文档库 最新最全的文档下载
当前位置:文档库 › 考研高数:微分方程与无穷级数解析

考研高数:微分方程与无穷级数解析

考研高数:微分方程与无穷级数解析
考研高数:微分方程与无穷级数解析

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

考研高数:微分方程与无穷级数解析

考研临近大纲发布,对基础的复习应该更加抓紧。掌握良好的复习方法是考研成功的秘诀,凯程考研老师为大家总结各学科知识点总汇,为大纲前复习添砖加瓦。以下是高数微分方程与无穷级数部分。

一、微分方程

微分方程可视为一元函数微积分学的应用与推广。该部分在考试中以大题与小题的形式交替出现,平均每年所占分值在8分左右。常考的题型包括各种类型微分方程的求解,线性微分方程解的性质,综合应用。

对于该部分内容的复习,考生首先要能识别各种方程类型(一阶:可分离变量的方程、齐次方程、一阶线性方程、伯努利方程(数一、二)、全微分方程(数一);高阶:线性方程、欧拉方程(数一)、高阶可降阶的方程(数一、二)),熟悉其求解步骤,并通过足量练习以求熟练掌握;在此基础上还要具备数学建模的能力——能根据几何或物理背景,建立微分方程。

另外,有几点需提醒考生:

1. 解微分方程主要考查考生计算积分的能力,而实际应用则对考生的综合能力提出较高要求,考生需结合练习把“解方程”和“列方程”的能力练好。

2. 非基本类型的方程一般都可通过变量替换化为基本类型。

3. 考生需弄清常见的物理量、几何量与微分、积分的关系。

二、无穷级数

级数可视为微积分的综合应用。该部分是数一、数三的必考内容,分值约占10%。常考的题型有:常数项级数的收敛性,幂级数的收敛半径和收敛域,幂级数展开,幂级数求和,常数项级数求和以及傅里叶级数。其中幂级数是重点。

结合考试分析,建议考生从以下方面把握该部分内容:

1. 常数项级数

理解其收敛的相关概念并掌握各种收敛性判别法。

2. 幂级数

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

考试有三方面的要求:幂级数收敛域的计算,幂级数求和,幂级数展开。考生应通过一定量训练使自己具备这三方面的能力——给定幂级数,准确计算其收敛半径进而得到收敛域,能求其和函数,能将一个简单函数在指定点展开成幂级数。

3.傅里叶级数

考试出现频率和考试要求均较低,掌握傅里叶系数的求法,再了解狄利克雷定理的内容即可。

如何有效地复习考研数学?如果我们也视其为一道数学题,我想我们应该明白:我们要做微分运算——拿着放大镜把每个考点弄清,也要做积分运算——持续地投入,积跬步以至千里;我们要有严谨的态度——一张数表里有一个数不同结果就变了,还要有灵活的思维——于点、线、面,数、表、空间,常量、变量、随机变量间自由游弋;面对逝去的光阴不要悔恨——函数都可以不单调,人却要让过去决定未来吗,面对不如意的现状要接纳——作为考生,我们无权更改微分方程的初始条件,我们能做的是接受它,把题漂亮地解出来。

凯程考研:

凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。

凯程考研的宗旨:让学习成为一种习惯;

凯程考研的价值观:凯旋归来,前程万里;

信念:让每个学员都有好最好的归宿;

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

使命:完善全新的教育模式,做中国最专业的考研辅导机构;

激情:永不言弃,乐观向上;

敬业:以专业的态度做非凡的事业;

服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。

如何选择考研辅导班:

在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研历年战绩辉煌,成就显著!

在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下国内最高学府清华大学五道口金融学院金融硕士29人,占五道口金融学院录取总人数的约50%,五道口金融学院历年状元均出自凯程.例如,2014年状元武玄宇,2013年状元李少华,2012年状元马佳伟,2011年状元陈玉倩;考入北大经院、人大、中财、外经贸、复旦、上财、上交、社科院、中科院金融硕士的同学更是喜报连连,总计达到150人以上,此外,还有考入北大清华人大法硕的张博等10人,北大法学考研王少棠,北大法学经济法状元王yuheng等5人成功考入北大法学院,另外有数10人考入人大贸大政法公安大学等名校法学院。北师大教育学和全日制教育硕士辅导班学员考入15人,创造了历年最高成绩。会计硕士保录班考取30多人,中传郑家威勇夺中传新闻传播硕士状元,王园璐勇夺中传全日制艺术硕士状元,(他们的经验谈视频在凯程官方网站有公布,随时可以查看播放。)对于如此优异的成绩,凯程辅导班班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。

考研路上,拼搏和坚持,是我们成功的必备要素。

王少棠

本科学校:南开大学法学

录取学校:北大法学国际经济法方向第一名

总分:380+

在来到凯程辅导之前,王少棠已经决定了要拼搏北大法学院,他有自己的理想,对法学的痴迷的追求,决定到最高学府北大进行深造,他的北大的梦想一直激励着他前进,在凯程辅导班的每一刻,他都认真听课、与老师沟通,每一个重点知识点都不放过,对于少棠来说,无疑是无比高兴的是,圆梦北大法学院。在复试之后,王少棠与凯程老师进行了深入沟通,讲解了自己的考研经验,与广大考北大法学,人大法学、贸大法学等同学们进行了交流,录制为经验谈,在凯程官方网站能够看到。

