文档库 最新最全的文档下载
当前位置:文档库 › 塔设备设计说明书

塔设备设计说明书

塔设备设计说明书
塔设备设计说明书

塔设备设计说明书 Prepared on 24 November 2020

《化工设备机械基础》

塔设备设计

课程设计说明书

学院:木工学院

班级:林产化工0 8

学号:

姓名:万永燕郑舒元

分组:第四组

目录

前言

摘要

塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。

板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相

在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便

关键字

塔体、封头、裙座、。

第二章设计参数及要求

符号说明

Pc ----- 计算压力,MPa;

Di ----- 圆筒或球壳内径,mm;

[Pw]-----圆筒或球壳的最大允许工作压力,MPa;

δ ----- 圆筒或球壳的计算厚度,mm;

δn ----- 圆筒或球壳的名义厚度,mm;

δe ----- 圆筒或球壳的有效厚度,mm;

t]

[δ----- 圆筒或球壳材料在设计温度下的许用应力,MPa;

t

δ ------ 圆筒或球壳材料在设计温度下的计算应力,MPa;

φ ------ 焊接接头系数;

C ------- 厚度附加量,mm;

.设计参数及要求

1.2.1设计参数

1.2.2设计要求

(1) 塔体内径Di =1200 mm,塔高近似取H=28680mm 。 (2) 计算压力MPa p c 20.0=,设计温度t=200℃。

(3) 设计地区:基本风压值20/400m N q =,地震设防烈度为8度,场地土类:Ⅰ

类,设计地震分组:第二组,设计基本地震加速度为。

(4) 塔内装有N=26层浮阀塔,每块塔盘上存留介质层高度为mm h w 60=,介质密度

为31/5.794m kg =ρ。

(5) 沿塔高每6块塔板左右开设一个手孔,手孔数为3个,相应在手孔处安装半圆

形平台3个,平台宽度为B=800mm ,高度为1000mm 。

(6) 塔外保温层的厚度为mm s 100=δ操作质量为./20003m kg m e =。

(7) 塔体与封头材料选用MnR 16,其中[][]MPa 170170==σσ,

MPa t

,Mpa s 345=σ,

(8) 裙座材料选用Q235-A 。

(9) 塔体与裙座对接焊接,塔体焊接接头系数85.0=φ。 (10)塔体与封头厚度附加量C=2mm ,裙座厚度附加量C=2mm 。

第二章 材料选择

概论

塔设备与其他化工设备一样,置于室外,无框架的自支承式塔体,绝大多数是采用钢材制造的。这是因为钢材具有猪狗的强度和塑性,制造性能较好,设计制造的经验也比较成熟,因此,在大型的塔设备中,钢材更具有无法比拟的有点。

塔体材料选择

设计中塔体的材料选择是:MnR 16;塔体是塔设备的外壳,由等直径和等壁厚的圆筒和两个封头组成,塔体除满足工艺条件下的强度、刚度外,还应考虑风力、地震、偏心载荷所英气的强度、刚度问题,以及吊装、运输、检验、开停工作等的影响,所以选择塔体的材料很重要。

裙座材料的选择

设计中裙座材料的选择是:Q A -235;塔体裙座是塔体安放到基础上的连接部分,它必须保证塔体坐落在确定位置上进行正常工作,为此,它应当具有足够的强大和刚度,能够承受各种操作情况下的全塔质量,以及风力、地震等引起的载荷。

第三章 塔体的结构设计及计算

按计算压力计算塔体和封头厚度

(1) 塔体厚度计算

取δ=4mm ,考虑厚度附加量C=2mm ,经圆整,取mm n 8=δ,mm e 6=δ 。 (2) 封头厚度计算 采用标准椭圆形封头: []mm p D p c t

i c 74.39

.05.085.017021200

9.02=?-???=-=

φσδ, 取δ=4mm,考虑厚度附加量C=2mm 经圆整后,取mm n 8=δ,mm e 6=δ。

塔设备质量载荷计算

1、筒体圆筒、封头、裙座质量01m 圆筒质量: kg m 7.699038.262651=?= 封头质量: kg m 1562.11302=?= 裙座质量: kg m 5822.22653=?=

说明:(1)塔体圆筒的总高度为mm H 38.260=

(2)查得mm DN 1200=,厚度mm 8的圆筒质量为m kg /265

(3)查得mm DN 1200=,厚度mm 8的椭圆形封头质量为m kg /130 (4)裙座高度为mm 2020

2、塔内构件质量02m

(由表8-1查得浮阀塔盘质量为75kg/m 2) 3、保温层质量03m

其中,'

03m 为保温层的质量,kg

4、平台、扶梯质量04m

()()

[]()(

)[

]

kg

H q nq D B D m F

F p

n i n i

5262394015035.01.02008.022.1121.02008.022.1785.02

1222224

2

2

2

2

04=?+????+?+-?+?+?+?=?+++-+++=

δδδδ

π

说明:由表8-1查得,平台质量2/150m kg q p =;笼式扶梯质量m kg q F /40=;笼式扶梯总高m H F 39=;平台数量n=8。

4、操作时物料质量05m

说明:物料密度31/800m kg =ρ,塔釜圆筒部分深度h0=,塔板层数N=42.,塔板上液层高度m h w 1.0=,由表4-21查得,封头容积33312.124

14.324m D V i f =?=∏=

。 5、附件质量a m

按经验取附件质量为kg m m a 1932837425.025.001=?==

6、冲水质量w m

kg V H D m w f w w i w 321801000121000262.1785.024

22=??+???=+=

ρρπ

其中,

3/1000m kg w =ρ

8、各种质量载荷 :

风载荷和风弯矩

(1)风载荷计算示例

(2)各段塔风载荷计算结果:

