文档库 最新最全的文档下载
当前位置:文档库 › 全等三角形判定定理

全等三角形判定定理

全等三角形判定定理
全等三角形判定定理

二、全等三角形的性质

1、全等三角形的对应角_相等____

2、全等三角形的对应边、对应中线、对应高、对应角平分线_相等__

注意:

1、斜边、直角边公理(HL)只能用于证明直角三角形的全等,对于其它三角形不适用。

2、SSS、SAS、ASA、AAS适用于任何三角形,包括直角三角形。

三、角平分线的性质

角平分线上的点到角的两边的距离相等。

∠的平分线上

P在AOB

⊥于E

PD OA

⊥于D,PE OB

∴PD PE=

四、角平分线的判定

到角的两边距离相等的点在角的平分线上。

⊥于E

⊥于D,PE OB

PD OA

且PD PE

=

∴P在AOB

∠的平分线上

(或写成OP是AOB

∠的平分线)

三角形、勾股定理知识点整理

全等三角形、勾股定理教案

从一定向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段.点和线段的正射影简称为射影 直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项; 推论:直角三角形中其中一条直角边是该直角边在斜边上的射影与斜边的比例中项.即 22 2 90CD AD BD ACB AC AD AB CD AB BC BD AB ? ?=??∠=??=???⊥??=?? 四、全等三角形 1、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形; 2、三角形全等的性质:全等三角形的对应边相等,对应角相等; 3、全等三角形的判定定理: ⑴边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”) ⑵角角边定理:任意两角及其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”; ⑶角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”) ⑷边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”); (5)直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”) 注意:对应相等意思是:例如三角形ABC 和三角形DEF ,AB 和DE 是对应边,AB=DE ;BC 和EF 是对应边,BC=EF ;AC 和DF 是对应边,AC=DF 角A 和角D 是对应角,角A=角D 角B 和角E 是对应角,角B=角E 角C 和角F 是对应角,角C=角F 这些对应关系都可以从题目给出的三角形XXX 和三角形yyy 中按顺序写好

全等三角形证明判定方法分类总结

全等三角形(一)SSS 【知识要点】 1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质: (1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等 3.全等三角形:两个能够完全重合的三角形称为全等三角形 (1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于”如DEF ABC? ?与全等,记作ABC ?≌DEF ? (2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等. (3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角. (4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”. 如图,在ABC ?和DEF ?中 ? ? ? ? ? = = = DF AC EF BC DE AB ABC ? ∴≌DEF ? 【典型例题】 例1.如图,ABC ?≌ADC ?,点B与点D是对应点, ? = ∠26 BAC,且? = ∠20 B,1 = ?ABC S,求 A C D D C A D∠ ∠ ∠, ,的度数及ACD ?的面积. 例2.如图,ABC ?≌DEF ?,cm CE cm BC A5 , 9 , 50= = ? = ∠,求EDF ∠的度数及CF的长. A D

例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠ 例4.如图AB=DE ,BC=EF ,AD=CF ,求证: (1)ABC ?≌DEF ? (2)AB//DE ,BC//EF

全等三角形的性质及判定(讲义)

全等三角形的性质及判定(讲义) ? 课前预习 1. “完全重合”的意思是“形状相同、大小相等”,下列图形能够完全重合 吗,为什么? ①把长方形纸片对折再沿折痕剪开,重叠放置后,任意剪下一个三角形,从而得到的两个三角形; ②三棱柱上下底面的两个三角形; ③学生用的含有30°角的三角板(带孔)中内外两个三角形; ④张贴在家中的世界地图和手机上的世界地图. ? 知识点睛 1. 由____________________的三条线段_________________所组成的图形叫做 三角形.三角形可用符号“________”表示. 2. _____________________的两个三角形叫做全等三角形,全等用符号 “_________”表示.全等三角形的__________相等,____________相等. 3. 全等三角形的判定定理:______________________________. ? 精讲精练 1. 如图,△ABC ≌△DEF ,对应边AB =DE ,______________,_________,对 应角∠B =∠DEF ,_________,__________. F E D C B A A C B 1 2 O 第1题图 第2题图 2. 如图,△ACO ≌△BCO ,对应边AC =BC ,______________,__________, 对应角∠1=∠2,____________,____________. 3. 如图,△ABC ≌△DEC ,对应边___________,__________,___________, 对应角_______________,_______________, ______________. 4. 如图,△ABC ≌△CDA ,对应边___________,__________,___________, 对应角_______________,_______________, ______________. E D C B A

