文档库 最新最全的文档下载
当前位置:文档库 › (完整版)BP神经网络的基本原理_一看就懂

(完整版)BP神经网络的基本原理_一看就懂

(完整版)BP神经网络的基本原理_一看就懂
(完整版)BP神经网络的基本原理_一看就懂

5.4 BP神经网络的基本原理

BP(Back Propagation)网络是1986年由Rinehart和

McClelland为首的科学家小组提出,是一种按误差逆传播算

法训练的多层前馈网络,是目前应用最广泛的神经网络模型

之一。BP网络能学习和存贮大量的输入-输出模式映射关系,

而无需事前揭示描述这种映射关系的数学方程。它的学习规

则是使用最速下降法,通过反向传播来不断调整网络的权值

和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结

构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。

5.4.1 BP神经元

图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本

也是最重要的功能:加权、求和与转移。其中x

1、x

2

…x

i

…x

n

分别代表来自神经元1、2…i…n

的输入;w

j1、w

j2

…w

ji

…w

jn

则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权

值;b

j 为阈值;f(·)为传递函数;y

j

为第j个神经元的输出。

第j个神经元的净输入值为:

(5.12)

其中:

若视,,即令及包括及,则

于是节点j的净输入可表示为:

(5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出:

(5.14)

式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。

5.4.2 BP网络

BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。

5.4.2.1 正向传播

设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f

(·),

1

(·),则隐层节点的输出为(将阈值写入求和项中):

输出层的传递函数为f

2

k=1,2,……q (5.15)输出层节点的输出为:

j=1,2,……m (5.16)至此B-P网络就完成了n维空间向量对m维空间的近似映射。

5.4.2.2 反向传播

1)定义误差函数

输入个学习样本,用来表示。第个样本输入到网络后得到输出

(j=1,2,…m)。采用平方型误差函数,于是得到第p个样本的误差E p:

(5.17)式中:为期望输出。

对于个样本,全局误差为:

(5.18)2)输出层权值的变化

采用累计误差BP算法调整,使全局误差变小,即

(5.19)式中:—学习率

定义误差信号为:

其中第一项:

(5.21)第二项:

(5.22)是输出层传递函数的偏微分。

于是:

(5.23)由链定理得:

(5.24)于是输出层各神经元的权值调整公式为:

(5.25)3)隐层权值的变化

(5.26)定义误差信号为:

其中第一项:

(5.28)依链定理有:

(5.29)第二项:

(5.30)是隐层传递函数的偏微分。

于是:

(5.31)由链定理得:

(5.32)从而得到隐层各神经元的权值调整公式为:

(5.33)5.4.3 BP算法的改进

BP算法理论具有依据可靠、推导过程严谨、精度较高、通用性较

好等优点,但标准BP算法存在以下缺点:收敛速度缓慢;容易

陷入局部极小值;难以确定隐层数和隐层节点个数。在实际应用

中,BP算法很难胜任,因此出现了很多改进算法。

1)利用动量法改进BP算法

标准BP算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢。动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:

(5.34)

其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间。这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性。动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小。

2)自适应调整学习速率

标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散。可采用图5.5所示的自适应方法调整学习率。

调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,

直到收敛为止。

3)动量-自适应学习速率调整算法

采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间。将以上两种方法结合起来,就得到动量-自适应学习速率调整算法。

4)L-M学习规则

L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间。L-M(Levenberg-Marquardt)优化方法的权值调整率选为:

(5.35)

其中:e—误差向量;J—网络误差对权值导数的雅可比(Jacobian)矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton法,在这种方法中,μ也是自适应调整的。

综合考虑,拟采用L-M学习规则和动量法分别作为神经网络的训练函数和学习函数。

5.5 BP神经网络的训练策略及结果

本文借助于MATLAB神经网络工具箱来实现多层前馈BP网络(Multi-layer feed-forward backpropagation network)的颜色空间转换,免去了许多编写计算机程序的烦恼。神经网络的实际输出值与输入值以及各权值和阈值有关,为了使实际输出值与网络期望输出值相吻合,可用含有一定数量学习样本的样本集和相应期望输出值的集合来训练网络。训练时仍然使用本章5.2节中所述的实测样本数据。

