文档库 最新最全的文档下载
当前位置:文档库 › 初中数学几何的动点问题专题练习

初中数学几何的动点问题专题练习

初中数学几何的动点问题专题练习
初中数学几何的动点问题专题练习

动点问题专题训练

1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.

(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.

①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米,

∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.

又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,

∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,

又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4

33

BP t ==秒, ∴515

443

Q CQ v t

=

==厘米/秒. ·

·················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15

32104

x x =+?, 解得80

3

x =

秒.

∴点P 共运动了

80

3803

?=厘米. ∵8022824=?+,

∴点P 、点Q 在AB 边上相遇,

∴经过

80

3

秒点P 与点Q 第一次在边AB 上相遇. ···················································· (12分) 2、(09齐齐哈尔)直线3

64

y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同

时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;

(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;

(3)当48

5

S =

时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.

解(1)A (8,0)B (0,6)····················· 1分 (2)86OA OB == , 10AB ∴=

点Q 由O 到A 的时间是8

81

=(秒)

∴点P 的速度是610

28

+=(单位/秒) ··· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,

2S t = ······································································································································ 1分

当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由

PD AP BO AB =,得4865

t

PD -=, ······································ 1分 21324

255

S OQ PD t t ∴=?=-+ ························································································· 1分

(自变量取值范围写对给1分,否则不给分.)

(3)82455P ?? ???

, ····················································································································· 1分

1238241224122455555

5I M M 2??????

-- ? ? ???????,,,,, ·································································· 3分

3(09深圳)如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴

相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P .

(1)连结PA ,若PA =PB ,试判断⊙P 与x 轴的位置关系,并说明理由; (2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?

解:(1)⊙P 与x 轴相切.

∵直线y =-2x -8与x 轴交于A (4,0),

与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .

在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.

(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P

在线段OB 上时,作PE ⊥CD 于E .

∵△PCD 为正三角形,∴DE =12CD =3

2

,PD =3,

∴PE . ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE ,

∴△AOB ∽△PEB ,

2,

AO PE AB PB PB

=,

∴PB =

∴8PO BO PB =-=,

∴8)P -,

∴8k =

-.

当圆心P 在线段OB 延长线上时,同理可得P (0,8),

∴k =8,

∴当k 8或k =8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.

4(09哈尔滨) 如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),

点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;

(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.

解:

5(09河北)在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单

位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动

的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距

离是 ;

(2)在点P 从C 向A 运动的过程中,求△APQ

的面积S 与 t 的函数关系式;(不必写出t 的取值范围)

(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成

为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.

解:(1)1,8

5

(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC

,4BC =, 得

45QF t =.∴4

5

QF t =. ∴14(3)25S t t =-?,

即22655

S t t =-+.

(3)能.

①当DE ∥QB 时,如图4. ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB =

, 即335t t -=. 解得98

t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得

AQ AP

AB AC

=

, 即353t t -=. 解得158

t =.

图16

图4

P

图5

(4)52t =

或4514

t =. ①点P 由C 向A 运动,DE 经过点C .

连接QC ,作QG ⊥BC 于点G ,如图6.

PC t =,222QC QG CG =+2234

[(5)][4(5)]55

t t =-+--.

由22PC QC =,得2223

4[(5)][4(5)]55t t t =-+--,解得52

t =. ②点P 由A 向C 运动,DE 经过点C ,如图7. 22234

(6)[(5)][4(5)]55t t t -=-+--,4514

t =】

6(09河南))如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形E D B C 是等腰梯形,此时AD 的长为 ;

②当α= 度时,四边形E D B C 是直角梯形,此时AD 的长为 ;

(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.

解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=900

时,四边形EDBC 是菱形. ∵∠α=∠ACB=900

,∴BC //ED .

∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900

,∠B =600

,BC =2,

∴∠A =300.

∴AB =4,AC

∴AO =

1

2

AC

……………………8分 在Rt △AOD 中,∠A =300

,∴AD =2. ∴BD =2.

(备用图)

∴BD =BC .