1全等三角形判定一(SSS,SAS)(基础)知识讲解

全等三角形判定一(SSS ,SAS )(基础) 【要点梳理】 要点一、全等三角形判定1——“边边边” 全等三角形判定1——“边边边” 三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). 要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C . 要点二、全等三角形判定2——“边角边” 1. 全等三角形判定2——“边角边” 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”). 要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角. 2. 有两边和其中一边的对角对应相等,两个三角形不一定全等. 如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等. 【典型例题】 类型一、全等三角形的判定1——“边边边” 1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点. 求证:RM 平分∠PRQ .

【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等. 【答案与解析】 证明:∵M 为PQ 的中点(已知), ∴PM =QM 在△RPM 和△RQM 中, ()(),, RP RQ PM QM RM RM ?=?=??=? 已知公共边 ∴△RPM ≌△RQM (SSS ). ∴ ∠PRM =∠QRM (全等三角形对应角相等). 即RM 平分∠PRQ. 【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定. 类型二、全等三角形的判定2——“边角边” 2、(2016?泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB . 【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可. 【答案与解析】 证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°, ∴CE=CD ,BC=AC , ∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE , ∴∠ECB=∠DCA , 在△CDA 与△CEB 中 , ∴△CDA ≌△CEB .

全等三角形与勾股定理练习题(一)

全等三角形与勾股定理练习题(一) 一.填空题 1.一个矩形的抽斗长为24cm ,宽为7c m,在里面放一根铁条,那么铁条最长可以是 . 2.在Rt △A BC 中,∠C =90°,BC =12cm ,S△ABC =30cm 2 ,则AB = . 3.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。 4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方 形A ,B,C ,D 的面积之和为___________cm 2 。 5.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 6.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。 7.已知两条线段的长为5c m 和12c m ,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形. 8.一个三角形三边之比为2:5:3,则这个三角形的形状是 . 9.将一根长为24㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中, 设筷子露在杯子外面的长为h ㎝,则h 的取值范围是________________. 10.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿 纸箱爬到B点,那么它所行的最短路线的长是____________. 11.如图,在△ABC 中,AD 平分∠BA C,A B=AC -BD ,则∠B ∶∠C 的值是___________。 12.如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180形成的,若 150BAC ∠=,则θ∠的度数是 . 二.选择题 1、若Rt ABC 中,90C ? ∠=且c=37,a =12,则b=( ) A 、50 B 、35 C、34 D 、26 2、如图,平行四边形AB CD 对角线AC,BD 交于O,过O 画直线EF 交AD 于E , 交BC 于F ,,则图中全等三角形共有( ) (A )7对 (B )6对 (C)5对 (D)4对 3.如图,△DAC 和△EBC均是等边三角形,AE、B D分别与C D、CE 交于点M 、N,有如下结论:① △ACE ≌△D CB ; ② CM =CN;③ AC=DN 。正确结论的个数是( ).(A) 3个 (B )2个 (C)1个(D)0个 4.如图,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC交BC于D ,DE ⊥A B于D ,若A B=1 A B C D 7cm D B C A 第3题 A B A C D A E B θ

勾股定理知识点与常见题型总结

勾股定理复习 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明,常见的是拼图的方法 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用:勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. ①已知直角三角形的任意两边长,求第三边。在ABC ?中,90C ∠=?,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 常见图形: 类型一:勾股定理的直接用法 1、在Rt △ABC 中,∠C=90° (1)已知a=6, c=10,求b , (2)已知a=40,b=9,求c ; (3)已知c=25,b=15,求a. 2. 已知直角三角形两边的长为3和4,则此三角形的周长为 . 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB 的长是多少? 类型二:勾股定理的构造应用 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