另外,目前尚未找到较好的网络构造方法。确定神经网络的结构和权系数来描述给定的映射或逼近一个未知的映射,只能通过学习方式得到满足要求的网络模型。神经网络的学习可以理解为:对确定的网络结构,寻找一组满足要求的权系数,使给定的误差函数最小。设计多层前馈网络时,主要侧重试验、探讨多种模型方案,在实验中改进,直到选取一个满意方案为止,可按下列步骤进行:对任何实际问题先都只选用一个隐层;使用很少的隐层节点数;不断增加隐层节点数,直到获得满意性能为止;否则再采用两个隐层重复上述过程。

训练过程实际上是根据目标值与网络输出值之间误差的大小反复调整权值和阈值,直到此误差达到预定值为止。

5.5.1 确定BP网络的结构

确定了网络层数、每层节点数、传递函数、初始权系数、学习算法等也就确定了BP网络。确定这些选项时有一定的指导原则,但更多的是靠经验和试凑。

1)隐层数的确定:

1998年Robert Hecht-Nielson证明了对任何在闭区间内的连续函数,都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映照。因此我们从含有一个隐层的网络开始进行训练。

2) BP网络常用传递函数:

BP网络的传递函数有多种。Log-sigmoid型函数的输入值可取任意值,输出值在0和1之间;tan-sigmod型传递函数tansig的输入值可取任意值,输出值在-1到+1之间;线性传递函数purelin的输入与输出值可取任意值。BP网络通常有一个或多个隐层,该层中的神经元均采用sigmoid型传递函数,输出层的神经元则采用线性传递函数,整个网络的输出可以取任意值。各种传递函数如图5.6所示。

只改变传递函数而其余参数均固定,用本章5.2节所述的样本集训练BP网络时发现,传递函数使用tansig函数时要比logsig函数的误差小。于是在以后的训练中隐层传递函数改用tansig函数,输出层传递函数仍选用purelin函数。

3)每层节点数的确定:

使用神经网络的目的是实现摄像机输出RGB颜色空间与CIE-XYZ色空间转换,因此BP网络的输入层和输出层的节点个数分别为3。下面主要介绍隐层节点数量的确定。

对于多层前馈网络来说,隐层节点数的确定是成败的关键。若数量太少,则网络所能获取的用以解决问题的信息太少;若数量太多,不仅增加训练时间,更重要的是隐层节点过多还可能出现所谓“过渡吻合”(Overfitting)问题,即测试误差增大导致泛化能力下降,因此合理选择隐层节点数非常重要。关于隐层数及其节点数的选择比较复杂,一般原则是:在能正确反映输入输出关系的基础上,应选用较少的隐层节点数,以使网络结构尽量简单。本论文中采用网络结构增长型方法,即先设置较少的节点数,对网络进行训练,并测试学习误差,然后逐渐增加节点数,直到学习误差不再有明显减少为止。

5.5.2 误差的选取

在神经网络训练过程中选择均方误差MSE较为合理,原因如下:

①标准BP算法中,误差定义为:

(5.36)

每个样本作用时,都对权矩阵进行了一次修改。由于每次权矩阵的修改都没有考虑权值修改后其它样本作用的输出误差是否也减小,因此将导致迭代次数增加。

②累计误差BP算法的全局误差定义为:

(5.37)

这种算法是为了减小整个训练集的全局误差,而不针对某一特定样本,因此如果作某种修改能使全局误差减小,并不等于说每一个特定样本的误差也都能同时减小。它不能用来比较P和m不同的网络性能。因为对于同一网络来说,P越大,E也越大; P值相同,m越大E也越大。

③均方误差MSE:

(5.38)