又∵四边形EDBC 是平行四边形,

∴四边形EDBC 是菱形 ……………………10分

7(09济南)如图,在梯形ABCD 中

3545AD BC AD DC AB B ====?∥,,,.

动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.

(1)求BC 的长.

(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.

解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK

是矩形

∴3KH AD ==. ······································································································ 1分 在Rt ABK △中,sin 4542

AK AB =?== .

cos 454BK AB =?== ·

········································································· 2分 在Rt CDH △

中,由勾股定理得,3HC

∴43310BC BK KH HC =++=++= ······························································ 3分

(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ·································································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥

∴NMC DGC =∠∠ 又C C =∠∠

∴MNC GDC △∽△

C M

(图①) A D C B K H (图②)

A D C

B G M

N

CN CM

CD CG = ·········································································································· 5分 即10257

t t -= 解得,50

17

t = ·········································································································· 6分

(3)分三种情况讨论:

①当NC MC =时,如图③,即102t t =- ∴103

t =

·················································································································· 7分

②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:

由等腰三角形三线合一性质得()11

102522

EC MC t t =

=-=- 在Rt CEN △中,5cos EC t

c NC t -== 又在Rt DHC △中,3

cos 5

CH c CD =

= ∴53

5

t t -= 解得25

8

t = ·············································································································· 8分

解法二:

∵90C C DHC NEC =∠=∠=?∠∠, ∴NEC DHC △∽△

NC EC

DC HC = 即553t t -= ∴258

t = ·················································································································· 8分

③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.11

22

FC NC t ==

解法一:(方法同②中解法一)

A D

C

B M N (图③) (图④) A D C

B M N

H E

13

2cos 1025t

FC C MC t ===-

解得60

17

t =

解法二:

∵90C C MFC DHC =∠=∠=?∠∠, ∴MFC DHC △∽△ ∴

FC MC

HC DC = 即1102235t

t -= ∴6017

t =

综上所述,当103

t =、258t =或60

17t =时,MNC △为等腰三角形 ···················· 9分

8(09江西)如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =?∠. (1)求点E 到BC 的距离;

(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.

(图⑤)

A D

C

B

H N M

F

A D E F

A

D

E

F A D E B

F C

图1 图2

A D E

B

F C P

N

M 图3

A D E

B

F

C

P

N M (第25题)

解(1)如图1,过点E 作EG BC ⊥于点G . ··························· 1分

∵E 为AB 的中点,

∴1

22

BE AB ==.

在Rt EBG △中,60B =?∠,∴30BEG =?∠. ·············· 2分

∴112

BG BE EG ====,

即点E 到BC

··············································· 3分

(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =

,PM EG ==

同理4MN AB ==. ······································································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==?=?∠∠,∠.

∴12PH PM =

= ∴3

cos302

MH PM =?= .

则35

422

NH MN MH =-=-=.

在Rt PNH △

中,PN == ∴PMN △的周长

=4PM PN MN ++=. ················································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角

形.

当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.

类似①,3

2

MR =. ∴23MN MR ==. ········································································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.

此时,6132x EP GM BC BG MC ===--=--=. ············································· 8分

图3

A D E B

F

C

P

N M

图4

A D E

B

F C

P

M N 图5

A D E

B

F (P ) C

M

N G

G

R

G

图1

A D E B

F C

G

图2

A D E

B

F C

P

N

M

G H

当MP MN =时,如图4

,这时MC MN MP ===

此时,615x EP GM ===-=

当NP NM =时,如图5,30NPM PMN ==?∠∠.

则120PMN =?∠,又60MNC =?∠, ∴180PNM MNC +=?∠∠.

因此点P 与F 重合,PMC △为直角三角形.

∴tan 301MC PM =?= .

此时,6114x EP GM ===--=.

综上所述,当2x =或4

或(5-时,PMN △为等腰三角形. ·························· 10分

9(09兰州)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,

同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,

设运动的时间为t 秒.

(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;

(2)求正方形边长及顶点C 的坐标;

(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.

解:(1)Q (1,0) ·············································································································· 1分 点P 运动速度每秒钟1个单位长度. ····································································································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.

在Rt △AFB

中,10AB 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=?= ∴△ABF ≌△BCH .

∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.

∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴

AP AM MP AB AF BF ==. 1068

t A M M P

∴==

. ∴3455AM t PM t ==,. ∴3410,55

PN OM t ON PM t ==-==.

设△OPQ 的面积为S (平方单位)

∴213473

(10)(1)5251010

S t t t t =?-+=+-(0≤t ≤10) ······························································ 5分

说明:未注明自变量的取值范围不扣分.

∵3

10a =-

<0 ∴当474710

362()10

t =-=

?-时, △OPQ 的面积最大. ································ 6分 此时P 的坐标为(

9415,53

10

) . ························································································ 7分 (4) 当 53t =或295

13

t =时, OP 与PQ 相等. ······························································ 9分

10(09临沂)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠= ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .

经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

A

D

F

C G

E B

图1

A

D

F C G

E B 图2 A

D

F

G

E B

图3

解:(1)正确. ·

································································· (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)

BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.

CF 是外角平分线,

45DCF ∴∠=°,

135ECF ∴∠=°.

AME ECF ∴∠=∠.

90AEB BAE ∠+∠= °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.

AME BCF ∴△≌△(ASA ). ···················································································· (5分) AE EF ∴=. ················································································································ (6分) (2)正确. ··································································· (7分) 证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ············································ (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.

DAE BEA ∴∠=∠.

NAE CEF ∴∠=∠.

ANE ECF ∴△≌△(ASA ). ··················································································· (10分) AE EF ∴=. ·············································································································· (11分)

11(09天津)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C

(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;

(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标. A

D F C G B M A D F C G B N

解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.

设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.

在Rt AOC △中,由勾股定理,得222

AC OC OA =+,

即()2

22

42m m -=+,解得32

m =

. ∴点C 的坐标为302??

???

,. ········································································································· 4分 (Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ',

则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,

在Rt B OC '△中,由勾股定理,得2

2

2

B C OC OB ''=+.

()2

224y y x ∴-=+,

即2

128

y x =-

+ ···················································································································· 6分 由点B '在边OA 上,有02x ≤≤,

∴ 解析式21

28

y x =-+()02x ≤≤为所求.

∴ 当02x ≤≤时,y 随x 的增大而减小,

y ∴的取值范围为3

22

y ≤≤. ······················································································· 7分

(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.

又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,

,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC

OA OB

''=,得2OC OB ''=. ···················································································· 9分 在Rt B OC ''△中,

设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2

001228

x x =-

+,

解得000808x x x =-±>∴=-+,∴点C

的坐标为()

016. ····················································································· 10分 12(09太原)问题解决 如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AM

BN 的值.

类比归纳

在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AM

BN 的值等于 ;若1CE CD n =(n 为整数),则AM

BN

的值等于 .(用含n 的式子表示) 联系拓广 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D

,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AM

BN

的值等于 .(用含m n ,的式子表示)

解:方法一:如图(1-1),连接BM EM BE ,,.

方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2 图(2) A

B C D E

F M 图(1)

A

B C D E F

M N

A B

C E

F M

由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.

∴MN 垂直平分BE .∴BM EM BN EN ==,. ··············································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵

1

12

CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.

在Rt CNE △中,2

2

2

NE CN CE =+.

∴()2

2221x x =-+.解得54x =

,即54

BN =. ···················································· 3分 在Rt ABM △和在Rt DEM △中,

222AM AB BM +=, 222DM DE EM +=,

∴2222AM AB DM DE +=+.

············································································· 5分 设AM y =,则2DM y =-,∴()2222

221y y +=-+.

解得14y =,即1

4AM =. ······················································································· 6分

∴1

5

AM BN =. ············································································································ 7分 方法二:同方法一,5

4

BN =. ················································································ 3分

如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .

∵AD BC ∥,∴四边形GDCN 是平行四边形. ∴NG CD BC ==. 同理,四边形ABNG 也是平行四边形.∴5

4

AG BN ==

. ∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠ ,°,.

在BCE △与NGM △中

90EBC MNG BC NG C NGM ∠=∠??

=??∠=∠=?

