文档库 最新最全的文档下载
当前位置:文档库 › SATWE配筋简图

SATWE配筋简图

SATWE配筋简图
SATWE配筋简图

一、 SATWE 配筋简图有关数字说明

1.1 梁

1.1.1砼梁和劲性梁

1

3

21321Ast VTAst Asm Asm Asm As As As GAsv

-----

其中:

As1、As2、As3为梁上部(负弯矩)左支座、跨中、右支座的配筋面积(cm2);

Asm1、Asm2、Asm3表示梁下部(负弯矩)左支座、跨中、右支座的配筋面积(cm2); Asv 表示梁在Sb 范围内的箍筋面积(cm2), 取抗剪箍筋Asv 与剪扭箍筋Astv 的大值;

Ast 表示梁受扭所需要的纵筋面积(cm2);

Ast1表示梁受扭所需要周边箍筋的单根钢筋的面积(cm2)。

G ,VT 分别为箍筋和剪扭配筋标志。

梁配筋计算说明:

(1)对于配筋率大于1%的截面,程序自动按双排筋计算,此时,保护层取60mm ;

(2)当按双排筋计算还超限时,程序自动考虑压筋作用,按双筋方式配筋;

(3)各截面的箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配

箍率要求控制。

若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使

用,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算

结果进行换算;

若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参

考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计

算结果进行换算。

1.1.2 钢梁

R1-R2-R3

其中:

R1表示钢梁正应力与强度设计值的比值F1/f;

R2表示钢梁整体稳定应力与强度设计值的比值F2/f;

R3表示钢梁剪应力与抗剪强度设计值的比值F3/fv。

其中F1,F2,F3,的具体含义:

F1=M/(Gb Wnb)

F2=M/(Fb Wb)

F3(跨中)=V S/(I tw), F3(支座)=V/Awn

1.2. 柱

1.2.1 矩形混凝土柱和劲性柱

在左上角标注:(Uc)、在柱中心标柱:Asv、在下边标注:Asx、在右边标注:

Asy、引出线标注:As_corner

As_corner

Asx

其中:

As_corner为柱一根角筋的面积,采用双偏压计算时,角筋面积不应小于此值,采用单偏压计算时,角筋面积可不受此值限制(cm2);

Asx,Asy分别为该柱B边和H边的单边配筋,包括角筋(cm2);

Asv 表示柱在Sc范围内的箍筋;

Uc 表示柱的轴压比。

柱配筋说明:

(1)柱全截面的配筋面积为:As=2*(Asx+Asy) - 4*As_corner;

(2)柱的箍筋是按用户输入的箍筋间距计算的,并按加密区内最小体积配箍率要求控制;

(3)柱的体积配箍率是按双肢箍形式计算的,当柱为构造配筋时,按构造要求的体积配箍率计算的箍筋也是按双肢箍形式给出的。

1.2.2 异形混凝土柱

当选择单偏压计算时,程序把截面上的整体内力分配到各柱肢上,对各柱肢按单偏压、拉配筋计算,每个柱肢输出两个数:Asw和Asvw,其中:Asw表示该柱肢单边的配筋面积(cm2),Asvw表示该墙分布筋间距Sw范围内的分布筋面积(cm2)。

当选择双偏压时,程序按整截面进行配筋计算,每根柱的主筋输出两个数,标注在一条引出线的上下(Asz/Asf),其中Asz表示异形柱固定钢筋位置的配筋面积,即位于直线柱肢角部的配筋面积之和(cm2),Asf表示附加钢筋的配筋面积,即除Asz之外的钢筋面积(cm2)。

1.2.3 钢柱

柱一侧标注:R1

R2

R3

其中:

R1表示钢柱正应力与强度设计值的比值F1/f;

R2表示钢柱X向稳定应力与强度设计值的比值F2/f;

R3表示钢柱Y向稳定应力与强度设计值的比值F3/f。

其中F1,F2,F3,的具体含义:

F1=N/An+Mx/(Gx*Wnx)+My/(Gy*Wny)

F2=N/(Fx*A)+Bmx*My/(Gx*Wx (1-0.8 N/Nex))+Bty*My/(Fby*Wy)

F3=N/(Fy*A)+Bmy*My/(Gy*Wy (1-0.8 N/Nex))+Btx*Mx/(Fbx*Wx)

1.2.4 钢管混凝土柱

在柱中心标注一个数:R1

其中:

R1表示钢管混凝土柱的轴力设计值与其抗力的比值N/Nu。

1.3. 支撑

1.3.1 混凝土支撑

Asx —Asy 支撑X、Y边单边配筋面积

Gasv 支撑箍筋面积

其中:

Asx,Asy,Asv的解释同柱,支撑配筋的看法,是:把支撑向Z方向投影,即可得到如柱图一样的截面形式。

1.3.2 钢支撑

R1-R2-R3

其中:

R1表示钢支撑正应力与强度设计值的比值F1/f;

R2表示钢支撑X向稳定应力与强度设计值的比值F2/f;

R3表示钢支撑Y向稳定应力与强度设计值的比值F3/f。

其中F1,F2,F3,的具体含义:

F1=N/An

F2=N/(Fx A ATx)

F3=N/(Fy A ATy)

1.4. 混凝土剪力墙

1.4.1 墙-柱

Asw 墙-柱一端暗柱配筋面积

HAshw 墙-柱水平分部筋面积

其中:

Asw表示墙柱一端的暗柱配筋总面积(cm2),如按柱配筋,Asw为按柱对称配筋计算的单边的钢筋面积;Aswh为水平分布筋间距Swh范围内水平分布筋面积(cm2)。

1.4.2 墙-梁

Asw (洞口)墙-梁单边配筋面积

HAshw (洞口)墙-梁箍筋面积

其中:

Asw表示墙-梁一边的主筋面积(cm2),墙-梁按对称配筋计算;

Aswh表示墙-梁的箍筋面积,是梁箍筋间距Sb范围内的箍筋面积(cm2);

需特别说明的是:2001年3月以后版本的SATWE软件中,墙-梁除砼强度与剪力墙一致外,其它参数(如主筋强度、箍筋强度、墙-梁的箍筋间距等)均与框架梁一致。

二、2001年4月版SATWE的主要改进

2.1结构周期、地震力计算结果输出文件WZQ.OUT

2.1.1各振型的振动方向

正在修订的《高规》为控制结构的扭转效应,对扭转振动周期和平动振动周期的比值给出了明确规定。SATWE软件参考ETABS的方法,给出了如何判断一个周期是扭转振动周期还是平动振动周期的方法。输出信息如下:

3-Dimensional Vibration Period (Seconds)

and Vibration Coefficient in X, Y Direction and Torsion

Mode No Period Angle Movement Torsion

其中:Mode No ——为周期序号

Period ——为周期值,单位(秒)

Angle ——振动角度,单位(度)

Movement ——平动振动系数

Torsion ——扭转振动系数

对于一个振动周期来说,若扭振动系数等于1,则说明该周期为纯扭转振动周期。若平动振动系数等于1,则说明该周期为纯平动振动周期,其振动方向为Angle,若Angle=0度,则为X方向的平动,若Angle=90度,则为Y方向的平动,否则,为沿Angle角度的空间振动。

若扭振动系数和平动振动系数都不等于1,则该周期为扭转振动和平动振动混合周期。

2.1.2 地震作用效应最大的方向

在SATWE软件的参数定义菜单中有一个参数:“水平力与整体坐标夹角Angle”,

该参数为地震力、风力作用方向与结构整体坐标的夹角。当需进行多方向侧向力核算时,可改变此参数,则程序以该方向为新的X轴进行坐标变换,这时计算的X向地震力和风荷载是沿Angle角度方向的,Y向地震力和风荷载是垂直于Angle角度方向的。