其中:—输出节点的个数,—训练样本数目,—网络期望输出值,—网络实际输出值。均方误差克服了上述两种算法的缺点,所以选用均方误差算法较合理。

5.5.3 训练结果

训练一个单隐层的三层BP网络,根据如下经验公式选择隐层节点数[125]:

(5.39)

取式中:n为输入节点个数,m为输出节点个数,a为1到10之间的常数。针对本论文n

1

值范围为3~13。训练结果如表5.1所示。

表5.1 隐层节点数与误差的关系

隐层神经元个数训练误差测试误差

3 1.25661 1.1275

4 0.797746 0.8232

5 0.631849 0.7278

6 0.570214 0.6707

7 0.552873 0.6895

8 0.445118 0.6575

9 0.385578 0.6497

10 0.259624 0.4555

11 0.185749 0.6644

12 0.183878 0.48

13 0.168587 0.6671

由上表可以看出:

①增加隐层节点数可以减少训练误差,但超过10以后测试误差产生波动,即泛化能力发生变化。综合比较隐层节点数为10与12的训练误差和测试误差,决定隐层节点数选用12。

②训练误差和测试误差都很大,而且收敛速度极慢(训练过程如图5.7所示),这个问题可以通过对输出量进行归一化来解决。

根据Sigmoid型传递函数输入和输出的范围,对输入变量不进行归一化处理,只对输出变量进行归一化,这是因为在输出数据要求归一化的同时,对输入数据也进行归一化的话,权值的可解释性就更差了。目标值按下式进行变化:

(5.40)

使目标值落在0.05~0.95之间,这样靠近数据变化区间端点的网络输出值就有一波动范围,网络的性能较好。用新生成的训练样本与测试样本对隐层节点数为12的网络进行训练,得到的训练误差为9.89028×10-5,测试误差为1.9899×10-4,达到了预定的目标(训练过程如图5.8所示)。

5.6 最终训练后的神经网络结构

采用三层BP网络实现摄像机输出RGB颜色空间与CIEXYZ色空间转换,其中隐层含有12个节点,传递函数采用tansig函数;输出层传递函数选用purelin函数。经过测试后结果满意,可以认为该神经网络可以用来实现这个关系映射。网络的结构如图5.9所示:

得到的BP神经网络的权值和阈值为:

5.7 本章小结

1)定量地分析了用线性关系转换摄像机RGB空间到CIE-XYZ空间数据后产生的均方误差,表明CCD摄像机与标准观察者之间有比较明显的差别,也就是说RGB与CIE-XYZ间的转换是非线性的。

2)采用MATLAB 中神经网络工具箱实现多层前馈BP网络的RGB到CIEXYZ颜色空间转换,用经过归一化的训练样本与测试样本对隐层节点数为12的三层网络进行训练,得到的训练误差为9.89028×10-5,测试误差为1.9899×10-4,结果表明经过训练的多层前馈BP网络可以满足RGB空间向CIEXYZ颜色空间转换要求,达到了预定目标。

3)确定了用于RGB和XYZ颜色空间转换的BP网络结构,并求出了该神经网络的权值和阈值。使用该网络可以定量表达食品颜色,定量比较高压加工食品颜色的变化,可以使食品颜色测定和控制实现定量化,而不再是主观性很强的模糊描述。

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5: BP神经网络预测的matlab代码: P=[ 0 0.1386 0.2197 0.2773 0.3219 0.3584 0.3892 0.4159 0.4394 0.4605 0.4796 0.4970 0.5278 0.5545 0.5991 0.6089 0.6182 0.6271 0.6356 0.6438 0.6516

0.6592 0.6664 0.6735 0.7222 0.7275 0.7327 0.7378 0.7427 0.7475 0.7522 0.7568 0.7613 0.7657 0.7700] T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.4893 0.2357 0.4866 0.2249 0.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.1848 0.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.2403 0.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ] threshold=[0 1] net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');