,,°.∴BCE NGM EC MG =△≌△,. ·································5分

N 图(1-2)

A B C D

E F

M G

∵114

AM AG MG AM =--=5,=.4 ··································································· 6分 ∴

1

5

AM BN =. ·········································································································· 7分 类比归纳

25(或410);917; ()2

211

n n -+ ·················································································· 10分 联系拓广

2222

21

1

n m n n m -++ ············································································································· 12分

初中数学几何空间与图形知识点

初中数学《几何空间与图形》知识点 初中数学《几何空间与图形》知识点 A、图形的认识 1、点,线,面 点,线,面:图形是由点,线,面构成的。面与面相交得线,线与线相交得点。点动成线,线动成面,面动成体。 展开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。N棱柱就是底面图形有N条边的棱柱。截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧、扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。圆可以分割成若干个扇形。 2、角 线:线段有两个端点。将线段向一个方向无限延长就形成了射线。射线只有一个端点。将线段的两端无限延长就形成了直线。直线没有端点。经过两点有且只有一条直线。 比较长短:两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。角的比较:角也可以看成是由一条射线绕着他的端点旋转而成的。一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行:同一平面内,不相交的两条直线叫做平行线。经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第3条直线平行,那么这两条直线互相平行。

初中数学中考几何综合题

中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是 BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2.

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

初中数学几何基础知识整理

初中数学几何基础知识整理 轴对称 31. 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的中垂线 32. 轴对称图形的对称轴,是任何一对对应点所连线段的中垂线 33. 定理线段垂直平分线上的点到这条线段两个端点的距离相等 34. 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 35. 关于某条直线对称的两个图形是全等形 36. 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 37. 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 38. 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 39. 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等 (等角对等边) 40. 等边三角形的各角都相等,并且每一个角都等于 60° 41. 三个角都相等的三角形是等边三角形 42. 有一个角等于 60°的等腰三角形是等边三角形 直角三角形 43. 在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半

44. 直角三角形斜边上的中线等于斜边上的一半 45. 如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。(新增) 46. 勾股定理直角三角形两直角边 a、b的平方和、等于斜边 c的平方,即a2+b2=c2 47. 勾股定理的逆定理如果三角形的三边长 a、b、c 有关系a2+b2=c2,那么这个三角形是直角三角形 四边形 48. 平行四边形性质定理 1 平行四边形的对角相等 49. 平行四边形性质定理 2 平行四边形的对边相等 50. 平行四边形性质定理 3 平行四边形的对角线互相平分 51. 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 52. 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 53. 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 54. 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形55. 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 56. 矩形性质定理 1 矩形的四个角都是直角 57. 矩形性质定理 2 矩形的对角线相等 58. 矩形判定定理 1 有三个角是直角的四边形是矩形 59. 矩形判定定理 2 对角线相等的平行四边形是矩形 60. 矩形判定定理 3 有一个角是直角的平行四边形是矩形 61. 菱形性质定理 1 菱形的四条边都相等 62. 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

八年级几何之动点问题

中考数学动点几何问题 ※动点求最值: 两定一动型(“两个定点,一个动点”的条件下求最值。例如上图中直线l的同侧有两个定点A、B,在直线l上有一动点) 例1、以正方形为载体如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是 例2、以直角梯形为载体如图,在直角梯形中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P 在BC上移动,当PA+PD取得最小值时,△APD中AP边上的高为 一定两动型(“一个定点”+“两个动点”) 例3、以三角形为载体如图,在锐角△ABC中,AB=4√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD、AB上的动点,则BM+MN的最小值是 例4、以正方形、圆、角为载体正方形ABCD的边长为2,E为AB的中点,P是AC上的一动点.连接BP,EP,则PB+PE的最小值是

例5、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB, ∠AOC=60°,P是OB上的一动点,PA+PC 的最小值是 例6、如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是 . 例7:在△ABC中,∠B=60°,BA=24CM,BC=16CM,(1)求△ABC的面积; (2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC的面积的一半? (3)在第(2)问题前提下,P,Q两点之间的距离是多少?A C B