对于复杂结构,难以直观地判断出哪个方向的地震作用效应最大,而工程设计中又应该沿该方向(或垂直于该方向)作用水平力进行设计校核。新版SATWE程序增加了地震作用效应最大的方向计算功能,输出信息如下,其中Angle的单位为度。

The Direction in Which the Responce of Earthquake is Maximum

Angle = ??? (Degree)

2.1.3 主振型判断

对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主振型,但对于刚度不均匀的复杂结构,上述规律不一定存在,SATWE程序中给出了各振型对基底剪力贡献比例的计算功能,输出信息如下:

Bese-Shear Force of each Vibration Mode in X Direction

-------------------------------------------------------

Mode No Force Ratio(%)

其中:Mode No ——为振型序号

Force ——为该振型的基底剪力

Ratio ——为该振型的基底剪力占总基底剪力的百分比。

通过参数Ratio可以判断出那个振型是X方向或Y方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。

2.1.4 振型数取值合理性判断

对于刚度不均匀的复杂结构,尤其对于多塔结构,在考虑扭转耦连计算时,很难确定应该取多少个振型计算其地震力,若计算振型数给少了,有些地震力计算不出来,结构的抗震设计不安全,而计算振型数给的太多,计算量增加很多,影响计算效率。SATWE软件参考ETABS的方法,引进了振型有效质量概念,根据用户给定的计算振型数nMode,计算出X方向和Y方向的振型有效质量Cmass-x和Cmass-y,通过Cmass-x和Cmass-y的大小来判断所给定的nMode是否已足够。输出信息如下:

Coefficient of effective mass in X directiona: Cmass-x = ???(%)Coefficient of effective mass in Y directiona: Cmass-y = ???(%)

其中程序给出的Cmass-x和Cmass-y为百分数,Cmass-x和Cmass-y越大,表明对计算地震力有贡献的质量越多,未计算出来的地震力越少。从理论上讲,Cmass-x和Cmass-y应达到100%,才不至于丢失地震力,但实际计算中无法达到100%的理论值,计

算经验表明,若Cmass-x或Cmass-y小于80%,则说明用户给定的计算振型数不够,应增加计算振型数。

2.1.5各层地震剪力输出

为了便于设计人员更深入地把握设计方案,在WZQ.OUT文件中增加了结构各层地震剪力输出功能。输出信息如下:

Shear Force of the Building (CQC) 或(SRSS)

-------------------------------------------------------

Floor Tower Fx Vx Mx

(kN) (kN) (kN-m)

其中:Floor ——为层号

Tower ——为塔号

Fx ——为该层该塔的地震力,若不考虑扭转耦连,则为SRSS法计算

结果,若考虑扭转耦连,则为CQC法计算结果

Vx ——为该层该塔的地震剪力

Mx ——为该层该塔的地震倾覆弯矩

2.2模拟施工荷载计算

由于恒载的特殊性,在2001年4月以前版本的SATWE软件中有“一次性加载”和“模拟施工加载”计算恒载作用效应的功能,其中“模拟施工加载”方式较好地模拟了在钢筋混凝土结构施工过程中,逐层加载,逐层找平的过程(详见SATWE说明书8.1.6节)。但这是在“基础嵌固约束”假定前提下的计算结果,未能考虑基础的不均匀沉降对结构构件内力的影响。若结构地基无不均匀沉降,上述分析结果更能较准确地反映结构的实际受力状态,但若结构地基有不均匀沉降,上述分析结果会存在一定的误差,尤其对于框剪结构,外围框架柱受力偏小,而剪力墙核心筒受力偏大,并给基础设计带来一定的困难。为了解决这一问题,2001年4月以后版本的SATWE软件中增加了一种新的“模拟施工加载”计算方法,将原模拟施工加载的计算方法记作“模拟施工加载1”,将新的模拟施工加载方法称之为“模拟施工加载2”。

“模拟施工加载2”是在原模拟施工加载计算原则的基础上,通过间接方式(将竖向构件的轴向刚度增大10倍),在一定程度上考虑了基础的不均匀沉降。这样,基础的受力更均匀。对于框剪结构而言,外围框架柱受力有所增大,剪力墙核心筒受力略有减小。

“模拟施工加载2”在理论上并不严密,只能说是一种经验上的处理方法,但这重经验上的处理,会使地基有不均匀沉降的结构的分析结构更合理,能更好地反映这类结构的实际受力状态。设计人员在软件应用中,可根据工程的实际情况,选择使用。

“模拟施工加载”和“模拟施工加载2”所得到的计算结果,在局部可能会有较大差异。

2.3 墙元的改进

2.3.1墙元侧向节点的改进

在SATWE的说明书中曾详细介绍了墙元的侧向节点信息的含义。墙元的侧向节点信息是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的变形协调性好,分析结果符合剪力墙的实际,精度高,但计算量较大,因为墙元两侧节点均为独立节点,每个节点都有六个独立的自由度;若选“内部”,则只把墙元上、下边的节点作为出口节点,墙元的其它节点均作为内部节点而被凝聚掉,这时,带洞口的墙元两侧边中部的节点为变形不协调点。这种处理方法是对剪力墙的一种近似简化模拟,墙元的刚度略有降低,其精度略逊于前者,但效率高,计算量比前者少许多。

为了减小因采用“内部”节点方式而引进的模型简化误差,2001年4月以后版本的SATWE软件对墙元作了改进,当采用“内部”节点方式计算时,在墙元的侧边引进了相应的附加位移场约束,从而改善了带洞口的墙元两侧边中部节点的变形协调性,提高了计算精度,使“出口”和“内部”节点两种方式的计算结果非常接近,这样更加突出了“内部”节点方式的优点:计算效率提高很多,而且计算精度损失很少。

2.3.2墙元与梁单元连接关系的改进

在SATWE软件中,墙元是在壳元的基础上形成的,是二维单元,梁单元是一维单元,二者的位移场不同(这与SAP、STAAD III等软件是一致的),在墙元与梁单元的连接处需引进特殊的过渡单元,原来的SATWE借鉴了ETABS的处理方法,采用的是一种特殊的梁元。在有些情况下,这种处理方式模拟的连接刚度偏小,计算的梁端负弯矩偏小,跨中正弯矩偏大。2001年4月以后版本的SATWE软件对墙元与梁单元的连接过渡单元作了改进,在墙元与梁单元的交接面上引进了附加位移场约束,使墙元与梁单元在其交接面上水平位移相同,竖向位移相同,转角相同,这样可以更真实地模拟墙元与梁单元的连接关系,进一步提高了计算精度。

2.3.3墙元洞口部分连梁的改进

在SATWE软件应用中,剪力墙洞口部分的模型输入一直是一个问题:是按剪力墙开洞方式输入,还是按连梁方式输入?若按剪力墙开洞方式输入,则采用壳元模拟其刚度;若按连梁方式输入,则采用梁单元模拟其刚度。而壳元和梁单元的刚度是不连续的,采用上述两种方式输入计算的刚度不同,其内力也不同,有时差异还比较大。若把跨度较大的连梁按剪力墙开洞方式输入,因细长壳元的刚度偏大,会使计算结果偏刚;相反,若把宽度不大的剪力墙洞口按连梁方式输入,会使计算结果偏柔。

为了减小上述两种输入方式对计算结果影响的差异,2001年4月以后版本的SATWE软件对墙元洞口部分连梁作了改进,引进了一种特殊的壳元——梁式壳元。这种壳元即可退化为常规意义上的壳元,又可退化为梁单元,该单元的引入,解决了壳元和梁单元的刚度的不连续问题,减小了按上述两种方式输入导致的计算结果之间的差异。

一般来说,我们建议:若剪力墙洞口比较大,洞口之间部分以弯曲变形为主,则应按连梁方式输入;若剪力墙洞口不大,洞口之间部分以剪切变形为主,则应按剪力墙开洞方式输入;对于介于上述二者之间的情况,难以直观地判断其变形特征时,可按剪力墙开洞方式输入。