(3)风弯矩计算

地震弯矩计算

地震弯矩计算

各种载荷引起的轴向应力

(1)计算压力引起的轴向拉应力 其中,)(628mm C n e =-=-=δδ (2)操作质量引起的轴向压应力 截面0-0

令裙座厚度mm s 8=δ,有效厚度es is sb es D A mm δπδ==-=);(628。 截面1-1

式中,);(31522566320882

20

kg m =-=-sm A 为人孔截面的截面积,查相关标准得:258630mm A sm = 截面2-2

其中,e i D A kg m δπ==--=-);(283733149566320882

20

。 (3)最大弯矩引起的轴向应力 截面0-0

其中,).(100948.8107848.01031.78880000max

mm N M M M e w ?=?+?=+=-- 截面1-1

其中,).(1034.7107848.01056.68881111max

mm N M M M e w ?=?+?=+=-- sm Z 为人孔截面的抗弯截面系数,查相关标准得:327677000mm Z sm =。 截面2-2

其中,).(102148.7107848.01043.68882222max

mm N M M M e w ?=?+?=+=-- 塔体和裙座危险截面的强度与稳定校核

(1)塔体的最大组合轴向拉应力校核

截面2-2

塔体的最大组合拉应力轴向发生在正常操作的2-2截面上。其中,

)(4.173][;2.1;85.0;170][Mpa K K Mpa t t ====φσφσ

满足要求

(2)塔体与裙座的稳定校核 截面2-2

塔体截面2-2 上的最大组合轴向压应力 满足要求 其中,

查图得(200,16MnR ℃)2.1,170][,115===K Mpa Mpa B t σ。 截面1-1

塔体1-1截面上的最大组合轴向压应力 满足要求 其中,

查图得(200,235AR Q -℃)2.1,113][,5.107===K Mpa Mpa B t σ。 截面0-0

塔体0-0截面上的最大组合轴向压应力 满足要求

其中,2.1;113][;5.107===K Mpa Mpa B t σ (3)各危险截面强度与稳定校核汇总

塔体水压试验和吊装时的应力校核

3.7.1 水压试验时各种载荷引起的应力

1.试验压力和液柱静压力引起的环向应力 液柱静压力=

2.试验压力引起的轴向拉应力

3.最大质量引起的轴向拉应力

4.弯矩引起的轴向应力

3.7.2水压试验时应力校核

1.筒体环向应力校核 T s σφσ>9.0 所以满足要求

2.最大组合轴向拉应力校核

又s φσσ9.02

2max <- 所以满足要求

3.最大组合轴向压应力校核

[]{}s cr KB σσσσσ9.0,min 12.672

2322222max

=<=+=--- 满足要求 塔设备结构上的设计

3.8.1基础环设计 1基础环尺寸

取 )(15003001200300mm D D is ob =+=+= 2.基础环应力校核 其中

(1)mpa A g

m Z M b

b b 07.300

0max max =+=-σ

(2)mpa A g

m Z M M b

b e w b 587.13.0max 00max =++=-σ 取以上两者中的较大值

mpa b 05.2max =σ,选用75号混凝土。查表得;5.3mpa R a = mpa R a b 5.305.2max =<=σ,满足要求

3.基础环厚度计算

假设螺栓直径为M42,由表8-11查得L=160mm,当b/l=时,由表8-10查得:

()

mm N l M mm N b M b y b x /136750848.0)/(7.90391482.02

max 2max ==-=-=σσ 取其中最大值:故).(13675mm N M S =

按有筋板时假设基础环厚度: []mm C M b

s

b 2.273140

13675

66=+?=

+=

σδ 圆整后取mm b 28=δ

3.8.2地脚螺栓计算

1.地脚螺栓承受的最大拉应力

其中,

2

380800800min 1130400109.232088.1031.7.10354.322869mm A mm Z kg m mm

N M mm N M kg

m b b w E =?==?=?==--

(1).mpa A g m Z M M b b e w B 58.21130400

18

.922869109.2107848.01031.78

88min 0

0=?-??+?=-+=-σ (2).mpa A g

m Z M M M b

b e w E B 13.125.0min 0000=-++=--σ

取以上两数中的较大值,mpa B 58.2=σ

2.地脚螺栓的螺纹小径 查表得M42螺栓的螺纹小径

0>B σ,选取地脚螺栓个数mm C Mpa n bt 3;147][;362===σ。

查表得34M 地脚螺栓的螺纹小径mm d 50.291=,故选用36个34M 的地脚螺栓,满足要求

板式塔的总体结构

小结

此次实习我们主要的任务是对他设备的各个部件进行设计和校核,在结构上,我们分别对塔盘结构,塔体空间,人孔数量及位置,仪表接管选择,工艺接管管径计算

等方面的设计,在校核方面,分别对其强度,刚度,稳定性进行了校核,在制图方面,我们分别绘制了塔设备的装配图和零件图。

我们的设计计算步骤大致分为三部分:(1)根据GB150规定,通过已知条件,按计算压力确定塔体圆筒及封头的有效厚度。(2)根据地震载荷和风压载荷计算的需要,选取若干截面(包括所有危险截面),并考虑制造的、运输、安装的要求,设定各截面处的有效厚度。(3)按照规定依次对各个方面进行校核计算并满足相应的要求。

通过这次实习,让我们学到了很多东西,让以前在在课堂上学习到的很多理论知识得到了实践性的操作,也让我体会到了团队合作的重要性。此次塔设备的设计有我们小组负责,让我们感受到了设计方面工作的所存在的难度。