全新 中考数学几何知识点全总结

初中几何公式:线 1、同角或等角的余角相等 2、过一点有且只有一条直线和已知直线垂直 3、过两点有且只有一条直线 4、两点之间线段最短 5、同角或等角的补角相等 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 初中几何公式:三角形 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理有两角和它们的夹边对应相等的两个三角形全等 24、推论有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理有三边对应相等的两个三角形全等 26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 初中几何公式:等腰三角形 30、等腰三角形的性质定理等腰三角形的两个底角相等 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 初中几何公式:四边形 48、定理四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理n边形的内角的和等于(n-2)×180° 51、推论任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等

武汉市中考数学几何综合题专题汇编

武汉市中考数学几何综合题专题汇编(2) 1、(2013?绍兴)矩形ABCD 中,AB=4,AD=3,P ,Q 是对角线BD 上不重合的两点,点P 关于直线AD ,AB 的对称点分别是点E 、F ,点Q 关于直线BC 、CD 的对称点分别是点G 、H .若由点E 、F 、G 、H 构成的四边形恰好为菱形,求PQ 的长。 2、(2013陕西压轴题)问题探究 (1)请在图①中作出两条直线,使它们将圆面四等分; (2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决 (3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点,如果AB=a ,CD=b ,且a b ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由. 图① 图② A B C D M B 图③ A C D P (第25题图)

3、(2013?温州压轴题)如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点A (6,0),B (0.8),点C 的坐标为(0,m ),过点C 作CE ⊥AB 于点E ,点D 为x 轴上的一动点,连接CD ,DE ,以CD ,DE 为边作?CDEF . (1)当0<m <8时,求CE 的长(用含m 的代数式表示); (2)当m=3时,是否存在点D ,使?CDEF 的顶点F 恰好落在y 轴上?若存在,求出点D 的坐标;若不存在,请说明理由; (3)点D 在整个运动过程中,若存在唯一的位置,使得?CDEF 为矩形,请求出所有满足条件的m 的值. 4、(13年北京)在△ABC 中,AB=AC ,∠BAC=α(?<

初中数学几何的动点问题专题练习

动点问题专题训练 1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. · ·················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15 32104 x x =+?, 解得80 3 x = 秒.

人教版初中数学中考几何知识点大全.docx

. 目录 一、形的知??????????????????????????????2 二、平行知点?????????????????????????????3 三、命、定理??????????????????????????????3 四、平移?????????????????????????????????3 五、平面直角坐系知点?????????????????????????4 六、与三角形有关的段??????????????????????????5 七、与三角形有关的角???????????????????????????5 八、多形及其角和???????????????????????????6 九、嵌?????????????????????????????????6 十、全等三角形知点???????????????????????????7 十一、称???????????????????????????????7 十二、勾股定理??????????????????????????????8 十三、四形???????????????????????????????8 十四、旋????????????????????????????????9 十五、知点????????????????????????????10 十六、相似三角形?????????????????????????????13 十七、投影与?????????????????????????????14 十八、尺作??????????????????????????????15

初中中考数学几何知识点大全 直线:没有端点,没有长度 射线:一个端点,另一端无限延长,没有长度 线段:两个端点,有长度 一、图形的认知 1、我们把从实物中抽象出的各种图形统称为几何图形 2、有些几何图形的各部分不都在同一平面,它们是立体图形 3、有些几何图形的各部分都在同一平面,它们是平面图形 4、有些立体图形是由一些平面图形转成的,将它们的表面适当展开,可以展开成平面图形。 这样的平面图形称为相应立体图形的展开图 5、长方体、正文体、圆柱、圆锥、球等都是几何体,简称体 6、包围着体的是面,面有平面和曲面两种。 由若干个多边形所围成的几何体,叫做多面体。 围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共顶点叫做多面体的顶点。 注意:各面都是平面的立体图形称为多面体。像圆锥、圆台因为有的面是曲面,而不被称为“多面体”。 圆锥、圆柱、圆台统称为旋转体。立体图形的各个面都是平的面,这样的立体图形称为多面体。 7、经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线 8、当两条不同的直线有一个公共点时,我们就称这两条直线相交。这个公共点叫做它们的交点 9、两点的所有连线中,线段最短。简单说成:两点之间,线段最短 10、连接两点间的线段的长度,叫做这两点的距离 11、角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边 12、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线 13、余角和补角:如果两个角加起来为90,则一个角是另一个角的余角 如果两个角加起来为180,则一个角是另一个角的补角 邻补角 :相邻的补角 14、同角的余角相等,等角的余角相等 同角的补角相等,等角的补角相等 二、平行线知识点 1、对顶角性质:对顶角相等。注意:对顶角的判断 一个角的两边分别是另一个角两边的反向延长线,这两个角是对顶角。 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶

初三数学几何综合题及答案

1.在厶ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ ABC 的外侧作等腰直角三角形, M 是BC 边中点中点,连接 MD 和ME (1)如图1所示,若AB=AC ,贝U MD 和ME 的数量 关系是 _______________ (2)如图2所示,若AB 工AC 其他条件不变,则MD 和ME 具有怎样的 数量和位置关系?请给出证明过程; (3)在任意△ ABC 中,仍分别以AB 和AC 为斜边,向△ ABC 的内侧作等腰直角三角形, (1) MD=ME . 解:???△ ADB 和厶AEC 是等腰直角三角形, ???/ ABD= / DAB= / ACE= / EAC=45,/ ADB= / AEC=90 在厶ADB 和厶AEC 中, f ZADB=ZAEC * ZABD=ZACE , ADB AEC (AAS ),? BD=CE , AD=AE , i AB 二 AC ?/ M 是 BC 的中点,? BM=CM .J AB=AC ,?/ ABC= / ACB , ???/ ABC+ / ABD= / ACB+ / ACE ,即/ DBM= / ECM . r BD=CE 在厶 DBM 和厶 ECM 中,“ NDBM 二ZECM DBM ECM ( SAS ),? MD=ME 別二CM (2) 如图,作 DF 丄AB , EG 丄AC ,垂足分别为 F 、G . 因为DF 、EG 分别是等腰直角三角形 ABD 和等腰直角三角形 ACE 斜边上的高,所以 F 、G 分别是AB 、AC 的中点. 又??? M 是BC 的中点,所以 MF 、MG 是厶ABC 的中位线. ? , t. ', — -., MF II AC , MG II AB . M 是BC 的中点,连接 MD 和ME ,请在图3中补全图形, 并直接判断△ MED 的形状 . 图2 图3 图1 E 3 C

初中数学几何动点问题专题训练

初中数学几何动点问题专题训练 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 例题1.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问: (1)t为何值时,四边形PQCD是平行四边形? (2)t为何值时,四边形PQCD是直角梯形? (3)在某个时刻,四边形PQCD可能是菱形吗?为什么? (4)t为何值时,四边形PQCD是等腰梯形? 练习1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C —D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD也为矩形?

初中数学几何综合试题

初中数学几何综合试题 班级____ 学号____ 姓名____ 得分____ 一、 单选题(每道小题 3分 共 9分 ) 1. 下列各式中正确的是 [ ] A.sin 1 2 =30 B.tg1=45C.tg30=3 D.cos60= 12 2. 如图,已知AB 和CD 是⊙O 中两条相交的直径,连AD 、CB 那么α和β的关系是 [ ] A B C D .... 1 2 12 2 3. 在一个四边形中,如果两个内角是直角,那么另外两个内角可以 [ ] A .都是钝角 B .都是锐角 C .一个是锐角一个是直角 D .都是直角或一个锐角一个钝角 二、 填空题(第1小题 1分, 2-7每题 2分, 8-9每题 3分, 10-14每题 4分, 共 39分)

1. 人们从实践经验中总结出来的图形的基本性质,我们把它叫做_______. 2. 小于直角的角叫做______;大于直角而小于平角的角叫做________. 3. 已知正六边形外接圆的半径为R , 则这个正六边形的周长为_______. 4. 在中若则Rt ABC,C=90,cosB= 2 3 , sinA= . 5. 如果圆的半径R增加10% , 则圆的面积增加_____________. 6. cos sin cos sin . 4530 6030 7. 已知∠a=60°,∠AOB=3∠a,OC是∠AOB的平分线,则∠a=___∠AOC. 8. 等腰Rt△ABC, 斜边AB与斜边上的高的和是12厘米, 则斜边AB= 厘米. 9. 已知:如图△ABC中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF 的度数为________. 10. 在同一个圆中, 当圆心角不超过180°时, 圆心角越大, 所对的弧______;所对的弦_______, 所对弦的弦心距_______.