2.4 多层版钢结构构件截面验算

在2001年4月以后版本的SATWE软件中,对有抗震要求的钢结构构件的验算,根据结构的层数不同,区别对待。对于9层和9层以下的钢结构,按《抗震规范》(报批稿)要求验算构件截面的宽厚比、高厚比和长细比,其结果仅供参考;对于10层和10层以上的钢结构,按《高层民用建筑钢结构技术规程》(JGJ 99-98)要求验算构件截面的宽厚比、高厚比和长细比。对于非抗震的钢结构,没有多高层之分,都按《钢结构设计规范》(GBJ17-88)进行验算。

三、有关功能说明

3.1 地震力“算法1”、“算法2”的区别和适用范围

在“振型分解法”中,SATWE软件提供了两种计算方法,分别为“算法1”和“算法2”。“算法1”为“侧刚计算方法”,这是一种简化计算方法,只适用于采用楼板平面内无限刚假定的普通建筑和采用楼板分块平面内无限刚假定的多塔建筑。对于这类建筑,每层的每块刚性楼板只有两个独立的平动自由的和一个独立的转动自由度,“侧刚”就是依据这些独立的平动和转动自由度而形成的浓缩刚度阵。“侧刚计算方法”的优点是分析效率高,由于浓缩以后的侧刚自由度很少,所以计算速度很快。但“侧刚计算方法”的应用范围是有限的,当定义有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆所等),“侧刚计算方法”是近似的,会有一定的误差,若弹性楼板范围不大或不与楼板相连的构件不多,其误差不会很大,精度能够满足工程要求;若定义有较大范围的弹性楼板或有较多不与楼板相连的构件,“侧刚计算方法”不适用,而应该采用下面介绍的“总刚计算方法”。

“算法2”为“总刚计算方法”,就是直接采用结构的总刚和与之相应的质量阵进行地震反应分析。这种方法精度高,适用范围广,可以准确分析出结构每层每根构件的空间反应,通过分析计算结果,可发现结构的刚度突变部位,连接薄弱的构件以及数据输入有误的部位等。其不足之处是计算量大,比“侧刚计算方法”计算量大数倍。

对于没有定义弹性楼板且没有不与楼板相连构件的工程,“侧刚计算方法”和“总刚计算方法”的结果是一致的。

3.2 构件内力正负号的说明

SATWE输出的构件内力,其正向的取值一般是遵循右手螺旋法则,但为了读取、识别的方便和需要,SATWE在输出的内力作了如下处理:

(1)梁的右端弯矩加负号,其物理含义是:负弯矩表示梁的上表面受拉、正弯矩表示下表面受拉;

(2)梁、柱、墙肢、支撑的右端或下端轴力加负号,其物理含义是:正轴力为拉力、负轴力为压力;

(3)柱、墙肢、支撑的上端弯矩加负号,其物理含义是:正弯矩表示右边或上边受拉、负弯矩表示左边或下边受拉(与梁的弯矩规定一致)。

(完整版)PKPM手工配筋(根据SATWE配筋简图).docx

根据 SATWE计算结果手工配筋 一、 SATWE梁的计算结果的含义: 1、加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配 筋率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加 密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算; 1)用户输入的箍筋间距信息在SATWE参数设置框中

2)沿梁全长箍筋的面积配筋率要求,见《混规》11. 3. 9 梁端设置的第一个箍筋距框架节点边缘不应大于 50mm。非加密区的箍筋间距不宜大于加密区箍筋 间距的 2 倍。沿梁全长箍筋的面积配筋率ρsv 应符合下列规定: 3)如何进行换算? 保持总的配箍率不变,当加密区间距为 100,非加密区间距为 200,则应对非加密区箍筋面积进行换算,假设换算前后面积分别为 ASV1、ASV2,间距分别为 S1、S2,则有: ASV1/ S1= ASV2/ S2.[ 即 Asv/S 保持不变,原因见《混规》 -2010 中式( 4.3.2-2 )] 2、算例 下面的梁为百盛米厂第三层右边数过来第四根边梁。 该梁有关信息如下: 截面参数(m)B*H = 0.250*0.600 保护层厚度(mm)Cov = 30.0 箍筋间距(mm)SS= 100.0 混凝土强度等级RC= 30.0 主筋强度(N/mm2)FYI = 360.0 箍筋强度(N/mm2)FYJ = 210.0 抗震构造措施的抗震等级NF= 4 1、梁顶纵筋和梁底纵筋(bxh=250mmx600mm ) 1)配置原则:

框架梁、次梁单侧纵筋不得多于两层,底筋根数不少于 3 根;同侧纵 筋布置中,不同直径的钢筋,直径相差不大于 2 级; 框架梁、次梁通长纵筋直径可小于支座短筋直径。尽量使通长面筋(钢筋面积) 不大于支座纵筋面积的60%,但不宜小于30%。 2)手工配置: 梁面(右):AS=12cm2=1200 mm2 , 实配 4 根 HRB400级直径 20( 1257),保护层 C=20, 2x(20+8)+3x25+4x20=211<250, 放置一排 ,满足(见《混凝》 P102 和 P115) 梁底(左)(: AS=13cm2=1300 mm 2, 实配 5 根 HRB400 级直径 20(1571 ),保护 层 C=20, 2x(20+8)+4x25+5x20=256>250, 放置两排,上排 2 根,下排 3 根。 2、梁加密区、非加密区箍筋:G0.7—0.7 1)配置原则: 1.满足受力要求; 2.满足构造要求; 2)手工配置: G0.7— 0.7 G—箍筋标志 0.7—表示在箍筋间距100mm 范围内,箍筋总横截面(S 范围内水平剖切面)面积 为70 mm2, 至少配置 2 肢箍,2*ASV1≧70mm2, 即有单肢箍 Asv1≧ 35mm2,d=8mm(Asv1=50.3),满足要求。 3)非加密区换算 ASV1/ S1= ASV2/ S2,ASV1=0.(7 后),S1=100,非加密区 S2=150,则 ASV2=1.05=105 mm2,配置 2 肢箍, 2 根 d=8mm(Asv=50.3x2=100.6mm2) ,面积基本满足。 若非加密区间距为 200, ASV1/ S1= ASV2/ S2, ASV1=0.7,S1=100, S2=200,则 ASV2=1.4=140 mm 2,则若配置 2 肢箍,2 根 d=8mm(50.3) 则不安全 , 可配 2 根 d=10mm 钢筋, Asv2=157mm2>140mm2 3、梁受扭纵筋: VT1— 0.1 VT—受扭钢筋标志 1—表示受扭纵筋面积,单位为cm2,1 即为 100 mm 2,可在梁侧配置受扭纵筋N4 根12(As=452.2mm2, 混规 11.3.9) 4、梁抗扭箍筋 0.1—表示抗扭箍筋沿周边布置的单肢箍面积(cm2),即 10 mm 2,此处可验算上述 配置箍筋是否满足 70+10=80 的要求,适配箍筋Asv=2x50.3mm2>80mm2 ,满足(即 实配箍筋面积≧抗扭箍筋面积+抗剪箍筋面积)。 5、 PKPM 的初始配筋钢筋与手算比较: 梁左: 1 )电算配筋为: 2 根20+2 根18HRB400, As=1137mm2,略小于配筋简图中1200mm2[(1200-137)/1200=5.2%]

