文档库 最新最全的文档下载
当前位置:文档库 › 浙大高等燃烧学_湍流燃烧理论模型_程乐鸣_2013_9

浙大高等燃烧学_湍流燃烧理论模型_程乐鸣_2013_9

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

煤粉燃烧模拟——湍流破碎模型.

煤粉燃烧——湍流破碎模型(EBU) 简介 该帮助文件主要介绍煤粉燃烧模型的设置和求解,采用湍流破碎模型(EBU)。 EBU燃烧模型,也称涡团破碎模型,假设化学反应的平均速度与化学动力学无关,而只取决于低温的反应物和高温的燃烧产物之间的湍流混合作用。 主要包括: 1)煤粉燃烧模型的建立和求解 2)湍流破碎模型(EBU)的应用 3)选择合适的求解参数 4)计算结果的后处理 问题描述 3D模型的剖面图如图1所示。左侧为两个环形入口,右侧为一个圆形出口。由于模型的对称性,取系统的1/4进行建模。煤粉和携带空气(一次风)从内环进入燃烧室,二次风从外环进入燃烧室,发生燃烧反应,产物从压力出口流出。模型建立和求解 Step1:网格 1、读取mesh文件 2、检查网格:grid check 3、显示网格:display grid a)从列表框中选取所有surfaces b)点击display,并关闭grid display 面板 Step2:模型 1、选择k-ε湍流模型 Define models viscous 2、启动能量方程 Define models energy 3、启动物质输运方程 Define models species transport & reaction

a)选择model列表中的species transport b)选择reaction列表中的volumetric c)选择mixture material 列表中的coal-hv-volatiles-air d)选择turbulence-chemistry interaction(湍流与化学反应的作用)列表中的eddy dissipation(涡流耗散) e)点击ok,关闭species model面板 4、启动Discrete ordinates模型(DO离散坐标系) a)从model列表中选择discrete ordinates b)设置flow iterations per radiation iteration(流动和辐射迭代次数)为1 c)设置angular discretization (角离散化)中的Theta Divisions and Phi Divisions为4 d)设置angular discretization (角离散化)中的Theta Pixels and Phi Pixels 为3 e)点击ok,关闭radiation model 5、启动discrete phase(离散相)模型 a)M ax number of steps(最大步数)40000 b)启动specify length scale(步长),设为0.0025 c)点击ok,关闭discrete phase面板 Step3:injections(喷口) 1、v-1入口截面设9个喷口:define injections a)点击creat,新建喷口 c)9个喷口通用性质,见表 c)点击turbulent dispersion,并启动discrete random walk model

高等燃烧学复习题参考答案集

《高等燃烧学》习题集与解答 第一章绪论 1、什么叫燃烧? 答:燃烧标准化学定义:燃烧是一种发光发热的剧烈的化学反应。燃烧的广义定义:燃烧是指任何发光发热的剧烈的化学反应,不一定要有氧气参加。 2、燃烧的本质是什么?它有哪些特征?举例说明这些特征。 答:燃烧的本质是一种氧化还原反应。它的特征是:放热、发光、发烟并伴有火焰。 3、如何正确理解燃烧的条件?根据燃烧条件,可以提出哪些防火和灭火方法? 答:可燃物、助燃物和点火原始燃烧的三要素,要发生燃烧,可燃物和助燃物要有一定的数量和浓度,点火源要有一定的温度和足够的热量。根据燃烧的条件,可以提出一下防火和灭火的方法: 防火方法:a、控制可燃物;b、隔绝空气;c、清除点火源 灭火方法:a、隔离法;b、窒息法;c、冷却法;d、抑制法 4、我国目前能源与环境的现状怎样?电力市场的现状如何?如何看待燃烧科学的发展前景? 答:我国目前能源环境现状: 一、能源丰富而人均消费量少 我国能源虽然丰富,但是分布不均匀,煤炭资源60%以上在华北,水力资源70%以上在西南,而工业和人口集中的南方八省一市能源缺乏。虽然在生产方面,自解放后,能源开发的增长速度也是比较快,但由于我国人口众多,且人口增长快,造成我国人均能源消费量水平低下,仅为每人每年0.9吨标准煤,而1 吨标准煤的能量大概可以把400吨水从常温加热至沸腾。 二、能源构成以煤为主,燃煤严重污染环境 从目前状况看,煤炭仍然在我国一次能源构成中占70%以上,成为我国主要的能源,煤炭在我国城市的能源构成中所占的比例是相当大的。 以煤为主的能源构成以及62%的燃煤在陈旧的设备和炉灶中沿用落后的技术被直接燃烧使用,成为我国大气污染严重的主要根源。据历年的资料估算,燃煤排放的主要大气污染物,如粉尘、二氧化硫、氮氧化物、一硫化碳等,对我国城市的大气污染的危害已十分突出:污染严重、尤其是降尘量大;污染冬天比夏天严重;我国南方烧的高硫煤产生了另一种污染——酸雨;能源的利用率低增加了煤的消耗量。 三、农村能源供应短缺 我国农村的能源消耗,主要包括两方面,即农民生活和农业生产的耗能。我国农村人口多,