附录

附录一有关部件的质量

附录二矩形力矩计算表

附录三螺纹小径与公称直径对照表

参考文献

1《塔设备》------------- 化学工业出版社路秀林王者相等编着

2《化工设备机械基础》------------------化学工业出版社蔡纪宁张秋翔编

3《化工工程制图》-----------------化学工业出版社

4《化工装置实用工业设计》-----------------化学工业出版社路德维希编着

5《化工设备机械基础》----------------大连理工大学出版社刁玉玮王立业喻健良编着

6《化工设备机械基础》----------------化学工业出版社董大勤编着

7《化工设备机械基础》----------------华东理工大学出版社汤善甫朱思明主编第二版

8《化工制图》----------------化学工业出版社郑晓梅编着

阿尔法60万吨年沥青装置常、减压塔吊装方案

阿尔法60万吨/年沥青装置常、减压塔吊装方案

一、编制说明 在阿尔法60万吨/年沥青装置安装工程中,需将常压塔、减压蒸馏塔两套装置安装就位,为使工程顺利安全地进行,根据现场情况及常、减压塔规格尺寸重量特做以下起重吊装方案。 二、编制依据 1.300吨履带吊车、120吨全液压汽车吊、50吨全液压汽 车吊起吊性能参数; 2.常、减压塔规格及尺寸; 3.安装现场平面位置; 4.起重现场作业手册; 5.大型设备吊装工程施工工艺标准。 三、设备基本参数 常压塔(C-101)高38.42米,起重重量为39.2T; 减压蒸馏塔(C-102)高45.8米,起重重量为88.15T。 下图为两塔的塔体示意图:

四、吊装方法及要求 1. 减压蒸馏塔(C-102)吊装办法 考虑到减压蒸馏塔重量大,高度高,且塔体抗弯强度够,决定由300吨履带吊车整体吊装,120T吊车溜尾。吊车现场站位情况如下图所示:

参考减压蒸馏塔(C-102)设计资料可得出,其起重重量为88.2T。特作以下吊装要求及说明: 1.1.吊装前,须在顶部端口下1000mm处焊接一组对称的标准管轴式吊耳,吊耳级别为50T,具体规格尺寸祥见附件一。 1.2. 吊装选用长度为3米、抗弯强度大的平衡梁一具,φ39×20000的钢丝绳两对,φ39×16000的钢丝绳一根。 1.3. 常压塔尾端则需焊接一溜尾的板式吊耳,吊耳规格为R=300mm,d=150mm,δ=40mm,焊接处需加一加强板。 1.4. 300T吊车跨距为9米,杆长72米,额定载荷98.5T,SH工况,携带配重80吨。 1.5. 溜尾120T吊车,站位及递送不得超出7米跨距。 2. 常压塔(C-101)吊装办法

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

填料塔的设计指导

二氧化硫填料塔设计 一.填料吸收塔简介 在化学工业中,吸收操作广泛应用于石油炼制,石油化工中分离气体混合物,原料气的精制及从废气回收有用组分或去除有害组分等。吸收操作中以填料吸收塔生产能力大,分离效率高,压力降小,操作弹性大和持液量小等优点而被广泛应用。目前国内对填料吸收塔设计大部分是经验设计方法,该方法是在给定生产任务的条件下,由经验确定出一个液气比的值,然后手算出吸收塔的有关设计参数。该设计手段落后,没有考虑经济技术指标,不符合工厂实际生产中成本最低要求,故提出了填料吸收塔的优化设计方法。 下面简要介绍一下填料塔的有关内容。 填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。填料塔以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。 与板式塔相比,在填料塔中进行的传质过程,其特点是气液连续接触,而传质的好坏与填料密切相关。填料提供了塔内的气液两相接触面积。填料塔的流体力学性能,传质速率等与填料的材质,几何形状密切相关,所以长期以来人们十分注中填料的性能和新型填料的开发,使得填料塔在化工生产中应用更加广泛。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔还有以下特点: 1.当塔径不是很大时,填料塔因为结构简单而造价便宜。 2.对于易起泡物系,填料塔更适合,因填料对气泡有限制和破碎作用。 3.对于腐蚀性物系,填料塔更适合,因为可以采用瓷质填料。 4.对于热敏性物系宜采用填料塔,因为填料塔的持液量比板式塔少,物料在塔内的停留时间短。填料塔的压强降比板式塔小,因而对真空操作更有利。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 二.设计方案简介 2.1 方案的确定 填料精馏吸收塔的确定包括装置流程的确定,操作压力的确定,进料热状况的选择,加热方式的选择以及回流比的选择等 2.1.1 装置流程的确定 吸收装置的流程主要有以下几种 (1) 逆流操作: 定义:气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出的操作。 特点:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。 适用情况:工业生产中多采用逆流操作。 (2) 并流操作: 定义:气液两相均从塔顶流向塔底的操作。 特点:系统不受液流限制,可提高操作气速,以提高生产能力。 适用情况:当吸收过程的平衡曲线较平坦时,流向对推动力影响不大; 易溶气体的吸收或处

基础设计说明书

项目名称中国石化高桥分公司润滑油系统改造项目 25万吨/年加氢裂化尾油减压分馏装置 工艺部分 编制蹇江海 校核薛楠 审核刘凯祥 审定朱昌莹 项目经理冀琳

目录 1. 概述 (3) 1.1 项目编制的依据 (3) 1.2 装置概况及特点 (3) 2 原料与产品 (6) 2.1 原料 (6) 2.2 产品性质 (7) 3 物料平衡 (8) 4 主要操作条件 (9) 5 工艺流程说明 (10) 6 公用工程消耗 (11) 6.1 用水量 (11) 6.2 用电量 (12) 6.3 蒸汽用量 (13) 6.4 压缩空气用量 (14) 6.5 氮气用量 (14) 6.6 燃料气用量 (14) 7.装置能耗计算 (15) 7.1 能耗 (15) 7.2 节能措施 (15) 8. 生产控制分析 (17) 9 装置定员 (18) 10. 装置内外关系 (19) 10.1 原料及产品 (19) 10.2 公用工程 (19)