PKPM配筋结果绘制施工图详解

第四章施工图的绘制 作为结构工程师,施工图就是我们的思想的表达,为了正确表达我们的设计思想和设计理念,画出良好的施工图那是必不可少的。 第一节板钢筋图的绘制 板可分为单向板和双向板。单向板指两边支承或四边支承时长宽比>2。双向板指四边支承时长宽比<2。 单向板的配筋计算只需计算短跨方向的底筋,长跨方向的底筋和四边的负筋按构造要求,负筋长度从梁边到板内的长度取短净跨的1/4。双向板的配筋计算需计算两个方向的底筋和四边负筋,负筋长度从梁边到板内的长度取短净跨的1/4。 第二节梁钢筋图的绘制 图中代表钢筋配筋如上(此图涉及的平法表示见03G101-1图集) 1、梁下部纵筋面积(418)=10.182cm >9.02 cm 2、梁上部左端纵筋面积(420)=12.572cm ≈132 cm 3、梁上部右端纵筋面积(4 20)=10.182cm >112cm 4、梁加密区一个间距范围内箍筋面积(双肢箍8@100)=1.012cm >0.52 cm 5、梁非加密区一个间距范围内箍筋面积(双肢箍8@200)=0.52cm ≈0.52 cm

6、考虑梁高≥450㎜在梁侧面配构造钢筋412 7、上下纵筋之间的距离要≤200㎜ 注意:取某轴线上所有梁归为一类b≥350采用四肢箍h≥450加腰筋;框架梁截面高度一般>400,规范规定梁箍筋间距大于梁截面高度的1/4,如果截面高度小于400,则箍筋最小间距得<100, 【特别注意】 那么如何进行箍筋加密区和非加密区的箍筋间距转换。 已知:假定在SATWE上显示的结果为GAsv-Asv0,即加密区的箍筋面积为Asv,非加密区的箍筋面积为Asv0,在SA TWE中输入的箍筋间距为100。 加密区箍筋:梁通常采用的是n肢箍,选用单肢箍的面积为A的箍筋,则双肢箍的面积为nA。如果nA>Asv,则可以选用这种钢筋。 非加密区箍筋:换算成间距为200的箍筋,nAx100/200,n是因为选择n肢箍。如果换算成为150时,nAx100/150,如果nAx100/200>Asv0,则可以选用这种钢筋。 比方说:输出G1.6-1.0,箍筋肢数为2肢箍,在总信息中,梁箍筋间距默认SB=100.00没有做修改,则加密区配箍为:加密区选用10@100(2),则0.785x2=1.57≈Asv=1.6可以。非加密区10@150(2),则0.785x2x100/150=1.047>Asv0=1.0(箍筋间距改为150)可以。 【抗扭VTAst—Ast1】 ○1抗扭纵筋A st:上下各15%,左右各35% ○2抗扭箍筋A st1:单肢箍筋面积>A st1 【附加箍筋如何计算?】 1)查看SATWE计算结果“5.梁设计内力包络图”点击“弯矩/剪力”查看梁截面设计剪力包络图。

配筋及钢构件验算简图

1.混凝土梁和型钢混凝土梁: Asu1、Asu2、Asu3----为梁上部左端、跨中、右端配筋面积(cm2) Asd1、Asd2、Asd3----为梁下部左端、跨中、右端配筋面积(cm2) Asv----为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2) Asv0----为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2) Ast、Ast1----为梁受扭纵筋面积和抗扭箍筋沿周边布置的单肢箍的面积,若Ast 和Ast1均为0则不输出这一行(cm2) G、VT----为箍筋和剪扭配筋标志 梁配筋计算说明: (1)若计算的ξ值小于ξb,软件按单筋方式计算受拉钢筋面积;若计算的ξ>ξb,程序自动按双筋方式计算配筋,即考虑压筋的作用; (2)单排筋计算时,截面有效高度h0=h-保护层厚度-12.5mm(假定梁钢筋直径为25mm);对于配筋率大于1%的截面,程序自动按双排计算,此时,截面有效高度h0=h-保护层厚度-37.5mm; (3)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配箍率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算;若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计算结果进行换算。 2.钢梁:

没根钢梁的下方都标有"steel"字样,表示该梁为钢梁。若该梁与刚性铺板相连,不需验算整体稳定,则R2处的数值以R2字符代替。输入格式如上图所示。 其中: R1表示钢梁正应力强度与抗拉、抗压强度设计值的比值F1/f。 R2表示钢梁整体稳定应力强度与抗拉、抗压强度设计值的比值F2/f。 R3表示钢梁剪应力强度与抗拉、抗压强度设计值的比值F3/f。 3.矩形混凝土柱和型钢混凝土柱: Asc----为柱一根角筋的面积,采用双偏压计算时,角筋面积不应小于此值,采用单偏压计算时,角筋面积可不受此值控制(cm2);Asx、Asy----分别为该柱B 边和H边的单边配筋,包括两根角筋(cm2); Asvj、Asv、Asv0----分别为柱节点域抗剪箍筋面积、加密区斜截面抗剪箍筋面积、非加密区斜截面抗剪箍筋面积,箍筋间距均在Sc范围内。其中:Asvj取计算的Asvjx和Asvjy的大值,Asv取计算的Asvx和Asvy的大值,Asv0取计算的Asv0和Asvy0的大值(cm2) 若该柱与剪力墙相连(边框柱),而且是构造配筋控制,则程序去Asc、Asx、Asy、Asvx、Asvy均为零。 Uc----为柱的轴压比; G---为箍筋标志。 柱配筋说明:

SATWE配筋简图

一、 SATWE 配筋简图有关数字说明 1.1 梁 1.1.1砼梁和劲性梁 1 3 21321Ast VTAst Asm Asm Asm As As As GAsv ----- 其中: As1、As2、As3为梁上部(负弯矩)左支座、跨中、右支座的配筋面积(cm2); Asm1、Asm2、Asm3表示梁下部(负弯矩)左支座、跨中、右支座的配筋面积(cm2); Asv 表示梁在Sb 范围内的箍筋面积(cm2), 取抗剪箍筋Asv 与剪扭箍筋Astv 的大值; Ast 表示梁受扭所需要的纵筋面积(cm2); Ast1表示梁受扭所需要周边箍筋的单根钢筋的面积(cm2)。 G ,VT 分别为箍筋和剪扭配筋标志。 梁配筋计算说明: (1)对于配筋率大于1%的截面,程序自动按双排筋计算,此时,保护层取60mm ; (2)当按双排筋计算还超限时,程序自动考虑压筋作用,按双筋方式配筋; (3)各截面的箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配 箍率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使 用,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算 结果进行换算; 若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参 考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计 算结果进行换算。

1.1.2 钢梁 R1-R2-R3 其中: R1表示钢梁正应力与强度设计值的比值F1/f; R2表示钢梁整体稳定应力与强度设计值的比值F2/f; R3表示钢梁剪应力与抗剪强度设计值的比值F3/fv。 其中F1,F2,F3,的具体含义: F1=M/(Gb Wnb) F2=M/(Fb Wb) F3(跨中)=V S/(I tw), F3(支座)=V/Awn 1.2. 柱 1.2.1 矩形混凝土柱和劲性柱 在左上角标注:(Uc)、在柱中心标柱:Asv、在下边标注:Asx、在右边标注: Asy、引出线标注:As_corner As_corner ( Asx 其中: As_corner为柱一根角筋的面积,采用双偏压计算时,角筋面积不应小于此值,采用单偏压计算时,角筋面积可不受此值限制(cm2); Asx,Asy分别为该柱B边和H边的单边配筋,包括角筋(cm2); Asv 表示柱在Sc范围内的箍筋; Uc 表示柱的轴压比。 柱配筋说明: (1)柱全截面的配筋面积为:As=2*(Asx+Asy) - 4*As_corner; (2)柱的箍筋是按用户输入的箍筋间距计算的,并按加密区内最小体积配箍率要求控制; (3)柱的体积配箍率是按双肢箍形式计算的,当柱为构造配筋时,按构造要求的体积配箍率计算的箍筋也是按双肢箍形式给出的。