全等三角形判定方法四种方法”_

三角形全等的条件(一) 学习要求 1 ?理解和掌握全等三角形判定方法 1―― “边边边”, 2?能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 课堂学习检测 一、填空题 1 ?判断 ____ 的 _____ 叫做证明三角形全等. 2?全等三角形判定方法 1―― “边边边”(即 ________ )指的是 _____ 3?由全等三角形判定方法 1―― “边边边”可以得出:当三角形的三边长度一定时,这个 三角形的 _____ 也就确定了. 在厶 ______ 和厶 ______ 中, RP RQ(已知), PM _______ , _____ _______ (), 二 _____ 也 ______ ( )? / PRM = _______ ( ______ ) ? 即RM ? 5. 已知:如图 2 — 2, AB = DE , AC = DF , BE = CF. 求证:/ A =Z D . 4. 已 知: 求只要证_ 证明:如图 2 —〔,△ RPQ 中, RM 平分/ PRQ . 要证 RM 平分/ PRQ ,即/ PRM = M 为PQ 的中点(已知),

分析:要证/ A =Z D,只要证_________ 也 ______ 证明:??? BE = CF ( ), 二BC = ____ . 在厶ABC和厶DEF中, AB _______ , BC _______ , AC _______ , 二 _____ 也______ ( ). ???/ A=Z D ( __________ ). 6. 如图2- 3, CE = DE, EA = EB, CA = DB , 求证:△ ABCBAD . 证明:??? CE= DE , EA= EB, ? _____ + _______ = _______ + 即 _____ = _______ . 在厶ABC和厶BAD中, = ______ (已知), _____ _______ (已知), (已证), _____ ( ), ? △ ABC◎△ BAD ( ). 综合、运用、诊断 一、解答题 7. 已知:如图2 —4, AD = BC . AC= BD .试证明:/ CAD = /DBC . &画一画. 已知:如图2 —5,线段a、b、c . 求作:△ ABC,使得BC = a, AC= b, AB = c .

北师版八年级数学第一章勾股定理知识点与常见题型总结及练习

北师版八年级数学第1章 勾股定理 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 7.勾股定理的应用 勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用 勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体

【AAA】全等三角形的判定常考典型例题及练习.doc

全等三角形的判定 一、知识点复习 在△ABC 和△DEF 中 ② 在△ABC 和△DEF 中 ③AAS )

HL ) 在△ABC 和△DEF 中 一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗?比如说“SSA ”、“AAA ”能成为判定两个三角形全等的条件吗? 二、常考典型例题分析 第一部分:基础巩固 1.下列条件,不能使两个三角形全等的是( ) A .两边一角对应相等 B .两角一边对应相等 C .直角边和一个锐角对应相等 D .三边对应相等 2.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( ) A.∠B=∠CB .AD=AEC .BD=CED .BE=CD 3.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )

A .甲和乙 B .乙和丙 C .甲和丙 D .只有丙 4.如图,E ,B ,F ,C 四点在一条直线上,EB=CF ,∠A=∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( ) A .AB=DE B .DF ∥AC C .∠E=∠ABC D .AB ∥DE 5.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( ) A .∠A=∠D B .AB=DC C .∠ACB=∠DBC D .AC=BD 6.如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线OC ,作法用得的三角形全等的判定方法是( ) A .SAS B .SSS C .ASA D .HL 第二部分:考点讲解 考点1:利用“SAS ”判定两个三角形全等 1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD . 2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE . 考点2:利用“SAS ”的判定方法解与全等三角形性质有关的综合问题 3.已知:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠ 考点3:利用“SAS ”判定三角形全等解决实际问题 4.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗?

《全等三角形判定的条件组合(二)》热点专题高分特训(含答案)

全等三角形判定的条件组合(二)(人教版) 一、单选题(共7道,每道14分) 1.已知:如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是( ) A.AE=CE;SAS B.DE=BE;SAS C.∠D=∠B;AAS D.∠A=∠C;ASA 答案:C 解题思路: 试题难度:三颗星知识点:全等三角形的判定

2.已知:如图,∠ADB=∠ADC,要使△ABD≌△ACD,需添加一个条件,则添加的条件以及相应的判定定理正确的是( ) A.BD=CD;SAS B.AB=AC;SAS C.∠B=∠C;ASA D.∠BAD=∠CAD;AAS 答案:A 解题思路: 试题难度:三颗星知识点:全等三角形的判定 3.已知:如图,点D在AB上,点E在AC上,且∠B=∠C,要使△ABE≌△ACD,需添加一个

