文档库 最新最全的文档下载
当前位置:文档库 › 同步整流电路分析

同步整流电路分析

同步整流电路分析
同步整流电路分析

一、传统二极管整流电路面临的问题

近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。

开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达~,即使采用低压降的肖特基二极管(SBD),也会产生大约的压降,这就导致整流损耗增大,电源效率降低。

举例说明,目前笔记本电脑普遍采用甚至或的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC /DC变换器提高效率的瓶颈。

二、同步整流的基本电路结构

同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。

1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

2、单端自激、隔离式降压同步整流电路

图1 单端降压式同步整流器的基本原理图

基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的

功率损耗主要包括V1及V2的导通损耗及栅极驱动损耗。当开关频率低于1MHz时,导通损耗占主导地位;开关频率高于1MHz时,以栅极驱动损耗为主。

3、半桥他激、倍流式同步整流电路

图2 单端降压式同步整流器的基本原理图

该电路的基本特点是:

1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小;

2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电流纹波;

3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了;

4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路;

5)动态响应很好。

它唯一的缺点就是需要两个输出滤波电感,在体积上相对要大些。但是,有一种叫集成磁(integrated magnetic)的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁芯内,这样可以大大地减小变换器的体积。

三、电路实例分析

同步整流式DC/DC电源变换器的设计

下面介绍一种正激、隔离式/DC电源变换器,它采用DPA-Switch系列单片开关式稳压器DPA424R,直流输入电压范围是36~75V,输出电压为,输出电流为5A,输出功率为。采用400kHz同步整流技术,大大降低了整流器的损耗。当直流输入电压为48V时,电源效率η=87%。变换器具有完善的保护功能,包括过电压/欠电压保护,输出过载保护,开环故障检测,过热保护,自动重启动功能、能限制峰值电流和峰值电压以避免输出过冲。

由DPA424R构成的同步整流式DC/DC电源变换器的电路如图6所示。与分立元器件构成的电源变换器相比,可大大简化电路设计。由C1、L1和C2构成输入端的电磁干扰(EMI)滤波器,可滤除由电网引入的电磁干扰。R1用来设定欠电压值(U UV)及过电压值(U OV),取R1=619kΩ时,U UV=619kΩ×50μA+=,U OV=619kΩ×135μA+=。当输入电压过高时R1还能线性地减小最大占空比,防止磁饱和。R3为极限电流设定电阻,取R3=Ω时,所设定的漏极极限电流I′LIMIT==×2.50A=1.5A。电路中的稳压管VD Z1(SMBJ150)对漏极电压起箝位作用,能确保高频变压器磁复位。

图6 同步整流式DC/DC电源变换器的电路

该电源采用漏-源通态电阻极低的SI4800型功率MOSFET做整流管,其最大漏-源电压U DS(max)=30V,最大栅-源电压U GS(max)=±20V,最大漏极电流为9A(25℃)或7A(70℃),峰值漏极电流可达40A,最大功耗为(25℃)或(70℃)。SI4800的导通时间t ON=13ns(包含导通延迟时间t d(ON)=6ns,上升时间t R=7ns),关断时间t OFF=34ns(包含关断延迟时间

t d(OFF)=23ns,下降时间t F=11ns),跨导g FS=19S。工作温度范围是-55~+150℃。SI4800

内部有一只续流二极管VD,反极性地并联在漏-源极之间(负极接D,正极接S),能对MOSFET 功率管起到保护作用。VD的反向恢复时间t rr=25ns。

功率MOSFET与双极型晶体管不同,它的栅极电容C GS较大,在导通之前首先要对C GS进行充电,仅当C GS上的电压超过栅-源开启电压〔U GS(th)〕时,MOSFET才开始导通。对SI4800而言,U GS(th)≥。为了保证MOSFET导通,用来对C GS充电的U GS要比额定值高一些,而且等效栅极电容也比C GS高出许多倍。

SI4800的栅-源电压(U GS)与总栅极电荷(Q G)的关系曲线如图7所示。由图7可知Q G=Q GS+Q GD+Q OD(1)

式中:Q GS为栅-源极电荷;

Q GD为栅-漏极电荷,亦称米勒(Miller)电容上的电荷;

Q OD为米勒电容充满后的过充电荷。

图7 SI4800的U GS与Q G的关系曲线

当U GS=5V时,Q GS=,Q GD=5nC,Q OD=,代入式(1)中不难算出,总栅极电荷Q G=。

等效栅极电容C EI等于总栅极电荷除以栅-源电压,即

C EI=Q G/U GS(2)

将Q G=及U GS=5V代入式(2)中,可计算出等效栅极电容C EI=。需要指出,等效栅极电容远大于实际的栅极电容(即C EI>>C GS),因此,应按C EI来计算在规定时间内导通所需要的栅极峰值驱动电流I G(PK)。I G(PK)等于总栅极电荷除以导通时间,即

I G=Q G/t ON(3)

将Q G=,t ON=13ns代入式(3)中,可计算出导通时所需的I G(PK)=0.91A。

同步整流管V2由次级电压来驱动,R2为V2的栅极负载。同步续流管V1直接由高频变压器的复位电压来驱动,并且仅在V2截止时V1才工作。当肖特基二极管VD2截止时,有一部分能量存储在共模扼流圈L2上。当高频变压器完成复位时,VD2续流导通,L2中的电能就通过VD2继续给负载供电,维持输出电压不变。辅助绕组的输出经过VD1和C4整流滤波后,给光耦合器中的接收管提供偏置电压。C5为控制端的旁路电容。上电启动和自动重启动的时间由C6决定。