手工配筋根据配筋简图

根据SATWE计算结果手工配筋 一、SATWE梁的计算结果的含义: 1、加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍 筋的面积配筋率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用, 如果非加 密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算; 1)用户输入的箍筋间距信息在SATWE参数设置框中 2)沿梁全长箍筋的面积配筋率要求,见《混规》11.3.9 梁端设置的第一个箍筋距框架节点边缘不应大于50mm。非加密区的箍筋间距不宜大于加密区箍筋间距的2倍。 沿梁全长箍筋的面积配筋率ρsv应符合下列规定: 3)如何进行换算? 保持总的配箍率不变,当加密区间距为100,非加密区间距为200,则应对非加密区箍筋面积进行换算,假设换算前后面积分别为ASV1、ASV2,间距分别为S1、S2,则有:ASV1/ S1= ASV2/ S2.[即Asv/S保持不变,原因见《混规》-2010中式(4.3.2-2)] 2、算例 下面的梁为百盛米厂第三层右边数过来第四根边梁。 该梁有关信息如下: 截面参数 (m) B*H = 0.250*0.600 保护层厚度 (mm) Cov = 30.0 箍筋间距 (mm) SS = 100.0 混凝土强度等级 RC = 30.0 主筋强度 (N/mm2) FYI = 360.0 箍筋强度 (N/mm2) FYJ = 210.0 抗震构造措施的抗震等级 NF = 4

1、梁顶纵筋和梁底纵筋(bxh=250mmx600mm) 1)配置原则: 框架梁、次梁单侧纵筋不得多于两层,底筋根数不少于3根; 同侧纵筋布置中,不同直径的钢筋,直径相差不大于2级; 框架梁、次梁通长纵筋直径可小于支座短筋直径。尽量使通长面筋(钢 筋面积)不大于支座纵筋面积的60%,但不宜小于30%。 2)手工配置: 梁面(右):AS=12cm2=1200 mm2, 实配4根HRB400级直径20(1257), 保护层C=20,2x(20+8)+3x25+4x20=211<250, 放置一排,满足(见《混 凝》P102和P115) 梁底(左)(:AS=13cm2=1300mm2, 实配5根HRB400级直径20(1571), 保护层C=20,2x(20+8)+4x25+5x20=256>250, 放置两排,上排2根, 下排3根。 2、梁加密区、非加密区箍筋:G0.7—0.7 1)配置原则:1.满足受力要求;2.满足构造要求; 2)手工配置:G0.7—0.7 G—箍筋标志 0.7—表示在箍筋间距100mm范围内,箍筋总横截面(S范围内水平剖切面)面积为70 mm2,至少配置2肢箍,2*ASV1≧70mm2, 即有单肢箍Asv1≧35mm2,d=8mm(Asv1=50.3),满足要求。 3) 非加密区换算 ASV1/ S1= ASV2/ S2,ASV1=0.7(后),S1=100,非加密区S2=150,则

程序计算中的几类超筋的分析

程序计算中的几类超筋的分析 【摘要】在软件计算中,钢筋混凝土梁的超筋是结构设计中经常出现的,不可避免的现象。本文总结了实际工程中经常出现的几类超筋现象,给出了结构设计软件对于混凝土梁超筋的判断,并探讨了各类超筋现象的主要原因和软件计算超筋的影响因素。 【关键词】超筋; SATWE;配筋率; 钢筋混凝土梁设计超筋时出现的问题有: ①在受压区边缘纤维应变到达混凝土极限压应变值时,受压区混凝土先被压碎,此时受拉区纵向受力钢筋应力未达到屈服强度,此时梁在没有明显预兆的情况下而突然破坏,属于脆性破坏类型。②超筋梁配置了过多的受拉钢筋,造成钢材浪费。综上原因,超筋梁在混凝土结构设计的各类规范中被严格限制采用。 1 超筋在实际工程设计中,大概有以下几种类型:①弯矩引起的超筋;②剪扭超筋;③扭矩引起的超筋;④剪力引起的超筋;⑤配筋超规范规定值⑥混凝土受压高度不满足;⑦在水平风荷载或地震作用时,由扭转变形或竖向相对位移引起的超筋。 在实际工程中,经常出现次梁距主梁支座比较近,或者主梁两边次梁错开两种工况,这时很容易引起剪扭超筋。 2 梁超筋在结构软件中的显示 SATWE 软件对于梁超筋现象,有图形文件和文本文件两种输出方式。①图形文件显示:SATWE---分析结构图形和文本显示----图形文件输出----混凝土构件配筋及钢构件验算简图中数字显红色时,即为超筋。配筋简图的有关数字说明见图1。②超筋信息的文本输出在“超配筋信息WGCPJ. OUT”文件内。 图1SATWE配筋简图示意图 As1、As2、As3为梁上部(负弯矩)左支座、跨中、右支座的配筋面积(cm2); Asm1、Asm2、Asm3表示梁下部(负弯矩)左支座、跨中、右支座的配筋面积(cm2); Asv表示梁在Sb范围内的箍筋面积(cm2),取抗剪箍筋Asv与剪扭箍筋

2021年PKPM手工配筋(根据SATWE配筋简图)之令狐采学创编

根据SATWE计算结果手工配筋 欧阳光明(2021.03.07) 一、SATWE梁的计算结果的含义: 1、加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按 沿梁全长箍筋的面积配筋率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加 密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算; 1)用户输入的箍筋间距信息在SA TWE参数设置框中 2)沿梁全长箍筋的面积配筋率要求,见《混规》11.3.9 梁端设置的第一个箍筋距框架节点边缘不应大于50mm。非加密区的箍筋间距不宜大于加密区箍筋间距的2倍。沿梁全长箍筋 的面积配筋率ρsv应符合下列规定: 3)如何进行换算? 保持总的配箍率不变,当加密区间距为100,非加密区间距为200,则应对非加密区箍筋面积进行换算,假设换算前后面积分别为ASV1、ASV2,间距分别为S1、S2,则有:ASV1/ S1= ASV2/ S2.[即Asv/S保持不变,原因见《混规》中式(4.3.22)] 2、算例

下面的梁为百盛米厂第三层右边数过来第四根边梁。 该梁有关信息如下: 截面参数 (m) B*H = 0.250*0.600 保护层厚度 (mm) Cov = 30.0 箍筋间距 (mm) SS = 100.0 混凝土强度等级 RC = 30.0 主筋强度 (N/mm2) FYI = 360.0 箍筋强度 (N/mm2) FYJ = 210.0 抗震构造措施的抗震等级 NF = 4 1、梁顶纵筋和梁底纵筋(bxh=250mmx600mm) 1)配置原则: 框架梁、次梁单侧纵筋不得多于两层,底筋根数不少于3 根; 同侧纵筋布置中,不同直径的钢筋,直径相差不大于2 级; 框架梁、次梁通长纵筋直径可小于支座短筋直径。尽量使 通长面筋(钢筋面积)不大于支座纵筋面积的60%,但不 宜小于30%。 2)手工配置: 梁面(右):AS=12cm2=1200 mm2, 实配4根HRB400级 直径20(1257),保护层C=20, 2x(20+8)+3x25+4x20=211<250, 放置一排,满足(见《混 凝》P102和P115)

教你轻松看懂结构平面图

教你轻松看懂结构平面图 新手总结:结构平面图有两种划分方法:按“梁柱表法”绘图时,各层结构平面可分为模板图和板配筋图(当结构平面不太复杂时可合并为一图);按“平法”绘图时,各层结构平面需分为墙柱定位图、各类结构构件的平法施工图(模板图、板配筋图以及梁、柱、剪力墙、地下室侧壁配筋图等)。 各层的“模板图”及“板配筋图”可按本节所述方法绘制。 ⒈尺寸线标注:通常分为结构平面总尺寸线、柱网尺寸线、构件定位尺寸线及细部尺寸线等。标注要求同前所述。 ⒉平面图中梁、柱、剪力墙等构件的画法:原则是从板面以上剖开往下看,看得见的构件边线用细实线,看不见的用虚线。剖到的承重结构断面应涂黑色。 凡与梁板整体连接的钢筋混凝土构件如窗顶装饰线、花池、水沟、屋面女儿墙等,必须在结构图中表示。构件大样图应加索引。 对平面中凹下去的部分(如凹厕、孔洞等),要用阴影方法表示,并在图纸背面用红色铅笔在阴影部分轻涂。如有凹板,应标出其相对标高及板号。 楼梯间在楼层处的平台梁板应归入楼层结构平面之内。对梯段板及层间平台,应用交叉细实线表示,并写上“梯间”字样。