2014年浙江大学研究生入学考试高等代数试题

2014年浙江大学研究生入学考试高等代数试题 1. 00n n E A E ??= ???,{}2()n L B M R AB BA =∈=。证明L 为2()n M R 的子空间并计算其维数。 2. 00n n E A E ??= ???,请问A 是否可对角化并给出理由。若A 可对角化为C ,给出可逆矩阵P ,使得1P AP C -=. 3.方阵A 的特征多项式为32()(2)(3)f λλλ=-+,请给出A 所有可能的Jordan 标准型。 4. 1η,2η,3η为0AX =的基础解系,A 为3行5列实矩阵。求证:存在5R 的一组基, 其包含123ηηη++,123ηηη-+,12324ηηη++。 5.X ,Y 分别为m n ?和n m ?矩阵,n YX E =,m A E XY =+,证明A 相似于对角矩阵。 6. A 为n 阶线性空间V 的线性变换,1λ,2λ,…,m λ为A 的不同特征值,i V λ为其特征子空间。证明:对任意V 的子空间W ,有1()()m W W V W V λλ=?⊕???⊕?. 7.矩阵A ,B 均为m n ?矩阵,0AX =与0BX =同解,求证A 、B 等价。若A 、B 等价,是否有0AX =与0BX =同解?证明或举反例否定。 8.证明:A 正定的充分必要条件是存在方阵i B (1,2,,i n =???),i B 中至少有一个非退化,使得1n T i i i A B B ==∑。 9.定义ψ为[0,1]到n 阶方阵全体组成的欧式空间的连续映射,使得(0)ψ为第一类正交矩阵,(1)ψ为第二类正交矩阵。证明:存在0(0,1)T ∈,使得0()T ψ退化。 10.设g ,h 为复数域C 上n 维线性空间V 的线性变换,gh hg =。求证g ,h 有公共的特征向量。若不是在复数域C 上而是在实数域R 上,则结论是否成立?若成立,给出理由;不成立举出反例。

燃烧学试卷-答案

一、单选题(2分/个) 1、不属于常用防止脱火的措施的为:D A喉口加装收缩段,但喉口直径不变B加稳焰器C使用冷却装置D利用钝体 2、下列关系不正确的是:B A液体燃烧的过程包括雾化、受热蒸发、扩散混合、着火燃烧B油滴燃烧属于预混燃烧 C提高燃烧室的温度水平有利于强化油雾燃烧 D异相燃烧是指不同相的物质之间发生的 3、碳的()反应是自我促进的,而()反应是自我抑制。A A氧化/气化 B气化/氧化 C还原/氧化D氧化/还原 4、已知燃料成分,下列量可以确定的是:D A着火温度B理论发热温度C理论燃烧温度D实际燃烧温度 5、影响碳球燃尽速度的主要因素是:D A碳球表面二氧化碳浓度B碳球燃尽时间C碳球直径D碳球表面氧气浓度分 6、涡轮增压装置对汽车发动机的作用不包括:D A能提高汽车发动机内的燃料气体的化学反应速度 B能减少汽车发动机内燃料气体的燃烧 C提高汽车发动机的功率 D能提高汽车发动机内燃料气体理论发热温度 7、能用来描述动量、热量和质量相似的准则数是:C A普朗特数,雷诺数,努塞尔特数和舍伍德数 B普朗特数,施密特数,努塞尔特数和 C普朗特数,施密特数,努塞尔特数和舍伍德数 D普朗特数,施密特数,努塞尔特数和雷诺数 8、依靠传热与传质进行火焰传播的是:C A爆震B爆炸C正常传播D爆燃 9、对于影响自燃着火温度的描述,不正确的是:D A散热系数减少有利于着火B燃料活性强易着火 C系统初始温度升高容易着火D产热散热相等有利于着火 10、静止空气中球形碳粒燃烧,当温度为900℃时:B A只存在二次反应B一次反应,二次反应并存C只存在一次反应D以上都不对 二、辨析题(判断正误,错误的说明理由,5分/个) 1、复杂反应所形成的最终产物由几步反应所完成,故可用质量作用定律直接按反应方程判断反应物浓度关系。 答:错。复杂反应,所形成的最终产物是由几步反应所完成的,故化学反应方程式并非表示整个化学反应的真实过程,故无法用质量作用定律直接按反应方程判断反应速度与反应物浓度关系 2、家用煤球炉在800多摄氏度能稳定燃烧,而大型煤粉炉要在1300℃以上才能稳定燃烧,因此,由细小煤粉反应活性好的理论可以得知:因此家用煤球炉比大型煤粉炉更实用。 答:停留时间是影响燃烧热工况的很重要的一个因素。停留时间越长,燃烧热工况越好。家用煤球炉中,煤的停留时间可以达到几个小时,而大型煤粉炉中,煤粉颗粒在炉膛内却只能停留2到5秒,因此家用煤球炉在较低温度下即可以维持燃烧稳定,而大型煤粉炉却需要较高炉膛温度来维持燃烧稳定。