输出电压经过R10和R11分压后,与可调式精密并联稳压器LM431中的基准电压进行比较,产生误差电压,再通过光耦合器PC357去控制DPA424R的占空比,对输出电压进行调节。R7、VD3和C3构成软启动电路,可避免在刚接通电源时输出电压发生过冲现象。刚上电时,由于C3两端的电压不能突变,使得LM431不工作。随着整流滤波器输出电压的升高并通过R7给C3充电,C3上的电压不断升高,LM431才转入正常工作状态。在软启动过程中,输出电压是缓慢升高的,最终达到的稳定值。

四、用于同步整流的功率MOSFET最新进展

为满足高频、大容量同步整流电路的需要,近年来一些专用功率MOSFET不断问世,典型产品有FAIRCHILD公司生产的NDS8410型N沟道功率MOSFET,其通态电阻为Ω。Philips 公司生产的SI4800型功率MOSFET是采用TrenchMOS TM技术制成的,其通、断状态可用逻辑电平来控制,漏-源极通态电阻仅为Ω。IR公司生产的IRL3102(20V/61A)、IRL2203S (30V/116A)、IRL3803S(30V/100A)型功率MOSFET,它们的通态电阻分别为Ω、Ω和

Ω,在通过20A电流时的导通压降还不到。这些专用功率MOSFET的输入阻抗高,开关时间短,现已成为设计低电压、大电流功率变换器的首选整流器件。

最近,国外IC厂家还开发出同步整流集成电路(SRIC)。例如,IR公司最近推出的IR1176就是一种专门用于驱动N沟道功率MOSFET的高速CMOS控制器。IR1176可不依赖于初级侧拓扑而单独运行,并且不需要增加有源箝位(active clamp)、栅极驱动补偿等复杂电路。IR1176适用于输出电压在5V以下的大电流DC/DC变换器中的同步整流器,能大大简化并改善宽带网服务器中隔离式DC/DC变换器的设计。IR1176配上IRF7822型功率MOSFET,可提高变换器的效率。当输入电压为+48V,输出为+、40A时,DC/DC变换器的效率可达86%,输出为时的效率仍可达到85%。

4 结语

在设计低电压、大电流输出的DC/DC变换器时,采用同步整流技术能显著提高电源效率。在驱动较大功率的同步整流器时,要求栅极峰值驱动电流I G(PK)≥1A时,还可采用CMOS 高速功率MOSFET驱动器,例如Microchip公司开发的TC4426A~TC4428A。

三相桥式全控整流电路分析

一、三相桥式全控整流电路分析 三相桥式全控整流电路原理图如图所示。三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。 其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。

在第(1)段期间,a相电压最高,而共阴极组的晶闸管VT1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a相经VT1流向负载,再经VT6流入b 相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为ud=ua-ub=uab 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管VTl继续导通,但是c 相电位却变成最低,当经过自然换相点时触发c相晶闸管VT2,电流即从b相换到c相,VT6承受反向电压而关断。这时电流由a相流出经VTl、负载、VT2流回电源c相。变压器a、c 两相工作。这时a相电流为正,c相电流为负。在负载上的电压为ud=ua-uc=uac 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管VT3,电流即从a相换到b相,c相晶闸管VT2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为ud=ub-uc=ubc 余相依此类推。 仿真实验 “alpha_deg”是移相控制角信号输入端,通过设置输入信号给它的常数模块参数便可以得到不同的触发角α,从而产生给出间隔60度的双脉冲。 二、MATLAB仿真 (1)MATLAB simulink模型如图 (2)参数设置 电源参数设置:电压设置为380V,频率设为50Hz。注意初相角的设置,a相电压设为0,b相电压设为-120,a相电压设为-240。

单相桥式整流电路实验

课题单相桥式整流电路执教者教学时间40×2分钟 教学方法启发讲授、项目示范、练习巩固教学用具黑板/粉笔,投影,二极管整流电路示范装置,交流电源调节器,通用双踪示波器,万用表 教学目的通过对单相桥式整流电路原理的理解,能够正确的使用和安装单向桥式整流电路或桥堆(1)根据二极管的单向导电性正确判断桥中二极管的导通、截止状态,并用波形表示;(2)使用示波器分析工作中电路的波形,正确判断桥及桥中二极管的工作情况是否正常;(3)使用万用表对桥的输入、输出电压进行测量、监控,掌握桥的输入、输出关系;(4)根据要求正确地选择二极管或集成的桥堆; (5)正确安装整流桥并接入电路,注意好的职业习惯的培养; 教学重点单向桥式整流电路原理的理解及电路安装 教学难点(1)桥中各桥臂二极管的工作情况分析;(2)整流桥中二极管参数的选择; (3)二极管在整流电路安装时的操作要点。 教学过程 项目内容备注 导入:8min 1、二极管的单向导电性; 2、单向半波、全波整流电路的优劣特点 使用万用表和示波器 对相关内容进行复习。