1. 概述 加氢裂化尾油量约25万吨/年,其中约有50%的尾油要作为润滑油加氢异构进料,但从加氢裂化装置开工后生产的尾油性质来看,尾油收率远高于设计值,馏程较宽、部分柴油等轻质组分被压入尾油组分中。而当此尾油作为润滑油加氢异构进料时,这部分轻质组分将发生裂化反应生成轻质燃料油或燃料气,这样会降低润滑油加氢装置基础油收率,降低润滑油加氢的实际负荷。因此,需要通过减压分馏除去这部分轻质组分。 1.1 项目编制的依据 1)上海高桥分公司对于该项目基础设计的委托书,编号为:SEI-R-2008-121。 2)中国石化工程建设公司编制的《中国石化股份有限公司上海高桥分公司润滑油系统改造项目25万吨/年加氢裂化尾油综合利用设施可行性研究报告》(调整上报版)(档案号:02102-15FS)(2008年12月)。 3)上海高桥分公司与我公司的历次设计协调会议纪要。 4)高化分公司提供的自然条件和公用工程条件 1.2 装置概况及特点 1.2.1 装置概况 1)装置规模:装置设计规模25万吨/年。年开工时间为8400小时。 2)原料组成:加氢裂化尾油。 3)主要产品 主要有侧线产品和一个塔底产品: 减一、二线油(<489℃) 14.77t/h 减底油(442~565℃) 15t/h 4)设备概况

蒸馏塔的设计-

1.二.设计任务及操作条件 1.设计任务: 生产能力(进料量) : 2万 吨/年 操作周期: 300*24=7200 h 进料组成: 41% 塔顶产品组成: >96% 塔底产品组成: >1% 2.操作条件: 操作压力: 4kpa (塔顶表 压) 进料热状态: 泡点进料 单板压降: 不大于0.7kpa

3.设备形式: 板式精馏塔,塔 顶为全凝器,中 间泡点进料,塔 底间接蒸汽加 热,连续精馏。 4.厂址: 齐齐哈尔市 (二)设计内容 二)设计内容 1.概述: 本次设计一筛板设计为例,筛板是在塔板上钻有均布的筛孔,上升气流经筛孔分散,鼓泡通过板上液层,形成气液密切接触的泡沫层.筛板塔的优点是结构简单,制造、维修方便,造价低,相同的条件下生产能力高于浮阀塔,塔板效率接近浮阀塔.他的缺点是操作范围小,小孔径筛板易堵噻不适宜

处理粘性大的,脏的和带固体粒子的料液.但设计良好的筛板具有足够的造作弹性,对易引起堵塞的物系可采用大孔径筛板,故近年来我国对筛板的应用日益增多. 2.设计流程的说明: 精馏装置包括精馏塔,原料预热器,再沸器,冷凝器。釜液冷却器和产品冷凝器等设备。热量自塔釜输入,物料在塔内经多次部分汽化与与部分冷凝器进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。在此过程中,热能利用率很低,为此,在确定流程装置时应考虑余热的利用,注意节能。另外,为保持塔的操作稳定性,流程中除用泵直接送入塔原料外,也可以采用高位槽送料以免

受泵操作波动的影响 塔顶冷凝装置根据生产状况以决定采用全凝器,以便于准确地控制回流比。若后继装置使用气态物料,则宜用全分凝器。总而言之确定流程时要较全面,合理的兼顾设备,操作费用操作控制及安全因素。 连续精馏操作流程图 冷凝器 再沸器 3.操作条件:

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

常减压精馏塔机械设计

常减压精馏塔机械设计 DN4200/DN3000 减压塔机械设计摘要本设计是对工艺设计中的常滴油精馏塔进行设计,设计过程主要依据GB150-1998《钢制压力容器》标准和 JB/T4710-2005《钢制塔式容器》标准进行设计计算的。该减压塔采用的是变径板式塔结构,并采用单溢流型塔盘与泡罩塔盘,操作介质为常底油。精馏塔是目前石油化工领域应用的最多的塔设备。在说明部分中,主要介绍塔设备在石油化工生产中的作用、地位、发展现状、特点以及分类,优先选用板式塔的条件,以及舌型塔盘和泡罩塔盘的结构和优缺点,同时又对塔的材料选择,筒体和封头的选用进行了说明和论述。接下来又介绍了塔的附属构件结构,对筒体、裙座、封头、吊柱、地脚螺栓座、基础换班、筋板的选用进行了介绍并且校核了他们的强度,同时也对裙座与通体的连接方式与结构进行了说明。在计算部分主要是针对塔体的筒体、封头的材料选择、壁厚的选取进行了计算,还有稳定性的校核。对自振周期、地震载荷、风载荷进行了计算,同事又进行了该筒体的轴向强度以及稳定性的校核,全做的设计计算及其校核,地脚螺栓座的设计及其强度校核、筋板、盖板及开孔补强的设计计算校核。最后经过计算以及强度校核,设计出合理的减压精馏塔的结构,并绘制出图纸。关键词:筒体、封头、强度、校核。1 说明部分1.1 前言在石油炼化厂的生产装置中,气-液和液-液 2 相直接接触进行传质传热的工艺很多。例如,精馏、吸收、解吸、萃取和气体增湿等。这些公益大多数都在塔内完成。因此,塔设备的性能对炼油、化工装置的生产能力、产品质量与消耗指标以及三废处理以及环境保护等各个方面都有较大影响。据统计,在石油炼化厂中,塔设备的投资额占到总投资额的 10-20,塔设备消耗的钢材量占总投资刚才量的 25-30。塔设备之所以被大量采用,是因为它可以为气-液之间的传质传热提供了适宜的条件。这些条件除了维持一定的塔内压力、温度、气液流量以外,一些特定的塔内件还从