第15章 预混燃烧模拟

第十五章预混燃烧模拟FLUENT有一个预混湍流燃烧模型,基于反应过程参数方法。有关这一模型的内容按以下节次给出: ●15.1 概述和限制 ●15.2 预混燃烧模型 ●15.3 使用预混燃烧模型 15.1 概述和限制 15.1.1 概述 在预混燃烧中,燃料和氧化剂在点火之前进行分子级别的混合。火焰前锋传入未燃烧的反应物产生燃烧。预混燃烧的例子有吸气式内燃机,稀薄燃气轮机的燃烧器,气体泄露爆炸。 预混燃烧比非预混燃烧更难以模拟。原因在于(亚音速)预混燃烧通常做为薄层火焰产生,并被湍流拉伸和扭曲。火焰传播的整体速率受层流火焰速度和湍流涡旋控制。层流火焰速度由物质和热量逆流扩散到反应物并燃烧的速率决定。为得到层流火焰速度,需要确定内部火焰结构以及详细的化学动力学和分子扩散过程。由于实际的层流火焰厚度只有微米量级或更小,求解所需要的开销是不可承受的。 湍流的影响是使传播中的层流火焰层皱折、拉伸,增加了薄层的面积,并因此提高了火焰速度。大的湍流涡使火焰层皱折,而小的湍流涡,如果它们比层流火焰的厚度还小,将会穿过火焰层并改变层流火焰结构。 与之相比,非预混燃烧可以极大地简化为一个混合问题(例如,14.1节中介绍的混合物组分方法)。预混燃烧模拟的要点在于捕获湍流火焰速度,它受层流火焰速度和湍流的影响。 在预混火焰中,燃料和氧化剂在进入燃烧设备之前已经紧密混合。反应在燃烧区发生,这一区域将未燃烧的反应物和燃烧产物隔开。部分预混火焰具有预混和扩散火焰两方面的性质。它们发生在有额外的氧化剂或燃料气流进入预混系统,或是当扩散火焰离开燃烧器以在燃烧前产生某些预混的情况。 预混和部分预混火焰FLUENT的有限速率公式(见13章)模拟。还可以参阅16章了解更多有关FLUENT部分预混燃烧模型方面的信息。如果火焰是完全预混合的,则只有一股具有单一混合比的气流进入燃烧器,可以使用预混燃烧模型。 15.1.2 限制 在使用预混燃烧模型时有以下限制: ●必须使用非耦合求解器。预混燃烧模型在两种耦合求解器中都不能得到。 ●预混燃烧模型只对湍流、亚音速模型有效。这一类型的火焰成为爆燃。在爆炸中, 可燃混合物被冲击波后面的热量点燃,这一类型的燃烧可以使用非耦合和耦合求解 器用有限速率模型模拟。有关限速率模型见13章。 ●预混燃烧模型不能和污染物(如碳烟和NOx)模型一起使用。但完全预混系统可以 用部分预混模型(见16章)模拟。 ●不能用预混燃烧模型模拟反应的离散相粒子。只有惰性粒子可以使用预混燃烧模 型。 15.2 预混燃烧理论 湍流预混燃烧模型基于Zimont等人的工作[275,276,278],涉及求解一个关于反应过