教学过程( 续) 新 课: 65 min 单相桥式 整流电路 原理 (35min) 1、用不同颜色的发光二极管代替普通的整流二极管组成桥式整流电路,正确接入电 路,演示二极管整流过程。 2、将双踪示波器分别接入相邻、相对两桥臂,观察其变化过程。(1、2共18min) 3、使用万用表对其输入、输出电压进一步跟踪,调节输入电压的大小,测量输出电 压,发现它们之间的数量关系。(14min) 4、师生对上述过程进行分析,探究上述现象形成的原因。(3min) 运用模块式任务导向 教学原理,展开教学, 以突出重点、分化难 点。 器件的选 择与电路 安装 (30min) 1、根据上述原理分析,获得二极管桥式整流电路中二极管上承受最大反压、流过二 极管整流电流值与整流桥交流侧输入电压的关系,从而理解该电路在选择二极管时 所采用的经验式。 2、示范练习并指导学生根据需要选择二极管,并将其正确接入电路。 注意事项 电路安装时,一定要认准交流侧“阴阳-阴阳”串联,直流侧“阴阴-阳阳”并联; 测试桥式整流电路输入、输出电压时要注意万用表使用安全; 测试信号波形时,因测试探头“公共接地”端在测试中的作用,在测试时为了分析方便,当测试扫描一旦确 定,在进行输出、管压降测试时,不要再次调节该参数。 课堂总结及作 业布置(5min) 总结本教学单元的重点,巧妙设置问题考查学生的掌握程度,同时提出思考,为进入滤波电路学习做好铺垫。课堂答疑(2 min)针对本教学单元内的相关问题,课堂上回答学生的疑问,并对比较集中的、非常规性的问题在全班进行解释。教学反思(附后) 2

三相桥式全控整流电路的设计

电力电子技术课程设计报告 不可逆直流电力拖动系统中三相桥式全控整流电路的设计姓名陈营 学号0317 年级03班 专业电气工程及其自动化 系(院)汽车学院 指导教师齐延兴 2011年12月24日

一、引言 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路, 不仅用于一般工业, 也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域. 因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义, 这不仅是电力电子电路理论学习的重要一环, 而且对工程实践的实际应用具有预测和指导作用. 因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 二、设计任务 课程设计目的 1、培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。 2、培养综合分析问题、发现问题和解决问题的能力。 3、通过对不可逆直流电力拖动系统中三相桥式全控整流电路的设计,掌握三相桥式全控整流电路的工作原理,综合运用所学知识,三相桥式全控整流电路和系统设计的能力 4、培养运用知识的能力和工程设计的能力。 5、提高课程设计报告撰写水平。 课程设计指标内容及要求 三相桥式全控整流电路设计要求: (1)电网:380V,50HZ; (2)直流电机额定功率17KW,额定电压220V,额定电流90A,额定转速1500r/min. (3)变压器漏感: 设计的步骤 ⑴根据给出的技术要求,确定总体设计方案 ⑵选择具体的元件,进行硬件系统的设计 ⑶进行相应的电路设计,完成相应的功能 ⑷进行调试与修改 ⑸撰写课程设计说明书 三、设计方案选择及论证 三相半波可控整流电路 特点:阻感负载,L值很大,i d波形基本平直: a≤30°时:整流电压波形与电阻负载时相同; a>30°时(如a=60°时的波形如图2-16所示)u2过零时,VT1不关断,直到VT2的脉冲到来,才换流,由VT2导通向负载供电,同时向VT1施加反压使其关断——u d波形中出现负的部分阻感负载时的移相范围为90°。

桥式整流电路分析

1、桥式整流 桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 桥式整流电路如图Z0705所示,其中图(a)、(b)、(c)是它的 三种不同画法。它是由电源变压器、四只整流二极管D1~4 和负载 电阻R L组成。四只整流二极管接成电桥形式,故称桥式整流。 桥式整流电路的工作原理如图Z0706所示。在u2的正半周,D1、 D3导通,D2、D4截止, 电流由T R次级上端经 D1→R L →D3回到 TR次级下端,在负载 RL上得到一半波整流 电压。 在u2的负半周,D1、 D3截止,D2、D4导通, 电流由Tr次级的下端 经D2→R L→D4回到 Tr次级上端,在负载RL 上得到另一半波整流 电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电 流的计算与全波整流相同,即 UL = 0.9U2 GS0709 I L = 0.9U2/R L GS0710 流过每个二极管的平均电流为 I D= I L/2 = 0.45 U2/R L 每个二极管所承受的最高反向电压为 2、半波整流电路 半波整流电路,由电源变压器Tr整流二极管D和负载电阻RL组成,如下图所示。电路的工作过程是:在u2的正半周(ωt=0~π),二极管因加正向偏压而导通,有电流iL流过负载电阻RL。由于将二极管看作理想器件,故RL上的电压uL与u2的正半周电压基本相同。

市电(交流电网)变为稳定的直流电需经过变压、整流、滤波和稳压四个过程。利用二极管的单向导电性,将大小和方向都随时间变化的工频交流电变换成单方向的脉动直流电的过程称为整流。有时将变压器、整流电路和滤波电路一起统称为整流器。 (1)正半周u2瞬时极性a(+),b(-),VD正偏导通,二极管和负载上有电流流过。若向压降UF忽略不计,则uo=u2。 (2)负半周u2瞬时极性a(-),b(+),VD反偏截止,IF≈0,uD=u2。