条件,则添加的条件以及相应的判定定理正确的是( ) A.AB=AC;AAS B.AE=AD;AAS C.BE=CD;ASA D.∠AEB=∠ADC;AAS 答案:B 解题思路: 试题难度:三颗星知识点:全等三角形的判定 4.已知:如图,在△ABC和△ADE中,已知∠BAC=∠DAE,要使△ABC≌△ADE,需添加两个条件,则下列添加的条件以及相应的判定定理正确的有( ) ①AC=AE,AB=AD,SAS;②AC=AE,BC=DE,SAS; ③∠B=∠D,BC=DE,AAS;④∠C=∠E,AC=AE,ASA;

⑤∠B=∠D,AC=AE,ASA. A.①②③ B.①③④ C.②③④ D.①②⑤ 答案:B 解题思路: 试题难度:三颗星知识点:全等三角形的判定 5.已知:如图,在△ABC和△DEC中,AB=DE,要使△ABC≌△DEC,需添加两个条件,则下列添加的条件以及相应的判定定理正确的有( ) ①BC=EC,∠B=∠E,SAS;②BC=EC,AC=DC,SSS; ③∠B=∠E,∠ACB=∠DCE,ASA;④∠A=∠D,∠B=∠E,AAS.

全等三角形判定基础练习(有答案)

全等三角形判定基础练习(有答案) 一.选择题(共3小题) 1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是() A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD 2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是() A.①和②B.①和④C.②和③D.③和④ 3.如图,下列各组条件中,不能得到△ABC≌△BAD的是() A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BD C.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA 二.解答题(共6小题) 4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.

5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由. 6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC. 7.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B 作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.

8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE. 求证:△ABE≌△ACD. 9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.

全等三角形的判定复习与总结(教案)

A D B B D C 全等三角形的判定 全等三角形复习 [知识要点] 一、全等三角形 1.判定和性质 一般三角形 直角三角形 判定 边角边(SAS )、角边角(ASA ) 角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL ) 性质 对应边相等,对应角相等 对应中线相等,对应高相等,对应角平分线相等 注:① 判定两个三角形全等必须有一组边对应相等; ② 全等三角形面积相等. 2.证题的思路: ? ? ? ?? ??? ???? ? ???????? ? ?? ?????? ????? ??)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边() 找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 二、例题讲解 例1.(SSS )如图,已知AB=AD ,CB=CD,那么∠B=∠D 吗?为什么? 分析:要证明∠B=∠D ,可设法使它们分别在两个三角形中,再证它们所 在的两个三角形全等,本题中已有两组边分别对应相等,因此只要连接 AC 边即可构造全等三角形。 解:相等。理由:连接AC ,在△ABC 和△ADC 中,??? ??===AC AC CD CB AD AB ∴△ABC ≌△ADC (SSS ),∴∠B=∠D (全等三角形的对应角相等) 点评:证明两个角相等或两条线段相等,往往利用全等三角形的性质求解。有时根据问题的需要添加适当的辅助线构造全等三角形。 例2.(SSS )如图,△ABC 是一个风筝架,AB=AC,AD 是连接A 与BC 中点D 的支架,证明:AD ⊥BC.分析:要证AD ⊥BC ,根据垂直定义,需证∠ADB=∠ADC,而∠ADB=∠ADC 可由△ABD ≌△ACD 求得。 证明: D 是BC 的中点,∴BD=CD 在△ABD 与△ACD 中,?? ? ??===AD AD CD BD AC AB C

全等三角形判定公开课教案

三角形全等的判定—边角边公开课教 案 授课教师:乐山市市中区关庙中学雷万建 一、背景介绍与教学资料 本教材强调直观和操作,在观察中学会分析,在操作中体验变换。教材的编排淡化概念的识记,强调图形性质的探索。全等三角形的判定是今后证明线段相等和角相等的重要工具,是学习后续课程的必要基础。在教学呈现方式上,改变了“结论——例题——练习”的陈述模式,而采用“问题——探索——发现”等多种研究模式。在直观感知、操作确认的基础上,适当地进行数学说理,将两者有机地结合起来,让学生体验说理的必要性,用自己的语言说明理由,学会初步说理。 二、教学设计 教学内容分析 本节课的主要内容是探索三角形全等的条件“边角边”以及利用“判定基本事实证明三角形全等。学生通过自己实验,经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的方法。由于本节课是学生探索三角形全等的条件的第一课时,所以对学生来讲是一次知识的飞跃,也为下面几节课的探索做铺垫。 教学目标: }