基于BP神经网络预测模型指南

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

BP神经网络实验 Matlab

计算智能实验报告 实验名称:BP神经网络算法实验 班级名称: 2010级软工三班 专业:软件工程 姓名:李XX 学号: XXXXXX2010090

一、实验目的 1)编程实现BP神经网络算法; 2)探究BP算法中学习因子算法收敛趋势、收敛速度之间的关系; 3)修改训练后BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。 二、实验要求 按照下面的要求操作,然后分析不同操作后网络输出结果。 1)可修改学习因子 2)可任意指定隐单元层数 3)可任意指定输入层、隐含层、输出层的单元数 4)可指定最大允许误差ε 5)可输入学习样本(增加样本) 6)可存储训练后的网络各神经元之间的连接权值矩阵; 7)修改训练后的BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果。 三、实验原理 1 明确BP神经网络算法的基本思想如下: 在BPNN中,后向传播是一种学习算法,体现为BPNN的训练过程,该过程是需要教师指导的;前馈型网络是一种结构,体现为BPNN的网络构架 反向传播算法通过迭代处理的方式,不断地调整连接神经元的网络权重,使得最终输出结果和预期结果的误差最小 BPNN是一种典型的神经网络,广泛应用于各种分类系统,它也包括了训练和使用两个阶段。由于训练阶段是BPNN能够投入使用的基础和前提,而使用阶段本身是一个非常简单的过程,也就是给出输入,BPNN会根据已经训练好的参数进行运算,得到输出结果 2 明确BP神经网络算法步骤和流程如下: 1初始化网络权值 2由给定的输入输出模式对计算隐层、输出层各单元输出 3计算新的连接权及阀值, 4选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。

用matlab编BP神经网络预测程序加一个优秀程序

求用matlab编BP神经网络预测程序 求一用matlab编的程序 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net_1.IW{1,1} inputbias=net_1.b{1} % 当前网络层权值和阈值 layerWeights=net_1.LW{2,1} layerbias=net_1.b{2} % 设置训练参数 net_1.trainParam.show = 50; net_1.trainParam.lr = 0.05; net_1.trainParam.mc = 0.9; net_1.trainParam.epochs = 10000; net_1.trainParam.goal = 1e-3; % 调用TRAINGDM 算法训练BP 网络 [net_1,tr]=train(net_1,P,T); % 对BP 网络进行仿真 A = sim(net_1,P); % 计算仿真误差 E = T - A; MSE=mse(E) x=[。。。]';%测试 sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 不可能啊我2009 28对初学神经网络者的小提示

第二步:掌握如下算法: 2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。 3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。 4.ART(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第15和16章。若看理论分析较费劲可直接编程实现一下16.2.7节的ART1算法小节中的算法. 4.BP算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社,Tom M. Mitchell著,中英文都有)的第4章和《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第11章。 BP神经网络Matlab实例(1) 分类:Matlab实例 采用Matlab工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考Matlab帮助文档。 % 例1 采用动量梯度下降算法训练BP 网络。 % 训练样本定义如下: % 输入矢量为 % p =[-1 -2 3 1 % -1 1 5 -3] % 目标矢量为t = [-1 -1 1 1] close all clear clc % --------------------------------------------------------------- % NEWFF——生成一个新的前向神经网络,函数格式: % net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes, % PR -- R x 2 matrix of min and max values for R input elements % (对于R维输入,PR是一个R x 2 的矩阵,每一行是相应输入的