⒊绘图顺序:一般按底筋、面筋、配筋量、负筋长度、板号标志、板号、框架梁号、次梁号、剪力墙号、柱号的顺序进行。 板底、面钢筋均用粗实线表示,宜画在板的1/3处。文字用绘图针笔书写,字体大小要均匀(可用数字模板),当受到位置限制时,可跨越梁线书写,以能看清为准。所有直线段都不应徒手绘制。 双向板及单向板应采用表示传力方向的符号加板号表示。 在板号下中应标出板厚。当大部分板厚度相同时,可只标出特殊的板厚,其余在本图内用文字说明。 在各层模板图中,应标出全部构件(板、框架梁、次梁、剪力墙、柱)的编号,不得以对称性等为由漏标。 过梁(GL)应编注于过梁之上的楼层平面中。 梁上起柱(LZ),要标出小柱的定位尺寸,说明其做法。 ⒋底筋的画法 结构平面图中,同一板号的板可只画一块板的底筋(应尽量注于图面左下角首先出现的板块),其余的应标出板号。

pkpm手工配筋根据satwe配筋简图

p k p m手工配筋根据s a t w e配筋简图 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

根据SATWE计算结果手工配筋 一、SATWE梁的计算结果的含义: 1、加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全 长箍筋的面积配筋率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加 密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算; 1)用户输入的箍筋间距信息在SATWE参数设置框中 2)沿梁全长箍筋的面积配筋率要求,见《混规》11.3.9 梁端设置的第一个箍筋距框架节点边缘不应大于50mm。非加密区的箍筋间距不宜大于加密区箍筋间距的2倍。沿梁全长箍筋的面积配筋率ρsv应符合下列规 定: 3)如何进行换算? 保持总的配箍率不变,当加密区间距为100,非加密区间距为200,则应对非加密区箍筋面积进行换算,假设换算前后面积分别为ASV1、ASV2,间距分别为S1、S2,则有:ASV1/ S1= ASV2/ S2.[即Asv/S保持不变,原因见《混规》-2010中式(4.3.2-2)] 2、算例 下面的梁为百盛米厂第三层右边数过来第四根边梁。 该梁有关信息如下:

截面参数 (m) B*H = 0.250*0.600 保护层厚度 (mm) Cov = 30.0 箍筋间距 (mm) SS = 100.0 混凝土强度等级 RC = 30.0 主筋强度 (N/mm2) FYI = 360.0 箍筋强度 (N/mm2) FYJ = 210.0 抗震构造措施的抗震等级 NF = 4 1、梁顶纵筋和梁底纵筋(bxh=250mmx600mm) 1)配置原则: 框架梁、次梁单侧纵筋不得多于两层,底筋根数不少于3根; 同侧纵筋布置中,不同直径的钢筋,直径相差不大于2级; 框架梁、次梁通长纵筋直径可小于支座短筋直径。尽量使通长面筋 (钢筋面积)不大于支座纵筋面积的60%,但不宜小于30%。 2)手工配置: 梁面(右):AS=12cm2=1200 mm2, 实配4根HRB400级直径20 (1257),保护层C=20,2x(20+8)+3x25+4x20=211<250, 放置一排,满足(见《混凝》P102和P115) 梁底(左)(:AS=13cm2=1300 mm2, 实配5根HRB400级直径20 (1571),保护层C=20,2x(20+8)+4x25+5x20=256>250, 放置两排, 上排2根,下排3根。 2、梁加密区、非加密区箍筋:G0.7—0.7 1)配置原则:1.满足受力要求;2.满足构造要求;

混凝土构件配筋及钢构件验算简图

混凝土构件配筋及钢构件验算简图 1.混凝土梁和型钢混凝土梁: Asu1、Asu2、Asu3----为梁上部左端、跨中、右端配筋面积(cm2) Asd1、Asd2、Asd3----为梁下部左端、跨中、右端配筋面积(cm2) Asv----为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2) Asv0----为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2) Ast、Ast1----为梁受扭纵筋面积和抗扭箍筋沿周边布置的单肢箍的面积,若Ast和Ast1均为0则不输出这一行(cm2) G、VT----为箍筋和剪扭配筋标志 梁配筋计算说明: (1)若计算的ξ值小于ξb,软件按单筋方式计算受拉钢筋面积;若计算的ξ>ξb,程序自动按双筋方式计算配筋,即考虑压筋的作用; (2)单排筋计算时,截面有效高度h0=h-保护层厚度-12.5mm(假定梁钢筋直径为25mm);对于配筋率大于1%的截面,程序自动按双排计算,此时,截面有效高度h0=h-保护层厚度-37.5mm; (3)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配箍率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算;若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计算结果进行换算。 2.钢梁: 没根钢梁的下方都标有"steel"字样,表示该梁为钢梁。若该梁与刚性铺板相连,不需验算整体稳定,则R2处的数值以R2字符代替。输入格式如上图所示。 其中: R1表示钢梁正应力强度与抗拉、抗压强度设计值的比值F1/f。

剪力墙如何根据SATWE计算结果正确配筋

剪力墙如何根据S A T W E 计算结果正确配筋 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

剪力墙如何根据SATWE计算结果配 筋 假设此楼层为构造边缘构件,剪力墙厚度为200, 剪力墙显示“0” 水平钢筋:是指Swh范围内的水平分布筋面积(cm2),Swh范围指的就是Satwe参数中的墙水平分布筋间距,是指的双侧的,先换算成1米内的配筋值,再来配,比如你输 入的间距是200mm,计算结果是,那就用*100(乘以100是为了把cm2转换为mm2)*1000/200=400mm2再除以2就是200mm2再查板配筋表就可以了所以配8@200面积 250>200满足要求了!(剪力墙厚度为200,直径8间距200配筋率=2*(200*200)=%,最小配筋率为排数*钢筋面积/墙厚度*钢筋间距)。 竖向钢筋:计算过程%=500mm2,同样是指双侧,除以2就是250mm2,Φ8@200(面积251mm2)足够。 Satwe参数中的竖向配筋率是可根据工程需要调整的,当边缘构件配筋过大时,可提高竖向配筋率。 剪力墙边缘构件中的纵向钢筋间距应该和箍筋(拉筋)的选用综合考虑 一般情况下,墙的钢筋为构造钢筋,不过在屋面层短墙在大偏心受压下有时配筋很大墙竖向分布筋配筋率%进行计算是不对的。应该填%(或者%)。如果填了%,实际配了%, 则造成边缘构件主筋配筋偏小。墙竖向分布筋按你输入配筋率,水平配筋按你输入的钢筋间距根据计算结果选筋。 规范规定的:剪力墙竖向和水平分布钢筋的配筋率,一、二、三级时均不应小于%,四级和非抗震设计时均不应小于%,此处的“配筋率”为水平截面全截面的配筋率,以200mm厚剪力墙为例,每米的配筋面积为:%x200x1000=500mm2,双排筋,再除以2,每侧配筋面积为250mm2,查配筋表,φ8@200配筋面积为251mm2,刚好满足配筋率要求。