同步整流电路

随着现代电子技术向高速度高频率发展的趋势,电源模块的发展趋势必然是朝着更低电压、更大电流的方向发展,电源整流器的开关损耗及导通压降损耗也就成为电源功率损耗的重要因素。而在传统的次级整流电路中,肖特基二极管是低电压、大电流应用的首选。其导通压降基本上都大于0.4V,当电源模块的输出电压随着现代电子技术发展继续降低时,电源模块的效率就低得惊人了,例如在输出电压为3.3V时效率降为80%,1.5V输出时效率不到70%,这时再采用肖特基二极管整流方式就变得不太可能了。 为了提高效率降低损耗,采用同步整流技术已成为低电压、大电流电源模块的一种必然手段。同步整流技术大体上可以分为自驱动(selfdriven)和他驱动(controldriven)两种方式。本文介绍了一种具有预测时间和超低导通电阻(低至2.8mΩ/25℃)的他驱动同步整流技术,既达到了同步整流的目的,降低了开关损耗和导通损耗,又解决了交叉导通问题,使同步整流的效率高达95%,从而使整个电源的效率也高达90%以上。 1SRM4010同步整流模块功能简介 SRM4010是一种高效率他激式同步整流模块,它直接和变压器的次级相连,可提供40A的输出电流,输出电压范围在1∽5V之间。它能够在200∽400kHz 工作频率范围内调整,且整流效率高达95%。如果需要更大的电流,还可以直接并联使用,使设计变得非常简单。 SRM4010模块是一种9脚表面封装器件,模块被封装在一个高强电流接口装置包里,感应系数极低,接线端功能强大,具有大电流低噪声等优异特性。 SRM4010引脚功能及应用方式一览表 引脚号引脚名称引脚功能应用方式 1CTCHCatch功率MOSFET漏极接滤波电感和变压器次级正端 2FWDForward功率MOSFET漏极接变压器次级负端 3SGND外控信号参考地外围控制电路公共地 4REGin内部线性调整器输入可以外接辅助绕组或悬空 5REGout5V基准输出可为次级反馈控制电路提供电压 6PGND同步整流MOSFET功率地Catch和Forward功率MOSFET公共地 7CDLY轻载复位电容端设置变压器轻载时的复位时间 8CPDT同步整流预测时间电容端Catch同步整流管设置预置时间

同步整流电路分析

一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达~,即使采用低压降的肖特基二极管(SBD),也会产生大约的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用甚至或的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC /DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路 2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的

三相桥式PWM整流电路分析

三相桥式PWM整流电路分析 【摘要】为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波。通过对各个电力半导体器件的通断进行PWM调制,使输入电流成为接近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。本文主要对电压型三相半桥式PWM整流电路进行分析,在此基础上对PWM 整流技术加以探讨,对PWM整流装置的维护和设计有一定参考价值。 【关键词】PWM整流;三相桥 1.引言 随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染。电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变。 为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器。高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是接近于1。本文主要对电压型三相半桥式PWM整流电路进行分析,在此基础上对PWM 整流技术加以探讨,对PWM整流装置的维护和设计有一定参考价值。 2.传统整流电路的存在的问题 在我国,当前主要的谐波源主要是一些整流设备,如化工、冶金行业的整流设备和各种调速、调压设备以及电力机车。传统的整流方式通常采用二极管整流或相控整流方式,采用二极管整流方式的整流器存在从电网吸取畸变电流,造成电网的谐波污染,而且直流侧能量无法回馈电网等缺点。采用相控方式的整流器也存在深度相控下交流侧功率因数很低,因换流引起电网电压波形畸变等缺点。这些整流器从电网汲取电流的非线性特征,给周围用电设备和公用电网都会带来不利影响。因此,十分必要开发趋于理想参数的更优电路,电压型三相半桥式PWM整流电路就是其中一种。 3.三相桥式PWM整流电路 3.1 整流电路的理想状态 为使交流电流的相位与电源电压同相,即系统的功率因数接近于1。整流电

三相全桥不控整流电路的设计

三相全桥不控整流电路的设计 1 三相整流的原理和参数计算 1.1 三相不控整流原理 三相桥式不控整流电路的原理图如图1-1所示。该电路中,某一对二极管导通是,输出直流电压等于交流侧线电压中最大的一个,改线电压既向电容供电,也向负载供电。当没有二极管导通时,由电容向负载供电,d u 按指数规律下降。 设二极管在距线电压过零点δ角处开始导通,并以二极管6VD 和1VD 开始同时导通的时刻为零点,则线电压为 2sin()ab u t ω+δ 在t=0时,二极管6VD 和1VD 开始导通,直流侧电压等于ab u ;下一次同时导通的一对管子是1VD 和2VD ,直流侧电压等于ac u 。着两段导通过程之间的交替有两种情况,一种是1VD 和2VD 同时导通之前和6VD 和1VD 是关断的,交流侧向直流侧的充电电流d i 是断续的;另一种是1VD 一直导通,交替时由6VD 导通换相至2VD 导通,d i 是连续的。介于两者之间的临界情况是,6VD 和1VD 同时导通的阶段与1VD 和2VD 同时导通的阶段在t πω+δ=2/3处恰好衔接起来,d i 恰好连续,可以确定临界条件 wRC = 当wRC >wRC

