为极有用的方法。 如果施加在试样上的交变应力为ζ,则产生的应变为ε,由于高聚物粘弹性的关系,其应变将滞后于应力,则ε、ζ分别以下式表示: ε=ε0exp iωt ζ=ζ0exp i(ωt+δ) 式中ε0、ζ0——分别为最大振幅的应变和应力; ω——交变力的角频率;δ——滞后相位角。 i=-1,此时复数模量:E*=ζ/ε=ζ0/ε0exp iδ=ζ0/ε0(cosδ+i sinδ)=E’+i E’’ 其中E’=ζ0/ε0 cosδ为实数模量,即模量的储能部分,而E’’=ζ0/ε0 sinδ表示与应变相差丌/2的虚数模量,是能量的损耗部分。另外还有用内耗因子Q-1 或损失角正切tanδ来表示损耗,即Q-1=tanδ=E’’/E’(或tanδ=G’’/G’, G 为切变模量)。

DMA动态热机械分析仪的选型

DMA动态热机械分析仪的选择 动态热机械分析仪DMA是材料测试分析应用中应用范围最广的一种设备,像弹性体、塑料、陶瓷、建材、金属、纸张、涂料油漆等膏状体、流体等等。尤其在弹性体研究领域,DMA测试有着不可替代的作用。但是目前市面上有多种DMA,其力值范围大小、可测试频率范围高低、机架刚度等均有差异,我们在 设备选型的时候带来很多困惑-什么样的DMA才真正满足我们的应用?尤其 对于目前科研主流的阻尼性材料和轮胎领域的橡胶动态热分析仪研究,我们稍作探讨。 在DMA的重要指标里,不同DMA之间差异主要机架刚度设计、力值范围 和频率范围、位移范围、温度范围及速率控制等。 1、力值的选择:DMA不像万能材料试验机,弹性模量高的材料并不意味 着需要大力值。应根据具体情况而定。但也并不是小载荷就能满足我们的应用。载荷太小,势必被测试样也要求过小,这种试样的边界条件就会对测试结果有很大的影响,如试样的表面粗糙度、表面状态、试样形状、材料特性(纤维、晶须、颗粒复合材料)等。根据研究表明,由于橡胶材料在玻璃化转变前后的模量变化最大(有时能达到7个数量级的变化),橡胶材料需要的力值范围最大(通常建议最好5个数量级以上),尤其目前某些行业应用于阻尼减震等领域的特种硅氟橡胶,其玻璃化转变温度几乎能达到-100°C,高温耐受程度也优于常规橡胶,在 进行此类测试有时可能需要进行-120°C~120°C的大范围的温度扫描,在这个过程中其力值变化要跨越数个数量级,这就要求测试设备必须有大的力值范围。比如,最大力值为500N,最小力值应小于0.005N。所以,DMA要求的是一个力 值范围,而不是一个力值。在-0.005N到0.005N的区间,精度范围较低(各 厂家都应提供这个测试盲点范围)。而在厂家表明的力值范围内(0.005到500N),精度较高。所以我们在选择DMA的力值时,更应关注力值范围。尤其是最小力 值能达到什么样的数量级。对于橡胶、金属、复合材料等,根据我们的具体应用,可以选择100~200N左右就够用了。较小力值的DMA,由于受其最小力值限制,在测试橡胶类的宽模量样品时无法同时兼顾高低温,略显不足(目前市场上DMA 测试最小力值最好的测试最小力值能达到0.001N,像Metravib公司的DMA系列);当然更高力值的DMA会更好,但价格会贵很多。