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

2019年浙江大学高等代数试题解答word资料4页

1。解:由题意可知 从而知()()()2123121231g g g λλλδδδ++=-++= 故()323p x x x x =--+ 2。证明:由分析知()()21112221n n n n f x nx nx nx x ---'=+=+。如果()f x 有重数大于2的非零根,在()f x '有重数大于1的非零根,根据()f x '的表达式可知()f x '没有非零重根,从而()f x 没有重数大于2的非零根 3。解:由于()111n n k j k k k j n D x x x =≤<≤=-∏∏,又可知 从而知()() () ()1 11 1 111n n i n i i i i i j k k j n D y x x y δ+-----≤<≤-=--∏即()1n i i j k k j n D x x δ≤<≤=-∏,从 而知 4。解;由于11T T A E XY Y X α=+=+=+从而 ()1当1α≠时,A 可逆 ()2由于当1α=时()()() 1 11n T T E E XY E XY λλλλ--+=--=-,从而A 的特 征 多 项 式 为 () 1 1n λλ--故 ()1 rank A n =-, 又 ()()()1T T rank A E rank X Y rank YX -=== 从而()()rank A rank A E n =-=,从而2A A =,故A 的最小多项式()m λ能整除()1λλ-,从而()m λ无重根,从而A 可对角化 5。证明:若1n =时,11A a =显然满足。若2n =时,由于2 112212A a a a =-,由于A 为正定矩阵,从而0A >,即2112212a a a >,从而1122A a a ≤等号成立时, 12210a a ==,即A 为对角矩阵时候成立显然为充要条件 若小于n 时成立,且等号成立时候充要条件A 为对角矩阵。令 11 nn A b A b a ??=???? ,则11A 为1n -阶正定矩阵,从而1 11A -存在且也为正定矩阵。又

Fluent 湍流模型小结

Fluent 湍流模型小结湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种: 直接模拟(direct numerical&Oσλαση; simulation, DNS) 直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。 大涡模拟(large&Oσλαση; eddy simulation, LES) 大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。 应用Reynolds时均方程(Reynolds-averaging&Oσλαση; equations)的模拟方法 许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E模型。其中混合长度模型是最早期和最简单的湍流模型。该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。该模型的优点是简单直观、无须增加微分方程。缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。 到目前为止,工程中应用最广泛的是k-ε模型。另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。很多情况下能够给出优于k-ε模型的结果。但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。 需要注意的是: 1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。LES的亚格子模型表

湍流燃烧模型-PDF

PDF 模型 概率密度函数PDF方法以随机的观点来对待湍流问题,对解决湍流化学反应流的问题具有很强的优势。在湍流燃烧中存在一些非输运量( 如反应速率, 密度, 温度及气相体积分数等) 的湍流封闭问题。尽管这些量没有输运方程, 但它们常常是输运变量的已知函数。平均或者过滤高度非线性的化学反应源项会引起方程的封闭问题。因此,用PDF的方法来解决这些非输运量的湍流封闭问题显然是一个既简单又直接的途径。 PDF方法是一种较为流行的湍流燃烧模型,能够较为精确的模拟任何详细的化学动力学过程, 适用于预混、非预混和部分预混的任何燃烧问题。目前, 确定输运变量脉动概率密度函数的方法有输运方程和简化假定两种, 分别称之为输运方程的PDF和简化的PDF。前者建立输运变量脉动的概率密度输运方程,通过求解该方程来获得输运变量脉动的概率分布。后者假定输运变量脉动的概率密度函数的具体形式, 通过确定其中的一些待定参数来获得输运变量脉动的概率分布。湍流燃烧中, 后者应用最为普遍和广泛。在简化的PDF 中, 输运变量脉动的概率密度函数常常采用双 D 分布、截尾高斯分布和B 函数分布等形式。 PDF在理论上可以精确考虑任意详细的化学反应机理,但是其具体求解时需借助其它的模型和算法,而且计算量相对较大。PDF的方程是由N-S方程推导而来,其中的化学反应源项是封闭的,但压力脉动梯度项以及分子粘性和分子扩散引起的PDF的分子输运项是不封闭的,需要引入模型加以封闭。例如,在速度- 标量-湍流频率PDF中,必须采用小尺度混合模型、随机速度模型和湍流频率模型加以封闭。 模化后的输运方程难以用有限容积、有限差分和有限元等方法来求解,比较可行的一种方法是蒙特卡洛(MonteCarlo)方法,在该方法中输运方程被转化为拉格朗日(Lagrangian)方程,流体由大量遵循Lagrang ian方程的随机粒子的系统来描述, 最后对粒子作统计平均得到流场物理量和各阶统计矩。另有与有限容积法相结合的蒙特卡洛法。 PDF 模型的发展 1969年Lungdren首先推导、计算了速度的联合PDF运输方程,避免了对梯度扩散模型进行模拟,对很简单的流动过程得到了简析解[1]。