同步整流技术总结

同步整流总结 1概述 近年来,为了适应微处理器的发展,模块电源的发展呈现两个明显的发展趋势:低 压和快速动态响应,在过去的10年中,模块电源大大改善了分布式供电系统的面貌。即使是在对成本敏感器件如线路卡,单板安装,模块电源也提供了诱人的解决方案。然而,高速处理器持续降低的工作电压需要一个全新的,适应未来的电压方案,尤其考虑到肖特级二极管整流模块不能令人满意的效率。同步整流电路正是为了适应低压输出要求应运而生的。由于一般的肖特基二极管的正向压降为0.3V以上,在低压输出时模块的效率 就不能做的很高,有资料表明采用肖特基二极管的隔离式DC-DC模块电源的效率可以 按照下式进行估算: V out V out (0.1 V out V cu V f) 0.1 V out—原边和控制电路损耗 V cu —印制板的线路损耗 V f —整流管导通压降损耗 我们假设采用0.4V的肖特基整流二极管,印制板的线路损耗为0.1V,则1.8V的模 块最大的估算效率为 72%。这意味着28%的能量被模块内部损耗了。其中由于二极管导通压降造成的损耗占了约15%。随着半导体工艺的发展,低压功率MOS管的的有着越 来越小的通态电阻,越来越低的开关损耗,现在IR公司最新的技术可以制作30V/2.5m Q的MOS管,在电流为15A时,导通压降为0.0375,比采用肖特基二极管低了一个数量级。所以近年来对同步整流电路的研究已经引起了人们的极大关注。在中大功率低压输出的DC-DC变换器的产品开发中,采用低压功率MOSFET替代肖特基二极管的方案 得到了广泛的认同。今天,采用同步整流技术的ON-BOARD 模块已经广泛应用于通讯 的所有领域。 2同步整流电路的工作原理 图1采用同步整流的正激电路示意图(无复位绕组)

桥式整流电路原理.doc

简单RC滤波电路的工作原理 滤波电路是直流电源的重要组成部分,它一般是由电容等储能元件组成,用来滤除单向脉动电压中的谐波分量,从而得到比较平滑的直流电压。图1所示为桥式整流简单RC滤波电路。由图可以看出,滤波电容C并联于整流电路的输出端,即C与R L 并联,整流电路的负载为容性。其工作原理为:设t=0时 接通电源,当由零逐渐上升时,二极管D 1、D 3 导通,D 2 、D 4 截止,电流方向如图 中箭头所示。电流一路流过负载R L ,一路向电容C充电,充电极性为上正、下负。由于电源内阻及二极管导通电阻均很小,即充电时间常数很小,所以充电进行的很快,C两端的电压随很快上升到峰值,即。当由峰值开始下降时,充电过程结束。由于电容C两端的电压>,这时,四只二极管均被反偏截止,电容C 向负载R L 放电,从而使通过负载R L 的电流得以维持。放电时间常数R L C取值愈大, R L 两端的电压下降愈缓慢,输出波形愈平滑,直到下一个半周到来,且>时, D 2、D 4 才正偏道通(D 1 、D 3 仍截止),放电过程结束,又开始给C充电。如此周 而复始的充电、放电,在负载R L 上便得到如图2所示的输出电压。 单向桥式整流电路工作原理 2008-03-07 16:49

1.工作原理 单相桥式整流电路是工程上最常用的单相整流电路,如图 6.2.3所示。 图6.2.3 单相桥式整流电路 整流电路在工作时,电路中的四只二极管都是作为开关运用,根据图6.2.3的电路图可知: 当正半周时,二极管D1、D3导通(D2、D4截止),在负载电阻上得到正弦波的正半周; 当负半周时,二极管D2、D4导通(D1、D3截止),在负载电阻上得到正弦波的负半周。 在负载电阻上正、负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的电流与电压波形见图6.2.4。 2.参数计算

单相全波整流电路的设计(1)

《电力电子技术》课程设计之 单相全波整流电路的设计 姓名 学号 年级 专业 系(院) 指导教师 2012/8/21

目录 第一章设计任务书 1.1 设计目的 (2) 1.2 设计要求 (2) 1.3 设计内容 (2) 1.4设计题目 (2) 第二章设计内容 2.1 方案的论证与选择 (3) 2.1.1主电路的方案论证 (3) 2.2 主电路的设计 (5) 2.2.1 带阻感负载的单相桥式全控整流电路 (5) 2.2.2 原理图分析 (6) 2.3 电路方案说明 (7) 第三章触发电路 3.1 同步触发电路 (7) 3. 2 晶闸管的触发条件 (7) 3.3 晶闸管的分类 (13) 3.4 同步环节 (13) 3.5 脉冲形成环节 (14) 3.6双窄脉冲形成环节 (14) 3.7 同步变压器 (15) 第四章保护电路的设计 4.1 过电流保护 (16) 4.2 过电压保护 (17) 第五章元器件的选用 (20) 第六章参数的计算 (26) 第七章心得体会 (27)

第八章参考文献 (28) 第一章设计任务书 1.1 设计目的: 《电力电子技术》课程设计是配合交流电路理论教学,为自动化和电气工程及自动化专业开设的专业基础技术技能设计,是自动化和电气工程及自动化专业学生在整个学习过程中一项综合性实践环节,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。主要目的在于: 1:进一步掌握晶闸管相控整流电路的组成、结构、工作原理; 2:重点理解移相电路的功能、结构、工作原理; 3:理解同步变压器的功能。 1.2 设计要求: 1:根据课题正确选择电路形式; 2:绘制完整电气原理图(包括主要电气控制部分); 3:详细介绍整体电路和各功能部件工作原理并计算各元、器件值; 4:编制使用说明书,介绍适用范围和使用注意事项; 说明:负载形式及参数可自行选择 1.3设计内容: 单相全波整流电路的设计。 1:主电路方案论证 2:电路方框图 3:整流电路方框图 4:电路方案说明 单相整流电路可分为单相半波、单相全波和单相桥式可控整流电路,它们所连接的负载性质不同就会有不同的特点。 单相桥式全控整流电路应用广泛,只用四只晶闸管,一个电阻,一个电感,投资比较少,在交流电源的正负半周都有整流输出电流流过负载,整流电压波形脉动次数多于半波整流电路。变压器而次绕组中,正负两个半周电流方向相反且波形对称,直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率高。 单相桥式全控桥整流电路与半波整流电路相比较: (1)a的移相范围相等,均为0~180。 (2)输出电压平均值Ud是半波整流电路的2倍。 (3)相同的负载功率下,流过晶闸管的平均电流减小一半。 (4)功率因数提高了1.414倍。