BP神经网络matlab源程序代码

close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 % 定义训练样本 % P为输入矢量 P=[0.7317 0.6790 0.5710 0.5673 0.5948;0.6790 0.5710 0.5673 0.5948 0.6292; ... 0.5710 0.5673 0.5948 0.6292 0.6488;0.5673 0.5948 0.6292 0.6488 0.6130; ... 0.5948 0.6292 0.6488 0.6130 0.5654; 0.6292 0.6488 0.6130 0.5654 0.5567; ... 0.6488 0.6130 0.5654 0.5567 0.5673;0.6130 0.5654 0.5567 0.5673 0.5976; ... 0.5654 0.5567 0.5673 0.5976 0.6269;0.5567 0.5673 0.5976 0.6269 0.6274; ... 0.5673 0.5976 0.6269 0.6274 0.6301;0.5976 0.6269 0.6274 0.6301 0.5803; ... 0.6269 0.6274 0.6301 0.5803 0.6668;0.6274 0.6301 0.5803 0.6668 0.6896; ... 0.6301 0.5803 0.6668 0.6896 0.7497]; % T为目标矢量 T=[0.6292 0.6488 0.6130 0.5654 0.5567 0.5673 0.5976 ... 0.6269 0.6274 0.6301 0.5803 0.6668 0.6896 0.7497 0.8094]; % Ptest为测试输入矢量 Ptest=[0.5803 0.6668 0.6896 0.7497 0.8094;0.6668 0.6896 0.7497 0.8094 0.8722; ... 0.6896 0.7497 0.8094 0.8722 0.9096]; % Ttest为测试目标矢量 Ttest=[0.8722 0.9096 1.0000]; % 创建一个新的前向神经网络 net=newff(minmax(P'),[12,1],{'logsig','purelin'},'traingdm'); % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 5000; net.trainParam.goal = 0.001; % 调用TRAINGDM算法训练 BP 网络 [net,tr]=train(net,P',T); % 对BP网络进行仿真 A=sim(net,P'); figure; plot((1993:2007),T,'-*',(1993:2007),A,'-o'); title('网络的实际输出和仿真输出结果,*为真实值,o为预测值'); xlabel('年份'); ylabel('客运量'); % 对BP网络进行测试 A1=sim(net,Ptest');

基于Bp神经网络的股票预测

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] Stock analysis and forecasting is a complex field of study. The paper will make research on stock prediction model based on the analysis of historical data, using BP neural network and technical analysis theory. At the same time, making in-depth theoretical analysis and empirical studies on the short-term closing price forecasts of single stock. Secondly, making research on the model and structure of BP neural network, learning rules, weights of BP algorithm and so on, building a stock short-term forecasting model based on the BP neural network, related with the model of neural network and the ability of generalization. Moreover, using system of multiple-input single-output and single hidden layer, to forecast the sixth day price by BP neural network forecasting model structured. The network of training is chosen BP algorithm of traingdx, while making optimization on the node numbers of the hidden layer by several attempts. Thereby resolve effectively the problem of it. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因素,虽然股票的价值是公司未来现金流的折现,由公司的基本面所决定,但是由于公司基本面的数据更新时间慢,且很多时候并不能客观反映公司的实际状况,采用适当数学模型就能在一定

BP神经网络matlab实例

神经网络Matlab p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2

S S SNl:各层的神经元个数。 [1 2...] TF TF TFNl:各层的神经元传递函数。 { 1 2...} BTF:训练用函数的名称。 (2)网络训练 = [,,,,,] (,,,,,,) net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp' BP网络的训练函数 训练方法训练函数 梯度下降法traingd 有动量的梯度下降法traingdm 自适应lr梯度下降法traingda 自适应lr动量梯度下降法traingdx 弹性梯度下降法trainrp Fletcher-Reeves共轭梯度法traincgf Ploak-Ribiere共轭梯度法traincgp Powell-Beale共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlm

BP神经网络的预测理论的及程序 学习

12、智能算法 12.1 人工神经网络 1、人工神经网络的原理假如我们只知道一些输入和相应的输出,但是不清楚这些输入和输出之间的具体关系是什么,我们可以把输入和输出之间的未知过程看成是一个“网络”,通过不断的网络输入和相应的输出进行“训练”(学习),网络根据输入和对应输出不断调整连接网络的权值,直到满足我们的目标要求,这样就训练好了一个神经网络,当我们给定一个输入, 网络就会计算出一个相应的输出。 2、网络结构神经网络一般有一个输入层,多个隐层,和一个输出层。隐层并非越多越好。如下图所示: 神经网络工具箱几乎 MATLAB 12.2 Matlab 神经网络工具箱 BP 网络和涵盖了所有的神经网络的基本常用模型,如感知器、nntool nftool,nctool,nprtool,nntraintool 和等。它由RBFNN 函数逼近和数据拟合、信息处理和预测、神经网组成。主要应用于