1、知识与技能: 探索、领会“判定两个三角形全等的方法 2、过程与方法: 经历探索三角形全等的判定方法的过程,能灵活地运用三角形全等的条件,进行有条理的思考和简单推理,并能利用三角形的全等解决实际问题,体会数学与实际生活的联系。 3、情感态度与价值观: 培养学生合理的推理能力,感悟三角形全等的应用价值,体会数学与实际生活的联系。重难点与关键: 1、重点:会用“边角边”证明两个三角形全等。 《 2、会正确运用“判定基本事实,在实践观察中正确选择判定三角形的方法。同时 通过作图,论证不能证明两个三角形一定全等。既是难点也是关键点。 教学方法: 采用“问题----操作---结论—运用”的教学方法,让学生有一个直观的感受。 教学过程: 一、创设情境。 1、因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因无法直接量出A、B两点的距离,现有一足够的米尺。怎样测出A、B两杆之间的距离呢。(图见课件)

勾股定理与全等三角形结合难

勾股定理与全等三角形结合 难 1、已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2. 2、如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点. (1)求证:△BMD为等腰直角三角形. (2)将△ADE绕点A再逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形的结论是否仍成立若成立,请证明:若不成立,请说明理由. 3、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证: (1)△ACE≌△BCD; (2)AD2+DB2=DE2. 4、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE; (2)若CD= 2 ,求 AD 的长. 5、如图1,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD ,使点B与点D重合,折痕分别交AB、BC于点F、E.若AD=2,BC=8.求BE的长. 6、如图3,已知△ABC中,AB=AC,∠B=2∠A求证: 7、如图5,已知梯形ABCD中,AB∥CD,AD >BC,求证:AC>BD 8、如图 7 ,已知△ ABC 中,AD⊥BC,AB+CD=AC+BD.求证:AB=AC 9、如图8,P是正△ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A旋转后,得到,求点P与点 之间的距离和∠APB的度数 10、如图10,已知∠ABC=30°,∠ADC=60°,AD=DC.求证:. 11、如图12,D为等腰△ABC的腰AB上的一点,E为另一腰AC延长线上的一点,且BD=CE,求证DE>BC 12如图14,已知等边△ABC内有一点N,ND⊥BC,NE⊥AB,NF⊥AC,D、E、F 都是垂足, M是△ABC中异于N的另 一点,若,,求证 13如图16,梯形ABCD中,AD∥BC,E是AB的中点,CE恰好是平分∠BCD,若AD=3,BC=4,求CD的长 14、如图18,在等腰直角△ABC中,∠BAC=90°,AD∥BC,在AD上取一点E,使∠EBC=30°,求证BE=BC 15 正方形ABCD,E为BC上一点,∠AEF为直角,CF平分∠DCG。 (1)如图(1),当点E在线段BC上时,求证:AE=EF (2)如图(2),当点E在BC的延长线上时,试判断AE=EF是否依然成立,并说明理由 D C B A F E G 图(1) D C B A F E G 图

一次函数综合练习(全等三角形,勾股定理)问题详解

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式. (2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE. (3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由. 考点:一次函数综合题。 分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标; (2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论; (3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON. 解答:解:(1)如图1,作CQ⊥x轴,垂足为Q, ∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°, ∴∠OAB=∠QBC, 又∵AB=BC,∠AOB=∠Q=90°, ∴△ABO≌△BCQ, ∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1, ∴C(﹣3,1), 由A(0,2),C(﹣3,1)可知,直线AC:y=x+2; (2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G, ∵AC=AD,AB⊥CB, ∴BC=BD, ∴△BCH≌△BDF, ∴BF=BH=2, ∴OF=OB=1, ∴DG=OB, ∴△BOE≌△DGE, ∴BE=DE;

(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点, ∴P(﹣,), 由y=x+2知M(﹣6,0), ∴BM=5,则S△BCM=. 假设存在点N使直线PN平分△BCM的面积, 则BN?=×, ∴BN=,ON=, ∵BN<BM, ∴点N在线段BM上, ∴N(﹣,0). 点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解. 2.如图直线?:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0) (1)求k的值. (2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围. (3)当点P运动到什么位置时,△OPA的面积为9,并说明理由. 考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。 专题:动点型。 分析:(1)将B点坐标代入y=kx+6中,可求k的值; (2)用OA的长,y分别表示△OPA的底和高,用三角形的面积公式求S与x的函数关系式;(3)将S=9代入(2)的函数关系式,求x、y的值,得出P点位置.