PKPM-混凝土构件配筋及钢构件验算简图

【PKPM】混凝土构件配筋及钢构件验算简图 1.混凝土梁和型钢混凝土梁: Asu1、Asu2、Asu3----为梁上部左端、跨中、右端配筋面积(cm2) Asd1、Asd2、Asd3----为梁下部左端、跨中、右端配筋面积(cm2) Asv----为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2) Asv0----为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2) Ast、Ast1----为梁受扭纵筋面积和抗扭箍筋沿周边布置的单肢箍的面积,若Ast和Ast1均为0则不输出这一行(cm2) G、VT----为箍筋和剪扭配筋标志 梁配筋计算说明: (1)若计算的ξ值小于ξb,软件按单筋方式计算受拉钢筋面积;若计算的ξ>ξb,程序自动按双筋方式计算配筋,即考虑压筋的作用; (2)单排筋计算时,截面有效高度h0=h-保护层厚度-12.5mm(假定梁钢筋直径为25mm);对于配筋率大于1%的截面,程序自动按双排计算,此时,截面有效高度h0=h-保护层厚度-37.5mm; (3)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配箍率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算;若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计算结果进行换算。

2.钢梁: 没根钢梁的下方都标有"steel"字样,表示该梁为钢梁。若该梁与刚性铺板相连,不需验算整体稳定,则R2处的数值以R2字符代替。输入格式如上图所示。 其中: R1表示钢梁正应力强度与抗拉、抗压强度设计值的比值F1/f。 R2表示钢梁整体稳定应力强度与抗拉、抗压强度设计值的比值F2/f。 R3表示钢梁剪应力强度与抗拉、抗压强度设计值的比值F3/f。 3.矩形混凝土柱和型钢混凝土柱: Asc----为柱一根角筋的面积,采用双偏压计算时,角筋面积不应小于此值,采用单偏压计算时,角筋面积可不受此值控制(cm2);Asx、Asy----分别为该柱B边和H边的单边配筋,包括两根角筋(cm2); Asvj、Asv、Asv0----分别为柱节点域抗剪箍筋面积、加密区斜截面抗剪箍筋面积、非加密区斜截面抗剪箍筋面积,箍筋间距均在Sc范围内。其中:Asvj取计算的Asvjx和Asvjy的大值,Asv取计算的Asvx和Asvy的大值,Asv0取计算的Asv0和Asvy0的大值(cm2)若该柱与剪力墙相连(边框柱),而且是构造配筋控制,则程序去Asc、Asx、Asy、

good根据SATWE计算结果手工配筋

g o o d根据S A T W E计 算结果手工配筋 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

根据SATWE计算结果手工配筋 一、设计师在现场 二、SATWE梁的计算结果的含义: 培训学校课件 F:\磨石结构培训\2013年初级\2013 04 22 第五次正课的辅导课/梁配筋详解及施工图的绘制.pdf p15 梁钢筋的正确配法为:根据配置梁底和梁顶纵向钢筋,此时不需要考虑叠加,因为这样工作量较大,为了简化计算,将近似将这部分抗扭钢筋集中布置在梁侧向,即为抗扭腰部钢筋,此时需要将G变为N。 对于,不需考虑抗剪和抗扭箍筋的叠加,因为 按照配置箍筋有两种方法,一种为万能公式,一种为简化公式。 对于,仅需手工复核即可。 1、加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积 配筋率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加 密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算; 1)用户输入的箍筋间距信息在SATWE参数设置框中 2)沿梁全长箍筋的面积配筋率要求,见《混规》11.3.9 梁端设置的第一个箍筋距框架节点边缘不应大于50mm。非加密区的箍筋间距不宜大于加密区箍筋间距的2倍。沿梁全长箍筋的面积配筋率ρsv应符合下列规定:3)如何进行换算 保持总的配箍率不变,当加密区间距为100,非加密区间距为200,则应对非 加密区箍筋面积进行换算,假设换算前后面积分别为ASV1、ASV2,间距分别为S1、S2,则有:ASV1/ S1= ASV2/ S2. 2、算例 下面的梁为百盛米厂第三层右边数过来第四根边梁。

PKPM构件配筋详解

功能说明 这项菜单主要以图形方式显示各构件设计及验算结果,可以直接输出DWG图形文件。 图8.6.4 构件计算配筋简图 8.6.4.1 各构件设计及验算结果 功能说明 简图上各构件的配筋结果表达方式如下: (1)钢筋混凝土梁和型钢混凝土梁(RC-Beam、SRC-Beam)

图中: Asul-Asum-Asur:为梁上部左端、跨中、右端配筋面积(cm2); Asdl-Asdm-Asdr:为梁下部左端、跨中、右端配筋面积(cm2); GAsv:为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2); GAsvm:为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2); VTAst :为梁受扭纵筋面积(cm2); VTAst1 :为梁抗扭箍筋的单肢箍面积(cm2); G、VT :为箍筋及剪扭配筋标志。 注意事項 (1)梁配筋简图如下: 图8.6.4.1-1 梁配筋示意图 (2)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,当输入的箍筋间距为加密区间距时,梁端箍筋加密区的计算结果可直接使用;如果非加密区与加密区的箍筋间距不同时,需要对非加密区的箍筋面积按非加密区的间距进行换算后再使用。当梁受扭时,配置的箍筋单肢面积不应小于VTAst1。 (3)输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。 (4)输出的纵筋及箍筋面积都满足规范要求的最小配筋率要求,如果计算出的配筋面积小于最小配筋率时,按最小配筋面积来输出。 (5)VTAst和VTAst1都为零时,该行不输出。 功能说明 (2)矩形钢筋混凝土柱和型钢混凝土柱(RC-Column、SRC-Column)

pkpm一些参数设置及pkpm钢筋输出文件简图

1、一般情况下模拟施工加载取模拟施工加载3比较符合逐层施工的实际情况。模拟施工加载2则可以更合理的给基础传递荷载。复杂结构设计人员可以指定施工次序。 模拟施工加载的选择 1.一次性加载模型,计算时只形成一次整体刚度矩阵,用于多层 2.模拟施工加载1.是整体刚度分层加载模型,本层加载对上部结构没有影响,总刚矩阵由构件单刚形成,程序默认算法。用于多高层 3..模拟施工加载2,逐层加载模型,n层会有n个总刚矩阵形成,计算量大。与手算接近。用于多高层,较少采用。 4.模拟施工加载3,新版有。分层刚度分层加载模型,更符合工程实际,高层首选。 5.对有吊车的结构必须用一次性加载,因为吊车对上部结构有影响,也就是对有上传荷载的结构要用一次性加载。 6.要知道由于模拟施工加载计入了施工引起的变形,在计算结果输出中各节点在竖荷载作用下的节点力矩是不平衡的。只有一次性加载下才是平衡的 2、修正后的基本风压一般就是荷载规范规定的基本风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放大10%~20%,门刚中则规定按放大5%采用。 3、对于高度大于150M的高层混凝土建筑才要验算风振舒适度。结构阻尼比取0.01~0.02,程序缺省0.02。 4、侧刚计算方法:一种简化计算法,计算速度快,但应用范围有限,当定义有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆等)用此法会有一定误差;总刚计算方法:精度高,适用范围广,计算量大。 对于没有定义弹性楼板且没有不与楼板相连构件的工程,两种方法结果一样。 (以下转贴) “刚性楼板”的适用范围:绝大多数结构只要楼板没有特别的削弱、不连续,均可采用这个假定。 相关注意:由于“刚性楼板假定”没有考虑板面外的刚度,所以可以通过“梁刚度放大系数”来提高梁面外弯曲刚度,以弥补面外刚度的不足。同样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。 “弹性板6 ”的适用范围:所有的工程均可采用。 相关注意:由于已经考虑楼板的面内、面外刚度,则梁刚度不宜放大、梁扭矩不宜折减。板的面外刚度将承担一部分梁柱的面外弯矩,而使梁柱配筋减少。此时结构分析时间大大增加。“弹性板3 ”的适用范围:需要保证楼板平面内刚度非常大,外刚度承担荷载,不使梁柱配筋减少,以保证梁柱设计的安全度。“ 如厚板转换层中的厚板,板厚达到1m以上。而面外刚度则需要按实际考虑。 相关注意:一般在厚板转换层不设梁,或用等代梁,并注意上下部轴线差异产生的传力问题。“弹性膜”的适用范围:仅适用于梁柱结构,设计时不使楼板面相关注意:不能用于“板柱结构”。设计时可以进行梁的刚度放大和扭矩折减。 (弹性楼板6:考虑楼板的面内刚度和面外刚度,采用壳单元.原则上适用于所有结构,但采用弹性楼板6计算时,楼板和梁共同承担面外弯矩,计算结果中梁的配筋小了,而楼板承担面外弯矩,计算的配筋又未考虑.此外计算工作量大.因此该模型仅适用于板柱结构;