初中数学几何基础知识.

初中数学几何基础知识、基本公式集锦 1过两点有且只有一条直线 2两点之间线段最短 3同角或等角的补角相等 4同角或等角的余角相等 5过一点有且只有一条直线和已知直线垂直 6直线外一点与直线上各点连接的所有线段中,垂线段最短 7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行 10内错角相等,两直线平行 11同旁内角互补,两直线平行 12两直线平行,同位角相等 13两直线平行,内错角相等 14两直线平行,同旁内角互补 15定理三角形两边的和大于第三边 16推论三角形两边的差小于第三边 17三角形内角和定理三角形三个内角的和等于180° 18推论1直角三角形的两个锐角互余

19推论2三角形的一个外角等于和它不相邻的两个内角的和 20推论3三角形的一个外角大于任何一个和它不相邻的内角 21全等三角形的对应边、对应角相等 22边角边公理(SAS有两边和它们的夹角对应相等的两个三角形全等 23角边角公理(ASA有两角和它们的夹边对应相等的两个三角形全等 24推论(AAS有两角和其中一角的对边对应相等的两个三角形全等 25边边边公理(SSS有三边对应相等的两个三角形全等 26斜边、直角边公理(HL有斜边和一条直角边对应相等的两个直角三角形全等 27定理1在角的平分线上的点到这个角的两边的距离相等 28定理2到一个角的两边的距离相同的点,在这个角的平分线上 29角的平分线是到角的两边距离相等的所有点的集合 30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33推论3等边三角形的各角都相等,并且每一个角都等于60° 34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35推论1三个角都相等的三角形是等边三角形

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

人教版初中数学几何图形初步知识点总复习附答案

人教版初中数学几何图形初步知识点总复习附答案 一、选择题 1.下列图形中1∠与2∠不相等的是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据对顶角,平行线,等角的余角相等等知识一一判断即可. 【详解】 解:A 、根据对顶角相等可知,∠1=∠2,本选项不符合题意. B 、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意. C .根据平行线的性质可知:∠1=∠2,本选项不符合题意. D 、根据等角的余角相等,可知∠1=∠2,本选项不符合题意. 故选:B . 【点睛】 本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 2.如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( ) A .1 B .2 C .3 D .4 【答案】C 【解析】 试题分析:作F 点关于BD 的对称点F′,则PF=PF′,连接EF′交BD 于点P . ∴EP+FP=EP+F ′P . 由两点之间线段最短可知:当E 、P 、F′在一条直线上时,EP+FP 的值最小,此时EP+FP=EP+F′P=EF′.

∵四边形ABCD 为菱形,周长为12, ∴AB=BC=CD=DA=3,AB ∥CD , ∵AF=2,AE=1, ∴DF=AE=1, ∴四边形AEF′D 是平行四边形, ∴EF ′=AD=3. ∴EP+FP 的最小值为3. 故选C . 考点:菱形的性质;轴对称-最短路线问题 3.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( ) A .30° B .25° C .18° D .15° 【答案】D 【解析】 【分析】 根据三角形内角和定理可得45ABC ∠=?和30EDF ∠=?,再根据平行线的性质可得45EDB ABC ==?∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数. 【详解】 ∵∠C =90°,∠A =45° ∴18045ABC A C =?--=?∠∠∠ ∵//DE CF ∴45EDB ABC ==?∠∠ ∵∠DFE =90°,∠E =60° ∴18030EDF E DFE =?--=?∠∠∠ ∴15BDF EDB EDF =-=?∠∠∠ 故答案为:D . 【点睛】 本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.

相关文档
相关文档 最新文档