全等三角形的判定(一)

全等三角形的判定(一) 教学目标: 1、知识目标: (1)熟记边角边公理的内容; (2)能应用边角边公理证明两个三角形全等. 2、能力目标: (1) 通过“边角边”公理的运用,提高学生的逻辑思维能力; (2) 通过观察几何图形,培养学生的识图能力. 3、情感目标: (1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯; (2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧. 教学重点:学会运用公理证明两个三角形全等. 教学难点:在较复杂的图形中,找出证明两个三角形全等的条件. 教学用具:直尺、微机 教学方法:自学辅导式 教学过程: 1、公理的发现 (1)画图:(投影显示)

教师点拨,学生边学边画图. (2)实验 让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合) 这里一定要让学生动手操作. (3)公理 启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”) 作用:是证明两个三角形全等的依据之一. 应用格式: 强调: 1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论. 2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看. 3、平面几何中常要证明角相等和线段相等,其证明常用方法: 证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地. 证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质. 2、公理的应用 (1)讲解例1.学生分析完成,教师注重完成后的总结.

全等三角形判定方法四种方法

全等三角形判定方法四 种方法 标准化管理部编码-[99968T-6889628-J68568-1689N]

三角形全等的条件(一) 学习要求 1.理解和掌握全等三角形判定方法1——“边边边”, 2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 课堂学习检测 一、填空题 1.判断_____的_____ 叫做证明三角形全等. 2.全等三角形判定方法1——“边边边”(即______)指的是_____ ___________________________________________________________________________. 3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了. 图2-1 图2-2 图2-3 4.已知:如图2-1,△RPQ中,RP=RQ,M为PQ的中点. 求证:RM平分∠PRQ. 分析:要证RM平分∠PRQ,即∠PRM=______, 只要证______≌______ 证明:∵M为PQ的中点(已知), ∴______=______ 在△______和△______中, ∴______≌______(). ∴∠PRM=______(______). 即RM. 5.已知:如图2-2,AB=DE,AC=DF,BE=CF. 求证:∠A=∠D. 分析:要证∠A=∠D,只要证______≌______. 证明:∵BE=CF(), ∴BC=______. 在△ABC和△DEF中, ∴______≌______(). ∴∠A=∠D(______). 6.如图2-3,CE=DE,EA=EB,CA=DB, 求证:△ABC≌△BAD. 证明:∵CE=DE,EA=EB, ∴______+______=______+______, 即______=______. 在△ABC和△BAD中, =______(已知), ∴△ABC≌△BAD(). 综合、运用、诊断 一、解答题 7.已知:如图2-4,AD=BC.AC=BD.试证明:∠CAD=∠DBC.

勾股定理与全等三角形

1、已知:如图,△ABC中,△C=90°,D为AB的中点,E、F分别在AC、BC上,且DE△DF.求证:AE2+BF2=EF2. 2、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点, 求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.

3、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.

4、如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点. (1)求证:△BMD为等腰直角三角形. (思路点拨:考虑M为EC的中点的作用,可以延长DM交BC于N,构造△CMN≌△EMD,于是ED=CN=DA,即可以证明△BND也是等腰直角三角形,且BM是等腰三角形底边的中线就可以了.)请你完成证明过程: (2)将△ADE绕点A再逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由. 1、证明:延长ED到G,使DG=DE,连接EF、FG、CG,如图所示: △DF=DF,△EDF=△FDG=90°,DG=DE △△EDF△△GDF(SAS), △EF=FG 又△D为斜边BC中点 △BD=DC 又△△BDE=△CDG,DE=DG △△BDE△△CDG(SAS) △BE=CG,△B=△BCG △AB△CG

△△GCA=180°-△A=180°-90°=90° 在Rt△FCG中,由勾股定理得: FG2=CF2+CG2=CF2+BE2 △EF2=FG2=BE2+CF2. 证明:过点A作AM△BC,交FD延长线于点M,连接EM.△AM△BC, △△MAE=△ACB=90°,△MAD=△B. △AD=BD,△ADM=△BDF, △△ADM△△BDF. △AM=BF,MD=DF. 又DE△DF,△EF=EM. △AE2+BF2=AE2+AM2=EM2=EF2.

相关文档