同步整流技术最新

同步整流技术
电源网第20届技术交流会
邹超洋
2012.11

内 容 简 介
?同步整流简介。 ?同步整流的分类。 。 ?同步整流的驱动方式 ?同步整流的 MOSFET

同步整流简介
z 高速超大规模集成电路的尺寸的不断减小,功耗的不断降低,要求
供电电压也越来越低,而输出电流则越来越大。 z 电源本身的高输出电流、低成本、高频化(500kHz~1MHz)高 功率密度、高可靠性、高效率的方向发展。 z 在低电压、大电流输出DC-DC变换器的整流管,其功耗占变换器 全部功耗的50~60%。 z用低导通电阻MOSFET代替常规肖特基整流/续流二极管,可以大大 降低整流部分的功耗,提高变换器的性能,实现电源的高效率,高功 率密度。

同步整流简介
diode
=
MOSFET 代替diode
MOSFET
D
相当于二极管的功能 ?电流从S流向D ?V/I特性,工作于3rd 象限
G S
z 用MOSFET来代替二极管在电路中的整流功能
z 相对于二极管的开关算好极小 g 控制,可以根据系统的需要, z 整流的时序受到MOSFET的Vgs 把整流的损耗做到最小

同步整流简介
? 例如:一个5V?30A输出的电源
Diode
Vf=0.45V Ploss=0.45*30=13.5W Ploss/Po=13.5/45=30% /Po=13 5/45=30% Rdson=1.2m? Ploss=0.0012*30 0 0012*302=1.08W 1 08W Ploss/Po=1.08/45=2.4%
Mosfet
MBR8040(R)
SC010N04LS

三相整流电路的设计

电气信息学院 课程设计任务书 课题名称三相整流电路的设计 姓名专业电气工程及其自动化班级学号01指导老师蔡斌军杨青梁锦颜渐得李祥来 课程设计时间2016年6月6日-2016年6月17日(15、16周) 教研室意见意见:审核人: 一、任务及要求 1. 设计出三相整流电路的主电路。 (输入电压AC0-220V,功率1KW,阻感负载) 2. 设计三相整流电路的控制电路。 3. 设计三相整流电路的驱动电路。 4.给出整体设计框图,画出三相整流电路的总体原理图; 5. 说明所选器件的型号,特性。 6. 给出具体电路画出电路原理图; 7.编写设计说明书; 8.课程设计说明书要求用手写,所绘原理图纸用计算机打印。(16K) 二、进度安排 第一周:星期一:下达设计任务书,介绍课题内容与要求; 星期二——星期五:查找资料,确定设计方案,画出草图。 第二周:星期一上午——星期二下午:电路设计,打印出图纸。

星期三:书写设计报告;星期四:书写设计报告;星期五:答辩。 主电路设计 当负载为阻感性时,三相桥式全控整流电路通过六个晶闸管和足够大的电感把电网的交流电转化为直流电而供给用户使用,可以通过调节触发电路的控制电压Vk改变晶闸管的控制角α,从而改变输出电压Ud和输出电流Id。 三相桥式全控整流电路原理图如图3.1所示,习惯将其中阴极连接在一起的3个晶闸管(VT1、 VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a,b,c三相电源连接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a,b,c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 图3.1 三相桥式全控整流电路原理图 触发电路设计 3.3.1 TCF792芯片简介 TCF792的芯片管脚图如图3.4所示。 图3.4 TCF792的芯片管脚图 TCF792原理结构简图如图3.5所示。

同步整流电路分析

同步整流电路分析作者gyf2000 日期2007-4-22 20:21:00 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

单相桥式整流电路 课程设计

湖南工学院 课程设计说明书 课题: 单相桥式整流电路的设计 专业: 电气自动化 班级: 电气0601班 姓名: 陈澍 学号:401060704 指导老师:肖文英

随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。这种整流电路称为高功率因素整流器,它具有广泛的应用前景 由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计,因而我们进行了此次课程设计。又因为整流电路应用非常广泛,而锯齿波移相触发三相晶闸管全控整流电路又有利于夯实基础,故我们单结晶体管触发的单相晶闸管全控整流电路这一课题作为这一课程的课程设计的课题。

1. 设计任务说明…………………………………………………………1. 2. 方案选择 (2) 2.1器件的介绍 (2) 2.2整流电路的比较 (5) 3. 辅助电路的设计 (7) 3.1 驱动电路的设计 (7) 3.2 保护电路的设计 (11) 3.3 过压保护 (12) 3.4 电流上升率、电压上升率的抑制保护 (13) 4. 主体电路的设计 (14) 4.1 主要电路原理及说明 (14) 4.2 感性负载可控整流电路 (15) 4.3 主电路的设计 (17) 4.5 主要元器件的说明 (18) 4.5 性能指标分析 (20) 4.6 元器件清单 (20) 5. 设计总结 (22) 6. 参考文献 (23) 7. 鸣谢 (24)