动态热机械法

动态热机械法(DMA) 内容摘要:动态热机械法的原理和动态热机械分析仪,以及DMA在高聚物、复合材料、木材等材料研究领域中的应用. 关键词:原理;DMA分析仪;高聚物;复合材料 一、引言 动态热机械分析技术DMA (Dynamic Mechanical Analysis)是在程序控制温度下,测量物资在振动负荷下的动态模量或力学损耗与温度关系的技术。DMA是测定高分子材料的各种转变,评价材料的耐热性、耐寒性、相容性、减震阻尼效率及加工工艺性能等的一种简便的方法,并为研究高分子的聚集态结构提供信息。由于高分子的玻璃化转变、结晶、取向、交联、相分离等结构变化都与分子运动状态的变化密切相关,而分子运动的变化又能在动态力学性能上灵敏的反映,因此,动态力学分析是研究高分子结构变化-分子运动-性能的一种有效手段。对于研究高分子材料科学与材料工程方面有着重要的指导意义。 二、DMA的原理 众所周知,高分子具有粘弹性,在适当的条件下,会发生滞后现象,当施加交变应力,应变会滞后一个相位角?。这种滞后与其本身的化学结构有关,更是与外界条件的作用有关。DMA技术把材料粘弹性分为两个模量:一是储能模量E′,E′与试样在每周期中贮存的最大弹性成正比,反映材料粘弹性中的弹性成分,表征材料的刚度;二是损耗模量E″,E″与试样在每周期中以热的形式消耗的能量成正比,反映材料粘弹性中的粘性成分,表征材料的阻尼。材料的阻尼也称力学内耗(Damping of materials),用Tan δ表示,材料在每周期中损耗的能量与最大弹性贮能之比,等于材料的损耗模量E″与贮能模量E′之比。当应变为Ε( t) =Ε sinΞt时,由于应力比应领变先一个相位角?δ。故 其中, ω是角频率, δ是相位角, 是应力峰值, ζ ε 是应变峰值。

最新常用机械加工英语

第1章切削加工基础知识 1.1切削加工概述 切削cutting; 加工machining; 金属切削metal cutting (metal removal); 金属切削工艺metal-removal process; 金属工艺学technology of metals; 机器制造machine-building; 机械加工machining; 冷加工cold machining; 热加工hot working; 工件workpiece; 切屑chip; 常见的加工方法universal machining method; 钻削drilling; 镗削boring; 车削turning; 磨削 grinding; 铣削milling; 刨削planning; 插削slotting ; 锉filing ; 划线lineation; 錾切carving; 锯sawing; 刮削facing; 钻孔boring; 攻丝tap; 1.2零件表面构成及成形方法 变形力deforming force; 变形deformation; 几何形状geometrical; 尺寸dimension ; 精度precision; 表面光洁度surface finish; 共轭曲线conjugate curve; 范成法generation method; 轴shaft; 1.3机床的切削运动及切削要素 主运动main movement; 主运动方向direction of main movement; 进给方向direction of feed; 进给运动feed movement; 合成进给运动resultant movement of feed; 合成切削运动resultant movement of cutting; 合成切削运动方向direction of resultant movement of cutting ; 切削速度cutting speed; 传动drive/transmission; 切削用量cutting parameters; 切削速度cutting speed; 切削深度depth of cut; 进给速度feed force; 切削功率cutting power; 1.4金属切削刀具 合金工具钢alloy tool steel; 高速钢high-speed steel; 硬质合金hard alloy;

机械制造技术概述

机械制造技术概述 -----------------------作者:

-----------------------日期:

第1章机械制造技术概述 教学目标与要求 ◆了解机械制造技术的发展概况 ◆了解生产过程与组织方式 ◆了解并掌握机械加工工艺过程的组成及其概念 教学重点 ◆生产过程与组织方式 ◆机械加工工艺过程的组成及其概念

1.1制造业与制造技术 1.1.1制造技术的发展概况 国民经济的发展和进步,在很大程度上取决于机械制造技术的水平和发展。可以看到,当今信息技术的发展,使传统的制造业革新了它原来的面貌,但这决不是削弱了它的重要地位,这一点已为不少国家经济发展的历史所证明。 表1-1机械制造的过去、现在和将来 当前,机械制造技术向着以下几个方面不断发展。 (1)向高柔性化和自动化方向发展。。 (2)精密加工和超精密加工的应用将日益广泛。 (3)发展高速切削、强力切削。。 (4)多种加工技术并行发展。 1.1.2机械制造技术 任何产品的制造活动都不是一个单一的过程,它通常包含了从市场调研到售后服务的全过程,并受到多种条件的相互作用,如图1-1所示。 机械制造技术是各种机械制造过程所涉及的技术的总 称,它通常包括以下内容。 材料(金属与非金属)成型技术 . ②切削加工技术 ③特种加工技术 ④机械装配技术 图1-1 制造活动过程