在实际应用中,针对具体的问题,首先络控制和故障诊断等领域。.需要分析利用神经网络来解决问题的性质,然后依据问题的特点,提取训练和测试数据样本,确定网络模型,最后通过对网络进行训练、仿真等检验网络的性能是否满足要求。具体过程如下: (1)确定信息表达的方式,主要包括数据样本已知;数据样本之间相互关系不明确;输入/输出模式为连续的或离散的;数据样本的预处理;将数据样本分成训练样本和测试样本。 (2)网络模型的确定。确定选择何种神经网络以及网络层数。 (3)网络参数的选择,如输入输出神经元个数的确定,隐层神经元的个数等。 (4)训练模式的确定,包括选择合理的训练算法、确定合适的训练步数、指定适当的训练目标误差等 (5)网络测试,选择合理的样本对网络进行测试。 简单来讲就是三个步骤:建立网络(newXX)—训练网络(trainXX)—仿真网络(sim) 12.3 BP 神经网络的 Matlab 相关函数 BP 算法的基本思想:学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号作为修正各单元权

求用matlab编BP神经网络预测程序

求用编神经网络预测程序 求一用编的程序[。。。];输入[。。。];输出 创建一个新的前向神经网络((),[],{'',''},'') 当前输入层权值和阈值{} {} 当前网络层权值和阈值{} {} 设置训练参数 ; ; ; ; ; 调用算法训练网络[](); 对网络进行仿真 (); 计算仿真误差 ; () [。。。]'测试 () 不可能啊我 对初学神经网络者的小提示

第二步:掌握如下算法: .最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第章的第十节:“最小二乘法”。 .在第步的基础上看学习算法、和近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社, . 等著,中英文都有)、《神经网络设计》(机械工业出版社, . 等著,中英文都有)。 (自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社, . 等著,中英文都有)的第和章。若看理论分析较费劲可直接编程实现一下节的算法小节中的算法. 算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社, . 著,中英文都有)的第章和《神经网络设计》(机械工业出版社, . 等著,中英文都有)的第章。 神经网络实例() 分类:实例 采用工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考帮助文档。 例采用动量梯度下降算法训练网络。 训练样本定义如下: 输入矢量为 [ ] 目标矢量为[ ] ——生成一个新的前向神经网络,函数格式: (,[ ],{ }) , (对于维输入,是一个的矩阵,每一行是相应输入的边界值) 第层的维数 第层的传递函数, '' 反向传播网络的训练函数, '' 反向传播网络的权值阈值学习函数, ''

BP神经网络matlab源程序代码

BP神经网络matlab源程序代码) %******************************% 学习程序 %******************************% %======原始数据输入======== p=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;... 3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;... 4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;... 2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;... 2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;... 3489 3172 4568;3172 4568 4015;]'; %===========期望输出======= t=[4554 2928 3497 2261 6921 1391 3580 4451 2636 3471 3854 3556 2659 ... 4335 2882 4084 1999 2889 2175 2510 3409 3729 3489 3172 4568 4015 ... 3666]; ptest=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;... 3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;... 4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;... 2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;... 2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;... 3489 3172 4568;3172 4568 4015;4568 4015 3666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %将数据归一化 NodeNum1 =4; % 隐层第一层节点数 NodeNum2=7; % 隐层第二层节点数 TypeNum = 5; % 输出维数 TF1 = 'tansig';