浙江大学硕士研究生培养方案-浙江大学能源工程学院

浙江大学全日制硕士专业学位研究生培养方案 能源系动力工程领域(代码:430107) 一、培养目标: 本学科主动适应创新型国家建设,主动迎接国际性竞争,满足国家经济建设和社会发展中面临的多样性、全方位、高水平的人才需求,培养德、智、体全面发展的动力工程学科应用型、复合式高层次工程技术和工程管理人才。本学科培养的硕士研究生应达到以下要求:拥护党的基本路线和方针政策,热爱祖国,遵纪守法,具有良好的职业道德和敬业精神,具有科学严谨的求真务实的学习态度和工作作风,身心健康。掌握动力工程领域坚实的基础理论、较宽厚的专业知识以及先进方法和手段,受到良好的科学研究和工程技术训练,熟练掌握一门外国语,具有熟练的计算机应用技能,具有独立从事动力工程领域中的工程设计、工程实施、工程研究、工程开发、工程管理等能力。 二、学制:2年 三、主要研究方向:

五、培养环节要求 1、专业实践要求: 在学期间保证半年(应届一年)实践教学,并撰写实践总结报告。 2、读书报告要求: 读书报告要求:在学期间做读书报告或seminar 4次,其中至少公开在学科的学术论坛做读书报告1次。完成累计4次计2学分。 3、开题报告要求: 学位论文选题应来源于工程实际或具有明确的工程技术背景,可以是新技术、新工艺、新设备、新材料、新产品的研制与开发。开题报告要求对论文选题意义、主要研究内容和研究方案等作出论证,经导师(组)审定通过后,开始撰写学位论文。在入学后第一学年末完成。 4、专业外语要求: 5、发表论文要求: 学位论文形式可以多种多样,可采用调研报告、应用基础研究、规划设计、产品开发、案例分析、项目管理等形式。内容可以是:工程设计与研究、技术研究或技术改造方法研究、工程软件或软件开发、工程管理等 六、其他(需要说明的问题,可不填)

最新浙江大学高等代数试题解答汇总

2008年浙江大学高等代数试题解答

1。解:由题意可知1123212233131231,1,1δλλλδλλλλλλδλλλ=++=-=++=== 从而知()()()2123121231g g g λλλδδδ++=-++= ()()()()()()2212233121312312122324231 g g g g g g λλλλλλδδδδδδδδδδ++=-+-+-+++=-()()()22123311223313212213g g g λλλδδδδδδδδδδδ=++++--++=- 故()323p x x x x =--+ 2。证明:由分析知()()21112221n n n n f x nx nx nx x ---'=+=+。如果()f x 有重数大于2的非零根,在()f x '有重数大于1的非零根,根据()f x '的表达式可知 ()f x '没有非零重根,从而()f x 没有重数大于2的非零根 3。解:由于()111n n k j k k k j n D x x x =≤<≤=-∏∏,又可知 ()()12 1 11111 121111********* 1 1211111 1n n i i i i i n n n n k j k i i i i i k k j n n n i i i i i n n n n n n n n n x x x x y x x x x y y x x x x x x x y x x x x y x x x x y -------=≤<≤-+++++--=--∏∏ 从而知()()() ()1 11 1 111n n i n i i i i i j k k j n D y x x y δ+-----≤<≤-=--∏即()1n i i j k k j n D x x δ≤<≤=-∏,从而 知 ()111n n n i i j k i i k j n D x x δ==≤<≤????=- ? ????? ∑∑∏ 4。解;由于11T T A E XY Y X α=+=+=+从而 ()1当1α≠时,A 可逆