1.2生产过程与组织方式 1.2.1基本概念 1.生产过程 产品的制造过程实际上包括了零件加工、部件装配、整机制造等几种方式,通常可以划分为以下几个阶段。 生产技术准备过程 毛坯制造阶段 零件加工过程。 ④部件与产品的装配过程。 ⑤生产服务过程 生产过程可分为两大类型,一类是直接生产过程,它们直接改变被加工对象的形状、尺寸、性能和相对位置,另一类为辅助生产过程,如技术准备、售后服务等 2.生产纲领 产品的用途不同决定了产品的市场需求量不同,从而决定了产品有不同的产量,即生产纲领。这就要求生产组织方式要与产品的产量相适应。 生产纲领是企业在计划期内应当生产的产品产量,即包括备品和废品在内的(年)产量。 N=Qn(1+a)(1+b) 式中,a—备品率; b—废品率; Q—产品的计划期内产量; n—每件产品中该种零件的数量; N—零件的计划期内产量。 生产纲领和零件的类型决定了企业的生产类型和生产组织方式。 1.2.2生产类型与组织方式 按照年生产纲领,生产类型可划分成单件生产、成批生产、大量生产。成批生产又可以分为小批量生产、中批量生产和大批量生产3种。表1-2所示是各种生产类型的划分状况。 表1-2各种生产类型的划分 (件/年)

热机械分析(TMA)法测定塑料的转变温度

1热机械分析 TMA(thermomechanical analysis)热机械分析: 在加热过程中对试样进行力学测定的方法称为热—力法或热机械分析根据测定内容,热-力法可分为静态法和动态法两种。 1.静态热-力法 静态热—力法是对物质施加一定的负荷,测定其形变大小的方法。最初采用针入度法,用针状压杆触及试样,并施加负荷,随着温度上升到某一温度时,针状压杆急剧变动,此温度即作为试样的软化温度点。 如果在棒、膜或丝状试样的延伸方向施以力偶使之旋转,可以测定因温度变化而引起的模量变化。 采用拉伸法,也可以测定薄膜、纤维等物质的软化温度或热收缩参数等。因此可以根据使用条件,任意选取测定方法。 2.动态热-力法 动态力学测定可以确定贮能弹性模量和弹性损耗能量。如果能测定这两种物理量对频率的关系,可进行更详尽的热分析。 所属实验项目热机械分析(TMA)法测定塑 料的转变温度教材名称热机械分析(TMA)法测定塑料的 转变温度 教材简介 关键词制作日期2007-05-23 联系电话联系信箱 联系人课件是否完整播 放 精选内容 一、实验目的: 1、了解热机械分析的原理及方法,并测定有机玻璃的形变-温度曲线。 2、从形变-温度曲线了解聚合物的物理状态,并测定其玻璃化温度和粘流温度。 二、实验原理: 热机械分析是在等速升温下,测量样品由于温度变化所引起的模量或形变随温度变化的试验。本实验装置所画出的是形变-温度曲线。 形变-温度曲线的形状与升温速率,载荷大小及量程选择等实验条件有关。当这些参数都选定