500万吨年炼油减压蒸馏装置设计书

500万吨/年炼油减压蒸馏装置设计书 第一章文献综述 1.1石油工业简介 石油又称原油,是从地下深处开采的棕黑色可燃粘稠液体。由碳和氢化合形成的烃类构成石油的主要组成部分,约占95%~99%,含硫、氧、氮的化合物对石油产品有害,在石油加工中应尽量除去。不同产地的石油中,各种烃类的结构和所占比例相差很大,但主要属于烷烃、环烷烃、芳香烃三类。通常以烷烃为主的石油称为石蜡基石油;以环烷烃、芳香烃为主的称环烃基石油;介于二者之间的称中间基石油。我国主要原油的特点是含蜡较多,凝固点高,硫含量低,镍、氮含量中等,钒含量极少。除个别油田外,原油中汽油馏分较少,渣油占1/3。组成不同类的石油,加工方法有差别,产品的性能也不同,应当物尽其用。 石油炼制工业是国民经济最重要的支柱产业之一,是提供能源,尤其是交通运输燃料和有机化工原料的最重要的工业。据统计,全世界总能源需求的40%依赖于石油产品,汽车,飞机,轮船等交通运输器械使用的燃料几乎全部是石油产品,有机化工原料主要也是来源于石油炼制工业,世界石油总产量的10%用于生产有机化工原料。 石油是十分复杂的烃类非烃类化合物的混合物。石油产品种类繁多,市场上各种牌号的石油产品达1000种以上,大体上可分为以下几类: ⑴燃料:如各种牌号的汽油、航空煤油、柴油、重质燃料油等; ⑵润滑油:如各种牌号的燃机油、机械油等; ⑶有机化工原料:如生产乙烯的裂解原料、各种芳烃和烯烃等; ⑷工艺用油:如变压器油、电缆油、液压油等; ⑸沥青:如各种牌号的铺路沥青、建筑沥青、防腐沥青、特殊用途沥青等; ⑹蜡:如各种食用、药用化妆品用,包装用的石蜡和地蜡; ⑺石油焦炭:如电极用焦、冶炼用焦、燃料焦等。 从上述石油产品品种之多和用途之广也可以看到石油炼制工业在国民经济和国防中的重要地位。 石油作为一种能流密度高,便于储存、运输、使用的清洁能源已广泛应用于国民经济的方方面面。按2001年中国各行业石油消费构成看,交通运输业占30%以上,是消费石油最多的行业。 在交通运输业中,汽车是最大的石油消费用户。在石油产品中,汽油的85%~90%和柴油的30%被汽车所消耗。面对中国目前汽车的飞速发展,保有量的迅猛增长,不能不未雨绸缪,以防石油短缺制约汽车工业的正常发展。从世界围看,汽车的出现把石油工业推向了快速发展的轨道,加快了石油产品的消费和需求。

填料塔设计说明书

填 料 塔 设 计 说 明 书 设计题目:水吸收氨填料吸收塔学院:资源环境学院 指导老师:吴根义罗惠莉 设计者:海江 学号:7 专业班级:08级环境工程1班

一、设计题目 试设计一座填料吸收塔,用于脱出混于空气中的氨气。混合气体的处理为2400m3/h,其中含氨5%,要求塔顶排放气体中含氨低于0.02%。采用清水进行吸收,吸收剂的用量为最小量的1.5倍。 二、操作条件 1、操作压力常压 2、操作温度 20℃ 三、吸收剂的选择 吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。所以本设计选择用清水作吸收剂,氨气为吸收质。水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。且氨气不作为产品,故采用纯溶剂。 四、流程选择及流程说明 逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。工业生产中多用逆流操作。 五、塔填料选择 阶梯环填料。阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种 选用聚丙烯阶梯环填料,填料规格:

六、填料塔塔径的计算 1、液相物性数 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,20℃水的有关物性数据如下: 密度为:L ρ=998.2 kg/m3 粘度为:μL=0.001004 Pa·S=3.6 kg/(m·h) 表面力为σL=72.6 dyn/cm =940896 kg/h2 2、气相物性数据: 20℃下氨在水中的溶解度系数为:H=0.725kmol/(m3·kPa)。 混合气体的平均摩尔质量为: Mvm=0.05×17.03g/mol +0.95×29g/mol=28.40g/mol , 混合气体的平均密度为:ρvm =1.183 kg/m3 混合气体的粘度可近似取为空气的粘度,查手册得20℃空气的粘度为: μv=1.81×10-5 Pa·S=0.065 kg/(m·h) 3、气相平衡数据 20℃时NH3在水中的溶解度系数为H=0.725 kmol/(m3·kPa),常压下20℃时NH3在水中的亨利系数为E=76.41kPa 。 4、物料衡算: 亨利系数 S L HM E ρ= 相平衡常数 754.03 .10102.18725.02 .998=??=== P HM P E m S L ρ E ——亨利系数 H ——溶解度系数 Ms ——相对摩尔质量

常压塔设计论文

常减压装置中常压塔设计 摘要 塔设备是化工,石油化工和炼油生产中最重要的设备之一。塔设备是大部分机械专业理论学习的重点设备,也是化工厂中常见的设备。随着石油,化工生产的迅速发展,塔设备在石油化工生产中投入所占的比例越来越大,占到大概百分之五十的比例。塔设备的性能,整个装置的产品产量,质量,生产能力和消耗定额,以及三废处理和环境保护方面都有重要意义。因此选择沥青装置常压塔设计。 本文是以专业知识为基础,对六十万吨每年氧化沥青装置常压塔进行的设计计算,该塔可以在常压,一百五十摄氏度温度下工作。该塔设备为浮阀塔,优点是生产能力高,操作弹性大,气液流动阻力较小,塔板效率较高,但浮阀装卸清洗较困难,造价高,总体来讲综合性能较好,可以在工业上得到普遍应用。塔设备的设计具有很强的综合性,尤其在塔的高度较高时,要注意考虑高振型以及横风向风振对塔设备的影响。当前板式塔应该以处理能力为第一目标,传质效率为第二目标,开发的重点集中在降液管结构改进,塔板空间合理利用,气液分散结构优化以及降低成本等方面的改进。 关键词: 常压塔;沥青装置;浮阀