fluent湍流模型

第十章湍流模型 本章主要介绍Fluent所使用的各种湍流模型及使用方法。 各小节的具体内容是: 10.1 简介 10.2 选择湍流模型 10.3 Spalart-Allmaras 模型 10.4 标准、RNG和k-e相关模型 10.5 标准和SST k-ω模型 10.6 雷诺兹压力模型 10.7 大型艾迪仿真模型 10.8 边界层湍流的近壁处理 10.9 湍流仿真模型的网格划分 10.10 湍流模型的问题提出 10.11 湍流模型问题的解决方法 10.12 湍流模型的后处理 10.1 简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k-e模型 -带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 -雷诺兹压力模型 -大漩涡模拟模型 10.2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 10.2.1 雷诺平均逼近vs LES 在复杂形体的高雷诺数湍流中要求得精确的N-S方程的有关时间的解在近期内不太可能实现。两种可选择的方法用于把N-S方程不直接用于小尺度的模拟:雷诺平均和过滤。

CFD讲义-湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

第二节,平均量输运方程 雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du ''-?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u ''-ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍

湍流燃烧及其数值模拟

湍流燃烧及其数值模拟研究 1. 湍流燃烧 1.1湍流燃烧基本概念 当流动雷诺数数较小时,由于流体粘性的作用,流体呈层流流态。当流动的特征雷诺数超过相应的临界值,流动从层流转捩到湍流。湍流燃烧是指湍流流动中可燃气的燃烧,在能源、动力、航空和航天等工程领域,经常遇到的实际燃烧过程几乎全部都是湍流燃烧过程。湍流燃烧实质是湍流,化学反应和传热传质等过程相耦合的结果。湍流对燃烧的影响与湍流强度和湍流涡旋尺度有关。小尺度湍流通过湍流扩散使火焰区内的输运效应增加,从而使化学反应速率增加。但气流脉动不会火焰面产生皱褶,只能把火焰变成波纹状。大尺度湍流对火焰内部结构没有影响,但使火焰阵面出现皱褶,增加其燃烧面积,造成火焰表现传播速度增加。当湍流强度及湍流尺度均较大时,火焰前沿不再连续而分裂成四分五裂。 燃烧对湍流的影响主要表现在燃烧释放的热流流团膨胀,影响气体的密度和运动速度,从而影响当地的涡旋,湍流强度和湍流结构。 1.2湍流燃烧分类 湍流燃烧按其燃料和氧化剂的初始混合状态可以分类为:湍流非预混燃烧、预混燃烧和部分预混燃烧。在湍流非预混燃烧燃料和氧化剂事先是分离的,燃料和氧化剂一边混合一边燃烧,燃烧速率主要受湍流混合过程控制,而在湍流预混燃烧中,燃料和氧化剂在进入核心燃烧区以前已经充分混合,化学反应的速率由火焰前缘从炽热的燃烧区向冷态无反应区的传播所控制。上面两种燃烧方式是湍流燃烧的两个极限情形,很多情况下两种燃烧模式是并存的,称为部分预混燃烧。部分预混燃烧可出现在下列情形中叫:(1)在一个完全以非预混燃烧为配置的燃烧装置发牛了局部熄火;(2)当预混火焰前缘穿过非均匀的混气时;(3)射流非预混火焰发生抬举,其根部是一个典型的部分预混火焰。这三种部分预混燃烧情形涉及了经常受到关注的燃烧研究话题如局部熄火、火焰稳定等,它们对研究湍流燃烧过程的机理有很大意义。 在湍流燃烧中,湍流流动过程和化学反应过程有强烈的相互关联和相互影响.湍流通过强化混合而影响着时平均化学反应速率,同时化学反应放热过程又影响着湍流,如何定量地来描述和确定这种相互作用是湍流燃烧研究的一个重要内容. 湍流是非常复杂的,它包括湍流问题,湍流与燃烧的相互作用,流动参数与化学动力参数之间的耦合机理等问题。因此湍流燃烧是工程科学中最复杂的领域之一。 湍流燃烧的研究已进行多年,研究的方法有试验研究,理论分析和数值模拟等。计算流体力学和计算机技术的发展,数值模拟由于它的廉价性和可操作性在国际上受到越来越多的重视,得到了广泛的应用。 2.湍流燃烧数值模拟 2.1湍流燃烧数值模拟简介 湍流燃烧数值模拟(Numerical Simulation of Turbulent Combustion)是指应用计算机为工

fluent中湍流参数的定义

FLUENT 中湍流参数的定义 2011-07-28 10:46:03| 分类:默认分类|举报|字号订阅 流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF (用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity)

湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=*Re_DH^ (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,

相关文档
相关文档 最新文档