之后,则仅仅与材料的组成、高分子的结构及聚集态结构有关。无定形线型聚合物的形变-温度曲线的基本形态如图1所示。随着温度的升高,聚合物分子中的原子振动,各基团的振动、转动以及分子链上的局部运动加剧使材料内部的自由体积增加。当自由体积达到2.5%左右时,分子链段能互移动,但整个分子链仍不能相互移动,于是材料从玻璃态转变到似革态。这一转变称为玻璃化转变。随着温度和链段活动性的进一步提高,聚合物材料进入高弹态。如果其分子量很大,且能在分子间形成较多的缠结或聚合物发生了化学交联,则这种橡胶平台区能延伸到很宽的温度范围。对于线型聚合物,随着温度的继续升高,不但链段运动更加剧烈,而且整个分子链也能够在应力作用下相互移动,这就导致聚合物进入粘性流动状态。有人还进一步把这种状态细分为橡胶流动和液体流动两段。这后一段,对塑料的成型加工极为重要。 温度 玻璃态 玻璃化转变 橡胶平台 区(高态态) 图1 无定形线型聚合物的形变-温度曲线示意图 即使是同一种聚合物,由于分子量的不同或支化、交联等情况的不同,曲线的形状也会不同。此外,还与聚集态结构或增塑剂的增加有关。聚合物结晶以后,曲线的形状要发生变化。结晶程度不同,曲线的形状也不相同。由此观之,TMA实验可以提供不少关于聚合物结构特点的信息。 三、实验设备: 1、热机械分析仪一台; 2、SWK-4C型数字温度控制仪一台; 3、WYJ晶体管稳压电源一台; 4、LZ3系列函数记录仪一台; 5、分压器一个; 6、基线校准用补偿线路一个。 四、实验步骤: 1、熟悉热机械曲线仪的构造及操作规程,其中包括SWK-4C型温度控制仪及LZ3系列函数记录仪的操作方法。 2、测量样品尺寸,并把样品放入样品池,装好压料杆(共有三节),加上所需砝码(本实验用三砝码,共658克),折合样品受力25kg/cm2。 3、将测量热电偶放入指定的孔内,至此,实验准备工作完毕。经实验教师检查合格后,可进行下操作。 4、按X-Y记录仪操作程序台上电源。打开直流电源开关(即WY-J晶体管稳压电源),输出电压控制为27V。接着将X-Y记录仪的X轴量程置于0.5mv/cm档,Y轴量程置于1mv/cm档。然后打开X-Y记录仪开关。旋转调另电位器,使记录笔位置停留在X=5cm,Y=5cm处。放下记录笔。 5、按照SWK-4C型温度控制仪的操作程序,合上电源(调压器在180V)启动仪器。按每分钟2?

动态机械分析仪 DMA 使用及管理办法

动态机械分析仪(DMA)使用及管理办法仪器名称:TA Instruments Dynamic Mechanical Analyzer DMA 2980 厂牌:TA Instruments (美商沃特斯), USA 型号:DMA 2980 A.仪器简介 「仪器简介」(附件一) B.使用前注意事项及操作步骤 1.「管理办法使用安全事项」(附件二) 2.「操作步骤」(附件三) C.仪器管理 1.校内使用者请填写「预约使用申请书」(附件四) 2.校外使用者请填写「贵仪中心委托检测单」(附件五) 3.「仪器校正步骤」(附件六) 4.「管理、服务人员职责」(附件七)

附件一:仪器简介 动态机械分析仪(DMA) TA Instruments Dynamic Mechanical Analyzer DMA 2980 DMA 是测量样品在程式温度过程中,在一定频率的交变力的作用下的应变行为,测量其储能模量、损耗模量和损耗因数等参数随温度、时间与力的频率的函数关系。由此可以得到材料的粘弹谱(粘弹性能随温度与频率的变化关系),推断材料的内在结构转变如玻璃化转变、二级相变、链段松弛、蠕变等过程,并可计算相关的转变活化能。 仪器名称:TA Instruments Dynamic Mechanical Analyzer DMA 2980 厂牌: TA Instruments (美商沃特斯), USA 型号: DMA 2980 DMA 原理 所有材料在温度变化时都会有物性上的变化,如膨胀收缩、软化、交联硬化等,而为一窥材料在不同温度下的物性,常用的量测工具之一是动态机械分析仪(Dynamic Mechanical Analyzer, DMA)。一般材料会受到自然界中的三种环境变化影响而改变其物理特性,分别为力量(Force)、 频率(Frequency)以及温度(Temperature)。施加大小不同的力量於材料时,材料特性会有所不同;施力的频率不同,材料特性亦有所不同,施力频率高则材料会变得更为坚硬,施力频率低则材料会较为柔软;相较之下,温度的变化即更为显而?DT ?DT ?DT