精密整流电路 分析

经典型精密整流电路的电路分析 对于A1 ,其电路可简化为: 当Ui为正时,Vo2 = Ad * (-Ui) ,则D1截止,D2导通,等效电路为: 上图仅仅比反相放大器多了一个D2二极管,这个二极管最多是使运放增加了数值等于VD 的输出失调电压,接成闭环后,可以忽略不计,故: Vo1 = - R2/R1 *Ui 当R2=R1时,Vo1=-Ui。 当Ui为负时,Vo1==0;

看图可知,A2是反相加法器,将输入的信号和第1个运放输出的信号叠加并反相,从而可以得到波形全为正的半正弦波信号,既整流信号。可以调节电阻使加法器的放大倍数为1 根据虚短,Vn2=0 根据虚断,Vo1/R3 + Ui/R4 = -Uo/R5 当Ui为正时,Vo1=-Ui,Uo= -Ui*R5(1/R4 – 1/R3) ,取R5=R4=2R3 U0=Ui 当Ui为负时,Vo1==0;Uo = R5/R4 |Ui|;取R5=R4=2R3 ,U0=|Ui| 后续电路上加大电容,就可以得到脉动直流。 四个二极管型精密整流电路分析

当Ui为正时,Vo1 = Ad1 * (-Ui) ,Vo2 = Ad * (Ui) ,则D1导通,D2截止,D3截止,D4导通,等效电路为: 由A2决定,U0=Ui 当Ui为负时,Vo1 = Ad1 * (-Ui) ,Vo2 = Ad * (Ui) ,则D1截止,D2导通,D3导通,D4截止,等效电路为:

由A1决定,二极管D2是使运放增加了数值等于VD的输出失调电压,接成闭环后,可以忽略不计,故: Vo = - R2/R1 *Ui 当R2=R1时,Vo1=-Ui = | Ui |。 后续接上电容,就可得到脉动直流

整流电路分析

题目:整流电路,输入电压220V,50HZ;输出电压310V DC,输出功率:1KW 问题1:仿真分析,单相整流电路,带大电容滤波。比较分析不控整流、相控整流和PWM整流电路的输入电流THD和输入功率因数。 (a)单相整流电路: 1)电路原理图: 2)理论分析: 当电源电压为正半周时,D1承受正向电压导通,D2承受反向电压截止;电源电压为负半周时正好相反。 3)仿真模型: 参数选择:输入电压为标准正弦波交流电310cos(ωt),f=50Hz;负载电阻为96.1Ω,滤波电容为1F。

利用MATLAB/SIMULINK对单相桥式不控整流电路进行仿真分析,仿真结果如下: 图1 输出电压波形与纹波分析 0.20.40.61 图2 输入电压与电流波形 图3输入电流波形频谱与THD 由图2知,输入电流的基波分量与输入电压相位差为0,因此

cos ψ=1。 由图3可知THD=439.21% 而1N i i μ= = 因此,C =1F 时,μ=0.222 改变滤波电容大小,即可得到不同滤波电容下的功率因数大小如下表1: 4) 结论 单相桥式不控整流电路,在输出仅仅使用大电容滤波时,其输入功率因数与滤波电容取值有关。由表1可知,输入滤波电容越大,功率因数的降低,同时电容值得加大也会带来电容体积的加大。因此,在应用这类电路时,要充分考虑输出电压与输入功率因数之间的矛盾,综合考虑来设计滤波电容的值数。 (b) 相控整流电路: 1) 电路原理图: 2) 理论分析: 由于大电容的存在,负载端电压一直保持在310V 左右。因此,

只有在输入电压大于负载端电压时,控制晶闸管的开通关断才能工作在可控区域。 3)仿真模型: 参数选择:输入电压为标准正弦波交流电310cos(ωt),f=50Hz;负载电阻为96.1Ω,滤波电容为0.5F。 利用MATLAB/SIMULINK对单相桥式不控整流电路进行仿真分析,仿真结果如下: 图4 输出电压波形与纹波分析