Design of atmospheric tower Abstract Tower equipment in chemical, petrochemical and oil refining production is one of the most important equipment .Tower equipment is key equipment which learned by most mechanical engineering, but also common equipment in chemical factory. With the rapid development of petroleum, chemical production, tower equipment in petrochemical production input accounted for an increasingly large proportion about fifty percent. Performance, the entire device product yield, quality, production and consumption, and waste treatment and environmental protection of tower equipment has important significance. So asphalt unit atmospheric distillation tower design is the choice. This paper is based on the professional knowledge as the basis, to design and calculate of six hundred thousand tons per year of asphalt oxidation device atmospheric tower, which at atmospheric pressure, one hundred and fifty degrees Celsius temperature. The tower equipment for the float valve tower, has the advantages of high production capacity, high operating flexibility, which gas-liquid flow resistance is small and the plate efficiency is higher, but handling and cleaning float valve is more difficult and costs more, generally speaking, the float valve tower, which comprehensive performance is good, can be widely applied in industry. Tower equipment design has the very strong comprehensive, especially in the height of the tower is high, and paying attention to high vibration mode and crosswind vibration that has a influence on tower equipment is a must. The current tower should take to processing capacity as the first goal, the mass transfer efficiency as second goal, focus in improvement of structure of down comer plate, reasonable use in plate space, optimization of gas-liquid dispersion structure, cost reduction and other improvements. Keywords: atmospheric tower;device for asphalt;float valv

900万吨年减压蒸馏装置设计开题报告

本科毕业论文开题报告 题目900万吨/年原油减压蒸馏装置 初步设计 学生姓名蒋川学号0904040429 教学院系化学化工学院 专业年级2009级化学工程与工艺 指导教师段蜀波职称讲师 单位西南石油大学化学化工学院 辅导教师邹长军职称教授 单位西南石油大学 完成日期2012 年 3 月18 日

900万吨/年原油减压蒸馏装置初步设计(开题报告) 1选题目的、意义 随着社会的发展,我国经济的发展越来越依赖化石燃料的供应。而这些燃料中,石油被誉为“工业的血液”,其对我国经济发展的重要性是不言而喻的。石油是一种及其复杂的混合物。要从原油中提炼出多种多样的燃料、润滑油和其他产品,基本途径就是:将原油分割为不同沸程的馏分,然后按照油品的使用要求,除去这些馏分中的非理想组分,或者是经由化学转化形成所需要的组成,进而获得合格的石油产品。在这个过程中蒸馏就是一种合适的手段,而且也是最经济、最容易实现的手段。因此,蒸馏装置是炼油厂中一个很重要的装置。原油蒸馏是石油加工中第一道不可少的工序,故通常称原油蒸馏为一次加工,其他加工工序则称为二次加工[2]。原油的一次加工能力即原油蒸馏装置的处理能力,常被视为一个国家炼油工业发展水平的标志。原油常减压蒸馏在炼化企业加工过程中占有很重要的地位,其加工的好坏直接关系到后续产品质量和经济效益。因此,原油常减压蒸馏被称为石油加工的“龙头”。基于以上原因,几乎在所有的炼油厂中,原油的第一个加工装置就是常减压蒸馏装置。尽管近年来常减压蒸馏技术和管理经验不断创新,装置节能降耗和产品质量得到了显著的提高,但与国外先进水平相比,仍存在较大的差距,如装置耗能较大,分馏和减压拔出深度偏低,对含硫原油的适应性较差等。进一步的提高常减压装置的操作水平和运行水平显得日益重要,对提高炼油企业的经济效益也具有非常重要的意义。 本设计主要是依据《大庆原油评价报告》确定原油加工方案,进行原油常减压蒸馏的工艺设计。它的意义在于,通过常减压蒸馏对原油的处理,可以按所指定的产品方案将原油分割得到汽油、煤油、轻柴油、重柴油馏分以重油馏分等。可以减少渣油量,提高原油总拔出率。不仅能获得更多的轻质油品,也可为二次加工、三次加工提供更多的原料油。 2国内外研究现状 2.1国内现状 国内常减压蒸馏技术近年来有很大发展,在改进加工流程,提高设备效率,降低能耗,提高产品质量方面做了大量的开发性工作,常减压蒸馏装置的平均

甲醇精馏塔设计说明书

设计条件如下: 操作压力:105.325 Kpa(绝对压力) 进料热状况:泡点进料 回流比:自定 单板压降:≤0.7 Kpa 塔底加热蒸气压力:0.5M Kpa(表压) 全塔效率:E T=47% 建厂地址:武汉 [ 设计计算] (一)设计方案的确定 本设计任务为分离甲醇- 水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。 该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2 倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1、原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmol x F=32.4% x D=99.47% x W=0.28% 2、原料液及塔顶、塔底产品的平均摩尔质量 M F= 32.4%*32+67.6%*18=22.54 Kg/Kmol M D= 99.47*32+0.53%*18=41.37 Kg/Kmol M W= 0.28%*32+99.72%*18=26.91 Kg/Kmol 3、物料衡算 3 原料处理量:F=(3.61*10 3)/22.54=160.21 Kmol/h 总物料衡算:160.21=D+W 甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28% 得D=51.88 Kmol/h W=108.33 Kmol/h (三)塔板数的确定 1、理论板层数M T 的求取 甲醇-水属理想物系,可采用图解法求理论板层数 ①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y 图(附表) ②求最小回流比及操作回流比 采用作图法求最小回流比,在图中对角线上,自点e(0.324 ,0.324)作垂线ef 即为进料线(q 线),该线与平衡线的交战坐标为(x q=0.324,y q=0.675) 故最小回流比为R min= (x D- y q)/( y q - x q)=0.91 取最小回流比为:R=2R min=2*0.91=1.82 ③求精馏塔的气、液相负荷 L=RD=1.82*51.88=94.42 Kmol/h V=(R+1)D=2.82*51.88=146.30 Kmol/h