机械加工概述

第一节制造过程的基本概念 一、生产过程与工艺过程 生产过程是指将原材料转变为成品的全过程。它包括原材料的准备、运输和保存,生产的准备,毛坯的制造,毛坯经过加工、热处理而成为零件,零件、部件经装配成为产品,机械的质量检查及其运行试验、调试,机械的油漆与包装等。 工艺过程是指在生产过程中,通过改变生产对象的形状、相互位置和性质等,使其成为成品或半成品的过程。机械产品的工艺过程又可分为铸造、锻造、冲压、焊接、机械加工、热处理、装配、涂装等工艺过程。其中与原材料变为成品直接有关的过程,称为直接生产过程,是生产过程的主要部分。而与原材料变为产品间接有关的过程,如生产准备、运输、保管、机床与工艺装备的维修等,称为辅助生产过程。 机械制造的工艺过程一般包括零件的机械加工工艺过程和机器的装配工艺过程。 机械加工工艺过程(以下简称加工过程)是指用机械加工的方法直接改变毛坯的形状、尺寸、相对位置和性质等使之成为合格零件的工艺过程。从广义上来说电加工、超声波加工、电子束离子束等加工也属于加工过程。加工过程直接决定零件和机械产品的质量,对产品的成本和生产率都有较大影响,是整个工艺过程的重要组成部分。 二、机械加工工艺过程的组成 由于零件加工表面的多样性、生产设备和加工手段的加工范围的局限性、零件精度要求及产量的不同,通常零件的加工过程是由若干个顺次排列的工序组成的。工序是加工过程的基本组成单元。每一个工序又可分为一个或若干个安装、工位、工步或走刀。毛坯依次通过这些工序而变成零件。 1. 工序 工序是一个或一组工人,在相同的工作地对同一个或同时对几个工件连续完成的那一部分工艺过程。 工序是组成工艺过程的基本单元,也是生产计划、成本核算的基本单元。一个零件的加工过程需要包括哪些工序,由被加工零件的复杂程度、加工精度要求及其产量等因素决定。如图 8-1 所示的阶梯轴,在单件小批生产

动态热机械分析测量玻璃化温度

动态热机械分析测量玻璃化温度 介绍 玻璃化转变温度是高分子材料使用的一项重要技术标准。合成橡胶的应用范围通常局限于明显高于玻璃化转变温度的温度,以确保形变行为远离焓变。 然而,高分子的玻璃化转变温度大部分取决于频率,并且合成橡胶的变形常常与时间长短有关(例如,密封、轮胎表面等)。这表明在静态环境下(例如,使用D S C)测量的玻璃化转变不能很好的表征动态应力材料在低温下的行为。 通过施加定期应力的方法测量玻璃化转变可以确定动态应力弹性材料的温度限制。测量频率当然应该与实际受到应力的化合物的频率相一致。 如果不能进行这样的测量,例如频率显著高于或低于仪器的测量范围,则可以根据时间-温度重叠原理外推出玻璃化转变温度。通过WLF的半经验式或Vogel-Fulcher等式可以得到玻璃化转变温度与测量频率间的定量关系。本文从温度相关性和频率相关性的剪切模量测量中测定了部分橡胶(NR、BR、SBR、NBR、IIR)的频率与时间的试验关系。使用WLF半经验式或Vogel-Fulcher等式进行时间-温度重叠原理的定量描述。 样品和样品准备 准备频率相关性和温度相关性测量的样品,在80oC下用2 M Pa的力将高分子原材料压制成2-mm厚的薄片。在每次测量时,将DMA双夹层样品架使用的两个直径6-mm的圆筒从薄片中穿孔压过。用梅特勒-托利多的DMA/SDTA861e动态机械分析仪对NR(天然橡胶)、BR(聚丁二烯橡胶)共聚物、SBR、NBR、EPDN和IIR共聚物进行动态机械测量。 测量和结果 首先,测量每 个样品的复合 剪切模量与温 度间的关系。 为此,先将高 分子原材料完 全冷却至玻璃 化转变温度以 下,然后在1K/ min的加热速率 下(升温至 100oC),用五 种频率(1Hz、 10Hz、100 Hz、 300Hz和1000 图1:不同频率下VSL5025-0(含25%苯乙烯+50%乙烯基的L-SBR)温度相关性的测量H z)测量复合 模量。图1显示的是从含25%苯乙烯+50%乙烯基(在1、2位置的聚丁烯)的水溶聚合丁苯橡胶(L-S B R)的温度相关性测量中获得的曲线。从温度最大损耗模量中可以测定玻璃化转变温度。正如预期的,玻璃化转变温度随着测量频率的增加而增加。

相关文档
相关文档 最新文档