桥式整流电路的工作原理

桥式整流电路的工作原理 电子系统的正常运行离不开稳定的电源,除了在某些特定场合下采用太阳能电池或化学电池作电源外,多数电路的直流电是由电网的交流电转换来的。这种直流电源的组成以及各处的电压波形如图所示。直流电源的组成 图中各组成部分的功能如下838电子: ⑴电源变压器:将电网交流电压(220V或380V)变换成符合需要的交流电压,此交流电压经过整流后可获得电子设备所需的直流电压。因为大多数电子电路使用的电压都不高,这个变压器是降压变压器新艺图库。 ⑵整流电路:利用具有单向导电性能的整流元件,把方向和大小都变化的50Hz交流电变换为方向不变但大小仍有脉动的直流电。 ⑶滤波电路:利用储能元件电容器C两端的电压(或通过电感器L的电流)不能突变的性质,把电容C(或电感L)与整流电路的负载RL并联(或串联),就可以将整流电路输出中的交流成分大部分加以滤除,从而得到比较平滑的直流电。在小功率整流电路中,经常使用的是电容滤波。 ⑷稳压电路:当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。 利用二极管的单向导电性组成整流电路,可将交流电压变为单向脉动电压。本章为便于分析整流电路,把整流二极管当作理想元件,即认为它的正向导通电阻为零,而反向电阻为无穷大。但在实际应用中,应考虑到二极管有内阻,整流后所得波形,其输出幅度会减少0.6~1V,当整流电路输入电压大时,这部分压降可以忽略。但输入电压小时,例如输入为3V,则输出只有2V 多,需要考虑二极管正向压降的影响。 在小功率直流电源中,常见的几种整流电路有单相半波、全波、桥式和三相整流电路等。 整流(和滤波)电路中既有交流量,又有直流量。对这些量经常采用不同的表述方法:输入(交流)——用有效值或最大值;输出(直流)——用平均值;二极管正向电流——用平均值;二极管反向电压——用最大值。838电子 单相全波桥式整流器电路的工作原理 由图可看出,电路中采用四个二极管,互相接成桥式结构。利用二极管的电流导向作用,在交流输入电压U2的正半周内,二极管D1、D3导通,D2、D4截止,在负载R L上得到上正下负的输出电压;在负半周内,正好相反,D1、D3截止,D2、D4导通,流过负载R L的电流方向与正半周一致。因此,利用变压器的一个副边绕组和四个二极管,使得在交流电源的正、负半周内,整流电路的负载上都有方向不变的脉动直流电压和电流。桥式整流的名称只是说明电路连接方法是桥式的接法,桥式整流二极管:大家常用的一般是由4只单个二极管封装在一起的元件,取名桥式整流二极管,整流桥或全桥二极管。

单相桥式整流电路设计

景德镇陶瓷学院 《电力电子与电机拖动综合课程设计》题目单相桥式整流电路设计 姓名:王帅 所在学院:_ 机电学院 _ 所学专业:自动化 班级_ 11自动化2班 学号 201110320222 __ 指导教师: __ 曹利刚 __ 完成时间:_ _ 20140610__

电力电子与电机拖动综合课程设计任务书班级:自动化06 姓名:指导教师:曹利钢 2010年6月7日设计题目:单相桥式晶闸管整流电路设计 设计任务和要求1.电源电压:交流220V/50HZ。 2.输出功率500W 3.输出电压范围:1~50V 4.设计主电路、控制电路、驱动及保护电路。 设计成果设计说明书一份电路图一份 参考资料1.《电力电子设备设计和应用手册》王兆安编机械工业出版社2.《电力电子技术题例与电路设计指导》石玉编机械工业出版社 教研室主任签字:年月日

目录 一.目录 (1) 二.引言 (2) 三.设计思想 (2) 四.设计方案 (3) 五.主电路设计 (5) 5.1主电路的工作原理及原理图 (5) 5.2 整流电路的参数计数 (6) 5.3 晶体管元件的选择 (7) 六.单元电路设计 (8) 七.保护电路设计 (11) 八.电路总接线图 (15) 九.设计总结 (16) 参考文献 (16)

摘要 单相桥式可控整流电路是最基本的将交流转换为直流的电路,其效率高原理及结构简单在单相整流电路中应用较多,在设计单相桥式可控整流电路时,从总电路电路出发根据负载择优选着方便的同步触发电路,并逐一设置各种保护电路使电路安全有效的运行,最终达到整流的目的。 关键字:单结晶体管,触发电路,阻感负载,整流电路 二.引言 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。这种整流电路称为高功率因素整流器,它具有广泛的应用前景 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。 整流电路是电力电子电路的一种,将交流电变为直流电,应用十分广泛,电路形式多种多样。按组成器件可分为不可控、半控、全控三种;按电路结构可分为桥式和零式电路;按交流输入相数分为单相电路和多相电路。 三.设计思想 研究单相桥式整流电路的工作原理并进行分析,设计出具有稳定脉冲的触发电路并进行仿真。设计的电路要满足输出500W电源220V,50H输出电压1~50V 等条件 电源→变压器→整流电路→负载

十个精密整流电路的详细分析

图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 分析: 当Ui>0时,分析各点电压正负关系可知D1截止,D2导通,R1,R2和A1构成了反向比例运算器,增益为-1,R4,R3, R5和A2构成了反向求和电路,通过R4的支路的增益为-1,通过R3支路的增益为-2,等效框图如下: 当Ui>0时,最终放大倍数为1,输入阻抗为R1||R4。 当Ui<0时,分析各点电压的正负关系可知,D1导通,D2截止,A1的作用导致R2左端电压钳位在0V,A2的反馈导致R3右端电压钳位在0V,所以R2、R3支路两端电位相等,无电流通过,R4,R5和A2构成反向 -2 -1 -1

比例运算器,增益为-1,输入阻抗仍为R1||R4。 因此,此电路的输出等于输入的绝对值。 此电路的优点:输入阻抗恒等于R1||R4,输入阻抗低,调节R5可调节此电路的增益大小,在R5上并联电容可实现滤波功能。 此电路适用低频电路,当频率大时,输出电压产生偏移,且输入电压接近0V时,输出电压失真,二极管的选型也非常重要,需选导通压降大些的。输入信号小时,也会影响最终输出。 图2优点是匹配电阻少,只要求R1=R2 图2 四个二极管型 分析: 当Ui>0时,根据各点电压正负情况可知D1,D4导通,D2,D3截止,A1的作用导致R2左端电压钳位在0V,R3上无电流通过,所以无压降,Uo=Ui 当Ui<0时,根据各点电压正负情况可知D1,D4截止,D2、D3导通,A1为反向比例运算器,增益为-R2/R1,A2为电压跟随器,所以输出电压为Uo=-Ui。

相关文档