化工原理课程设计(规整填料塔)

填料精馏塔设计任务书 一、设计题目:填料塔设计 二、设计任务:苯-甲苯精馏塔设计 三、设计条件: 1、年处理含苯41%(质量分数,下同)的苯-甲苯混合液3万吨; 2、产品苯含量不低于96%; 3、残液中苯含量不高于1%; 4、操作条件: 填料塔的塔顶压力:4kPa(表压) 进料状态:自选 回流比:自选 加热蒸汽压力:101.33kPa(表压) 5、设备型式:规整填料塔 6、设备工作日:300天/年,24h连续运行 四、设计内容和要求 序号设计内容要求 1 工艺计算物料衡算、热量衡算、理论塔板数等 2 结构设计塔高、塔径、分布器、接口管的尺寸等 3 流体力学验算塔板负荷性能图 4 冷凝器的传热面积和冷却介质的 用量计算 5 再沸器的传热面积和加热介质的 用量计算 6 计算机辅助计算将数据输入计算机,绘制负荷性能图 7 编写设计说明书目录、设计任务书、设计计算及结果、流程图、参考资料等

目录 第1章流程的确定和说明 (3) 1.1加料方式 (3) 1.2进料状态 (3) 1.3冷凝方式 (3) 1.4回流方式 (3) 1.5加热方式 (3) 1.6加热器 (4) 第2章精馏塔设计计算 (5) 2.1操作条件和基础数据 (5) 2.1.1操作压力 (5) 2.1.2基础数据 (5) 2.2精馏塔工艺计算 (7) 2.2.1物料衡算 (7) 2.2.2热量衡算 (9) 2.2.3理论塔板数计算 (11) 2.3精馏塔的主要尺寸 (12) 2.3.1精馏塔设计的主要依据 (12) 2.3.2塔径设计计算 (15) 2.3.3填料层高度的计算 (16) 第3章附属设备及主要附件的选型计算 (17) 3.1冷凝器 (17) 3.1.1计算冷却水流量 (18) 3.1.2冷凝器的计算与选型 (18) 3.2再沸器 (18) 3.2.1间接加热蒸汽 (18) 3.2.2再沸器加热面积 (18) 3.3塔内其他结构 (19) 3.3.1接管的计算与选择 (19) 3.3.2液体分布器 (20) 3.3.3除沫器 (21) 3.3.4液体再分布器 (22) 3.3.5填料支撑板的选择 (22) 3.3.6塔底设计 (23) 3.3.7塔的顶部空间高度 (23) 第4章结束语 (24) 参考文献 (25)

常减压装置说明书

一、工艺流程 1.1装置概况 本装置为石油常减压蒸馏装置,原油经原油泵(P-1/1.2)送入装置,到装置内经两路换热器,换热至120℃,加入一定量的破乳剂和洗涤水,充分混合后进入电脱盐罐(V1)进行脱盐。脱后原油经过两路换热器,换热至235℃进入初馏塔(T1)闪蒸。闪蒸后的拔头原油经两路换热器,换热至310℃,分四股进入常压塔加热炉(F1)升至368℃进入常压塔(T2)。常压塔塔底重组分经泵送到减压塔加热炉(F2)升温至395℃进入减压塔(T4)。减压塔塔底渣油经两路换热器,送出装置。 1.2工艺原理 1.2.1原油换热 罐区原油(45℃)经原油泵P-1/1.2进入装置,分两路进行换热。一路原油与E-1(常顶气)、E-2(常二线)、E-3(减一线)、E-4(减三线)、E-5(常一线)、E-6(减渣油)换热到120℃;二路原油与E-14(常顶气)、E-16(常二线)、E-17(减二线)换热到127.3℃。两路原油混合换热后温度为120℃,注入冷凝水,经混合阀(PDIC-306)充分混合后,进入电脱盐罐(V-1)进行脱盐脱水。 脱后原油分成两路进行换热,一路脱后原油与E-7(常二线)、E-8(减二线)、E-9/1.2(减三线)、E-10/1~4(渣油)换热到239.8℃;二路脱后原油与E-11/1.2(减一中)、E-12/1.2(常二线)、E--13/1.2(减渣)换热到239.7℃。两路脱后原油换热升温到230℃合为一路进入初馏塔(T-1)汽化段。 初馏塔塔顶油气经空冷气(KN-5/1~5)冷凝到77℃,进入初顶回流罐(V-2)。油气经分离后,液相用初顶回流泵(P-4/1.2)打回初馏塔顶作回流,其余油气继续由初顶空冷器(KN-1/1~3)、初顶后冷器(N-1)冷却到40℃,进入初顶产品罐(V-3)。 初馏塔侧线油从初馏塔第10层用泵(P-6/1.2)抽出与常一中返塔线合并送到常压塔第33层塔盘上。 初馏塔底拔头油,经初底泵(P-2/1.2)抽出分两路换热。一路拔头原油与E-30/1.2(常二中)、 E-31(渣油)换热到270?C、E-32(渣油)、E-33(减四线)、E-34/1.2(减渣油)换热到308.3?C;二路拔头原油与E-35/1.2(减二中)、E-36(减渣油)、E-37/1.2(减二中)、E-38(常四线)、E-39/1.2(减渣油)换热到312.8?C。两路拔头原油汇合换热到308.3?C,然后分四路进入常压炉(F-1),加热到365?C,进入常压塔(T-2)进料段。 1.2.2常压塔