BP神经网络预测代码

x=[54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368

80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507

112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448

134480 135030 135770 136460 137510]'; % 该脚本用来做NAR神经网络预测 % 作者:Macer程 lag=3; % 自回归阶数 iinput=x; % x为原始序列(行向量) n=length(iinput); %准备输入和输出数据 inputs=zeros(lag,n-lag); for i=1:n-lag %绘制误差的自相关情况(20lags) figure, parcorr(errors) %绘制偏相关情况 %[h,pValue,stat,cValue]= lbqtest(errors) %Ljung-Box Q检验(20lags)figure,plotresponse(con2seq(targets),con2seq(yn)) %看预测的趋势与原趋势%figure, ploterrhist(errors) %误差直方图

BP神经网络matlab程序入门实例

认真品味,定会有收获。 BP神经网络matlab源程序代码) %原始数据输入 p=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;]'; %期望输出 t=[4554292834972261692113913580445126363471385435562659... 4335288240841999288921752510340937293489317245684015... 3666]; ptest=[284528334488;283344884554;448845542928;455429283497;2928 34972261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;456840153666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);%将数据归一化 NodeNum1=20;%隐层第一层节点数 NodeNum2=40;%隐层第二层节点数 TypeNum=1;%输出维数 TF1='tansig'; TF2='tansig'; TF3='tansig'; net=newff(minmax(pn),[NodeNum1,NodeNum2,TypeNum], {TF1TF2TF3},'traingdx'); %网络创建traingdm net.trainParam.show=50; net.trainParam.epochs=50000;%训练次数设置 net.trainParam.goal=1e-5;%训练所要达到的精度

bp神经网络MATLAB程序

%清空环境变量 clc clear %读取数据 a=xlsread('F:\4.数据挖掘讲义—马景义\数据和程序\matlab\one-input.csv'); b=xlsread('F:\4.数据挖掘讲义—马景义\数据和程序\matlab\output.csv'); c=xlsread('F:\4.数据挖掘讲义—马景义\数据和程序\matlab\c.csv'); save data1.mat b save data2.mat a load data1 load data2 %节点个数 inputnum=42; hiddennum=8; outputnum=1; %训练数据和预测数据 input_train=a(:,1:90); input_test=a(:,91:137); output_train=b(:,1:90); output_test=b(:,91:137); %将训练样本输入输出数据归一化 [inputn,inputps]=mapminmax(input_train); [outputn,outputps]=mapminmax(output_train); %构建BP神经网络 net=newff(inputn,outputn,[20,12],{'tansig','purelin'},'traingdx'); net.trainParam.epochs=1000; net.trainParam.lr=0.01; net.trainParam.goal=0.00000001; %BP神经网络训练 net=train(net,inputn,outputn); %测试样本归一化 inputn_test=mapminmax('apply',input_test,inputps); %BP神经网络预测 an=sim(net,inputn_test); %%网络得到数据反归一化 BPoutput=mapminmax('reverse',an,outputps); d=BPoutput>c figure(1) %plot(d,':og'); scatter(1:(137-90),d,'rx'); hold on; %plot(output_test,'-*'); scatter(1:(137-90),output_test,'o'); legend('预测输出','期望输出','fontsize',12); title('BP网络预测输出','fontsize',12); xlabel('样本','fontsize',12);

bp神经网络及matlab实现解析

bp神经网络及matlab实现 分类:算法学习2012-06-20 20:56 66399人阅读评论(28) 收藏举报网络matlab算法functionnetworkinput 本文主要内容包括:(1) 介绍神经网络基本原理,(2) https://www.wendangku.net/doc/2717331388.html,实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法。 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.wendangku.net/doc/2717331388.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示:

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

BP神经网络预测实例

%% 清空环境变量 clc clear %% 训练数据预测数据 data=importdata('test.txt'); %从1到768间随机排序 k=rand(1,768); [m,n]=sort(k); %输入输出数据 input=data(:,1:8); output =data(:,9); %随机提取500个样本为训练样本,268个样本为预测样本input_train=input(n(1:500),:)'; output_train=output(n(1:500),:)'; input_test=input(n(501:768),:)'; output_test=output(n(501:768),:)'; %输入数据归一化 [inputn,inputps]=mapminmax(input_train); %% BP网络训练 % %初始化网络结构 net=newff(inputn,output_train,10);

net.trainParam.epochs=1000; net.trainParam.lr=0.1; net.trainParam.goal=0.0000004; %% 网络训练 net=train(net,inputn,output_train); %% BP网络预测 %预测数据归一化 inputn_test=mapminmax('apply',input_test,inputps); %网络预测输出 BPoutput=sim(net,inputn_test); %% 结果分析 %根据网络输出找出数据属于哪类 BPoutput(find(BPoutput<0.5))=0; BPoutput(find(BPoutput>=0.5))=1; %% 结果分析 %画出预测种类和实际种类的分类图 figure(1) plot(BPoutput,'og') hold on plot(output_test,'r*'); legend('预测类别','输出类别') title('BP网络预测分类与实际类别比对','fontsize',12)

BP神经网络程序

x1=rand(1,2000); x2=rand(1,2000); y1=x1.^2+x2.^2; input=[x1',x2']; output=[y1']; k=rand(1,2000); [m,n]=sort(k); input_train=input(n(1:1900),:)'; output_train=output(n(1:1900),:)'; input_test=input(n(1901:2000),:)'; output_test=output(n(1901:2000),:)'; %训练数据归一化 [inputn,inputps]=mapminmax(input_train); [outputn,outputps]=mapminmax(output_train); %BP神经网络的构建 net=newff(inputn,outputn,5); %网络参数配置 net.trainParam.epochs=100; net.trainParam.goal=0.00004; net.trainParam.lr=0.1; %BP神经网络训练 net=train(net,inputn,outputn); inputn_test=mapminmax('apply',input_test,inputps); %BP神经网络预测输出 An=sim(net,inputn_test); %输出结果反归一化 BPoutput=mapminmax('reverse',An,outputps); %网络预测结果图形 figure(1) plot(BPoutput,':or') hold on plot(output_test,'-*'); legend('预测输出','期望输出'); title('BP网络预测输出','fontsize',12); ylabel('函数输出','fontsize',12); xlabel('样本','fontsize',12); %网络预测误差图形 figure(2) error=[output_test]'-[BPoutput]'; plot(error,'-*')

BP神经网络预测代码

B P神经网络预测代码 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

x=[54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534

80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026

112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802

134480 135030 135770 136460 137510]'; % 该脚本用来做NAR预测 % 作者:Macer程 lag=3; % 自回归阶数 iinput=x; % x为原始序列(行向量) n=length(iinput); %准备输入和输出数据 inputs=zeros(lag,n-lag); for i=1:n-lag %绘制误差的自相关情况(20lags) figure, parcorr(errors) %绘制偏相关情况 %[h,pValue,stat,cValue]= lbqtest(errors) %Ljung-Box Q检验(20lags)figure,plotresponse(con2seq(targets),con2seq(yn)) %看预测的趋势与原趋势%figure, ploterrhist(errors) %误差直方图 %figure, plotperform(tr) %误差下降线

BP神经网络预测代码

B P神经网络预测代码 Revised as of 23 November 2020

x=[54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534

80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026

112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802

134480 135030 135770 136460 137510]'; % 该脚本用来做NAR预测 % 作者:Macer程 lag=3; % 自回归阶数 iinput=x; % x为原始序列(行向量) n=length(iinput); %准备输入和输出数据 inputs=zeros(lag,n-lag); for i=1:n-lag %绘制误差的自相关情况(20lags) figure, parcorr(errors) %绘制偏相关情况 %[h,pValue,stat,cValue]= lbqtest(errors) %Ljung-Box Q检验(20lags)figure,plotresponse(con2seq(targets),con2seq(yn)) %看预测的趋势与原趋势%figure, ploterrhist(errors) %误差直方图 %figure, plotperform(tr) %误差下降线

相关文档
相关文档 最新文档