PKPM手工配筋(根据SATWE配筋简图)之欧阳家百创编

根据SATWE计算结果手工配筋 欧阳家百(2021.03.07) 一、SATWE梁的计算结果的含义: 1、加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并 按沿梁全长箍筋的面积配筋率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加 密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算; 1)用户输入的箍筋间距信息在SATWE参数设置框中 2)沿梁全长箍筋的面积配筋率要求,见《混规》11.3.9 梁端设置的第一个箍筋距框架节点边缘不应大于50mm。非加密 区的箍筋间距不宜大于加密区箍筋间距的2倍。沿梁全长箍筋的面积配筋率ρsv应符合下列规定: 3)如何进行换算? 保持总的配箍率不变,当加密区间距为100,非加密区间距为200,则应对非加密区箍筋面积进行换算,假设换算前后面积分别为ASV1、ASV2,间距分别为S1、S2,则有:ASV1/ S1= ASV2/ S2.[即Asv/S保持不变,原因见《混规》-2010中式 (4.3.2-2)] 2、算例

下面的梁为百盛米厂第三层右边数过来第四根边梁。 该梁有关信息如下: 截面参数 (m) B*H = 0.250*0.600 保护层厚度 (mm) Cov = 30.0 箍筋间距 (mm) SS = 100.0 混凝土强度等级 RC = 30.0 主筋强度 (N/mm2) FYI = 360.0 箍筋强度 (N/mm2) FYJ = 210.0 抗震构造措施的抗震等级 NF = 4 1、梁顶纵筋和梁底纵筋(bxh=250mmx600mm) 1)配置原则: 框架梁、次梁单侧纵筋不得多于两层,底筋根数不少于3 根; 同侧纵筋布置中,不同直径的钢筋,直径相差不大于2 级; 框架梁、次梁通长纵筋直径可小于支座短筋直径。尽量使 通长面筋(钢筋面积)不大于支座纵筋面积的60%,但 不宜小于30%。 2)手工配置: 梁面(右):AS=12cm2=1200 mm2, 实配4根HRB400级 直径20(1257),保护层C=20, 2x(20+8)+3x25+4x20=211<250, 放置一排,满足(见《混 凝》P102和P115)

剪力墙如何根据SATWE计算结果配筋

剪力墙如何根据SATWE计算结果配筋 | 假设此楼层为构造边缘构件,剪力墙厚度为200, 剪力墙显示“0”是指边缘构件不需要配筋且不考虑构造配筋(此时按照高规表7.2.16来配),当墙柱长小于3倍的墙厚或一字型墙截面高度不大于800mm时,按柱配筋,此时表示柱对称配筋计算的单边的钢筋面积。 水平钢筋:H0.8是指Swh范围内的水平分布筋面积(cm2),Swh范围指的就是Satwe 参数中的墙水平分布筋间距,是指的双侧的,先换算成1米内的配筋值,再来配,比如你输入的间距是200 mm ,计算结果是H0.8,那就用0.8*100(乘以100是为了把cm2转换为mm2)*1000/200=400mm2 再除以2 就是200mm2 再查板配筋表就可以了所以配8@200面积250>200 满足要求了!(剪力墙厚度为200,直径8间距200 配筋率 =2*50.24/(200*200)=0.25%,最小配筋率为排数*钢筋面积/墙厚度*钢筋间距)。 竖向钢筋:计算过程1000X200X0.25%=500mm2,同样是指双侧,除以2就是250mm2,Φ8@200(面积251mm2)足够。 Satwe参数中的竖向配筋率是可根据工程需要调整的,当边缘构件配筋过大时,可提高竖向配筋率。 剪力墙边缘构件中的纵向钢筋间距应该和箍筋(拉筋)的选用综合考虑 一般情况下,墙的钢筋为构造钢筋,不过在屋面层短墙在大偏心受压下有时配筋很大 墙竖向分布筋配筋率0.3%进行计算是不对的。应该填0.25%(或者0.20%)。如果填了0.3%,实际配了0.25%,则造成边缘构件主筋配筋偏小。墙竖向分布筋按你输入配筋率,水平配筋按你输入的钢筋间距根据计算结果选筋。 规范规定的:剪力墙竖向和水平分布钢筋的配筋率,一、二、三级时均不应小于0.25%,四级和非抗震设计时均不应小于0.20%,此处的“配筋率”为水平截面全截面的配筋率,以200mm厚剪力墙为例,每米的配筋面积为: 0.25% x 200 x 1000 = 500mm2,双排筋,再除以2,每侧配筋面积为250mm2,查配筋表,φ8@200配筋面积为251mm2,刚好满足配筋率要求。 至于边缘构件配筋,一般是看SATWE计算结果里面的第三项:“梁弹性挠度、柱轴压比、墙边缘构件简图”一项里面的“边缘构件”,按此配筋,如果出现异常配筋,比如配筋率过大的情况,就用第十五项:“剪力墙组合配筋修改及验算”一项进行组合墙配筋计算,

PKPM手工配筋根据SATWE配筋简图

根据SATWE 计算结果手工配筋 、SATWE 梁的计算结果的含义: 1、加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配 筋率要求控制。 若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算; 1) 用户输入的箍筋间距信息在SATWE 参数设置框中

2) 沿梁全长箍筋的面积配筋率要求,见《混规》11.3.9 梁端设置的第一个箍 筋距框架节点边缘不应大于50mm。非加密区的箍筋间距不宜大于加密区箍筋 间距的 2 倍。沿梁全长箍筋的面积配筋率ρsv 应符合下列规定: 3) 如何进行换算? 保持总的配箍率不变,当加密区间距为100,非加密区间距为200,则应对非加密区箍筋面积进行换算,假设换算前后面积分别为ASV1、ASV2,间距分别为S1、S2,则有:ASV1/ S1= ASV2/ S2.[ 即Asv/S 保持不变,原因见《混规》-2010 中式( 4.3.2-2 )] 2、算例 下面的梁为百盛米厂第三层右边数过来第四根边梁。 该梁有关信息如下: 截面参数(m)B*H = 0.250*0.600 保护层厚度(mm)Cov =30.0 箍筋间距(mm)SS= 100.0 混凝土强度等级RC= 30.0 主筋强度(N/mm2)FYI= 360.0 箍筋强度(N/mm2)FYJ= 210.0 抗震构造措施的抗震等级NF= 4 1、梁顶纵筋和梁底纵筋( bxh=250mmx600mm ) 1) 配置原则: 框架梁、次梁单侧纵筋不得多于两层,底筋根数不少于3 根;同侧纵筋布置中,不同直径的钢 筋,直径相差不大于2 级;框架梁、次梁通长纵筋直径可小于支座短筋直径。尽量使通长面筋 (钢筋面积)不大于支座纵筋面积的60%,但不宜小于30%。 2)手工配置: 梁面(右):AS=12cm 2= 1200 mm2, 实配4根HRB400级直径20(1257),保护层 C=20,2x(20+8)+3x25+4x20=211<250 , 放置一排,满足(见《混凝》P102 和P115) 梁底(左)(:AS=13cm2= 1300 mm2, 实配5根HRB400 级直径20(1571),保护层 C=20,2x(20+8)+4x25+5x20=256>250 , 放置两排,上排2 根,下排3 根。 2、梁加密区、非加密区箍筋:G0.7—0.7

相关文档
相关文档 最新文档