常减压蒸馏工艺计算汇总

本科毕业设计工艺计算 题目年处理24万吨焦油常减压蒸馏车间初步设计院(系环化学院 班级:化工12-2 姓名:柴昶 学号: 2012020836 指导教师:张劲勇 教师职称:教授 2016年3月

第4章工艺计算 4.1设备选择要点 4.1.1 圆筒管式炉 (1)合理确定一段(对流段)和二段(辐射段)加热面积比例,应满足正常条件下,二段焦油出口温度400~410℃时,一段焦油出口温度在120~130℃之间的要求。 (2)蒸汽过热管可设置预一段或二段,要合理确定加热面积。当蒸气量为焦油量的4%时,应满足加热至400~450℃的要求。 (3)辐射管热强度实际生产波动在18000~26000千卡/米2·时,设计宜采用18000~22000千卡/米2·时,对小型加热炉,还可取低些。当选用光管时,对流段热强度一般采用6000~10000千卡/米2·时。 (4)保护层厚度宜大于200毫米,是散热损失控制在3%以内。 (5)火嘴能力应大于管式炉能力的 1.25~1.3倍。火嘴与炉管净距宜大于900毫米,以免火焰添烧炉管。 (6)辐射管和遮蔽管宜采用耐热钢(如Cr5Mo等)。 4.1.2馏分塔 (1)根据不同塔径确定塔板间距,见表4-1。 表4-1 塔板间距 塔径 (mm) 800 900 1000 1200 1400 1600 1800 2000 2200 2400 板距(mm) 350 350 350 350 400 400 450 450 450 450 400 400 450 450 500 500 500 500 (2)进料层的闪蒸空间宜采用板距的2倍。 (3)降液管截面宜按停留时间不低于5秒考虑。 (4)塔板层数应结合流程种类、产品方案、切取制度及其他技术经济指标综合确定。 4.2物料衡算 原始数据: 年处理量24万t/a 原料煤焦油所含水分4% 年工作日330日, 半年维修一次 每小时处理能力w=30303.03kg 可按30303 kg计算

减压塔基础加固方案

陕西延长石油集团油煤新技术开发公司2018年加氢装置减压塔基础加固专项施工方案 编制: 审核: 批准: 陕西化建工程有限责任公司 年月日

目录 一、编制说明 (1) 二、编制依据 (1) 三、工程概况 (1) 四、施工技术及措施 (1) 五、质量保证措施 (3) 六、质量保证体系及质保措施 (4) 七、劳动力计划 (6) 八、施工机具计划 (6) 九、项目部组织机构 (7) 十、安全保证体系 (7) 十一、安全文明施工 (8) 附表一作业危险分析表 (10) 动火作业 (10)

一、编制说明 本方案针对为煤油共炼工业示范装置工业技术优化研究及改进项目(三期),2018年技改项目减压塔基础加固专项方案。 二、编制依据 2.1煤油共炼项目施工图纸及有关技术文件 2.2 业主方提供的施工时段计划表及设备有关资料 2.3本工程所采用的施工技术规范及标准 2.4《混凝土结构设计规范GB50010-2010》 2.5《建筑抗震设计规范GB50011-2010》 2.6《混凝土结构加固设计规范GB50367-2006》 2.7《建筑结构荷载规范GB50009-2012》 2.8《既有建筑地基基础加固技术规范》JGJ123-2012 2.9《建筑拆除工程安全技术规范》JGJ147-2013 2.10《混凝土结构后锚固技术规程》JGJ145-2013 三、工程概况 3.1施工地点:加氢车间 3.2主要改造内容 3.2.1基础表面剔除旧混凝土 3.2.2基础半径增加500mm 3.2.3基础侧面植筋¢10@450mm;基础底面植筋¢20@200mm 3.2.4基础增加M36螺栓20根 四、施工技术及措施 4.1施工准备 4.1.1施工技术资料的准备

洗涤塔设计说明

洗涤塔设计说明文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

洗涤塔设计明细 一、 设计说明 1、 技术依据:《通风经验设计》、《三废处理工程技术手册》、《风机手 册》等。 2、 风量依据:拫据业主提供风量。 3、 设备选择依据:以废气性质为前提,根据设计计算所得结果选择各种合理 有效的处理设备。 二、 基本公式 1)、洗涤塔选择: 风量、风速、及管经计算公式 Q = 60A ν 式中:Q 风量(CMM); A 气体通过某一平面面积(m 2); ν 流速(m/s); 根据业主设计规范要求,塔内流速:≦2m/s ,结合我司多年洗涤塔设计经验, 塔内速度取,ν ≦s 填充层设计高度: 则填充层停留时间>6 .15.1= 洗涤塔直径>2*6 .1*1416.3*601333= 其中Q=80000CMH=1333CMM ν =s 2)、泵浦选择 ○1流量设定 润湿因子>hr 则:泵浦流量(填充物比表面积*填充段截面积)>hr ξ>60 1000*)22.4*1416.3*100*1.02??????(>2307 L/min ○2扬程设定:

直管长度: ++4= 等效长度: 900弯头 3个 * 3 = 球阀 2个 * 2 = 逆止阀 1个 * 1 = 总长:+ + + =,取24m 扬程损失: 24 * = 喷头采用所需压力为, 为6m水柱压力。 所需扬程为: + + 6= 查性能曲线: 益威科泵浦KD-100VK-155VF,当扬程为12m时,流量为1200L/min,两台15HP则满足要求。 选用泵浦:2台15HP浦, 总流量为2400L/min 最高扬程: 12m

塔设备设计说明书

塔设备设计说明书 Prepared on 24 November 2020

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相

在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm; t] [δ----- 圆筒或球壳材料在设计温度下的许用应力,MPa; t δ ------ 圆筒或球壳材料在设计温度下的计算应力,MPa; φ ------ 焊接接头系数; C ------- 厚度附加量,mm;

相关文档