王少棠参加的是凯程考研辅导班,回忆自己的辅导班的经历,他说:“这是我一辈子也许学习最投入、最踏实的地方,我有明确的复习目标,有老师制定的学习计划、有生活老师、班主任、授课老师的管理,每天6点半就起床了,然后是吃早餐,进教室里早读,8点开始单词与长难句测试,9点开始上课,中午半小时吃饭,然后又回到教室里学习了,夏天比较困了就在桌子上睡一会,下午接着上课,晚上自习、测试、答疑之类,晚上11点30熄灯睡觉。”

这样的生活,贯穿了我在辅导班的整个过程,王少棠对他的北大梦想是如此的坚持,无疑,让他忘记了在考研路上的辛苦,只有坚持的信念,只有对梦想的勇敢追求。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

龚辉堂

本科西北工业大学物理

考入:五道口金融学院金融硕士(原中国人民银行研究生部)

作为跨地区跨校跨专业的三跨考生,在凯程辅导班里经常遇到的,五道口金融学院本身公平的的传统,让他对五道口充满了向往,所以他来到了凯程辅导班,在这里严格的训练,近乎严苛的要求,使他一个跨专业的学生,成功考入金融界的黄埔军校,成为五道口金融学院一名优秀的学生,实现了人生的重大转折。

在凯程考研辅导班,虽然学习很辛苦,但是每天他都能感觉到自己在进步,改变了自己以往在大学期间散漫的学习状态,进入了高强度学习状态。在这里很多课程让他收获巨大,例如公司理财老师,推理演算,非常纯熟到位,也是每个学生学习的榜样,公司理财老师带过很多学生,考的非常好。在学习过程中,拿下了这块知识,去食堂午餐时候加一块鸡翅,经常用小小的奖励激励自己,寻找学习的乐趣。在辅导班里,学习成绩显著上升。

在暑期,辅导班的课程排得非常满,公共课、专业课、晚自习、答疑、测试,一天至少12个小时及以上。但是他们仍然特别认真,在这个没有任何干扰的考研氛围里,充实地学习。

在经过暑期严格的训练之后,龚对自己考入五道口更有信心了。在与老师沟通之后,最终确定了五道口金融学院作为自己最后的抉择,决定之后,让他更加发奋努力。

五道口成绩公布,龚辉堂成功了。这个封闭的考研集训,优秀的学习氛围,让他感觉有质的飞跃,成功的喜悦四处飞扬。

另外,在去年,石继华,本科安徽大学,成功考入五道口金融学院,也就是说,我们只要努力,方向正确,就能取得优异的成绩。师弟师妹们加油,五道口、人大、中财、贸大这些名校等着你来。

黄同学(女生)

本科院校:中国青年政治学院

报考院校:中国人民大学金融硕士

总分:跨专业380+

初试成绩非常理想,离不开老师的辛勤辅导,离不开班主任的鼓励,离不开她的努力,离不开所有关心她的人,圆梦人大金融硕士,实现了跨专业跨校的金融梦。

黄同学是一个非常腼腆的女孩子,英语基础算是中等,专业课是0基础开始复习,刚刚开始有点吃力,但是随着课程的展开,完全能够跟上了节奏。

初试成绩公布下来,虽然考的不错,班主任老师没有放松对复试的辅导,确保万无一失,拿到录取通知书才是最终的尘埃落地,开始了紧张的复试指导,反复的模拟训练,常见问题、礼仪训练,专业知识训练,每一个细节都训练好之后,班主任终于放心地让她去复试,果然,她以高分顺利通过复试,拿到了录取通知书。这是所有凯程辅导班班主任、授课老师、生活老师的成功。

张博,从山东理工大学考入北京大学法律硕士,我复习的比较晚,很庆幸选择了凯程,

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

法硕老师讲的很到位,我复习起来减轻了不少负担。愿大家在考研中马到成功,也祝愿凯程越办越好。

张亚婷,海南师范大学小学数学专业,考入了北京师范大学教育学部课程与教学论方向,成功实现了自己的北师大梦想。特别感谢凯程的徐影老师全方面的指导。

孙川川,西南大学考入中国传媒大学艺术硕士,播音主持专业。在考研辅导班,进步飞快,不受其他打扰,能够全心全意投入到学习中。凯程老师也很负责,真的很感谢他们。

在凯程考研辅导班,他们在一起创造了一个又一个奇迹。从河南理工大学考入人大会计硕士的李梦说:考取人大,是我的梦想,我一直努力,肯定能够成功的,只要我们不放弃,不抛弃,并且一直在努力前进创造成功的条件,每个人都能够成功。正确的方法+不懈的努

力+良好的环境+严格的管理=成功。我相信,每个人都能够成功。

考研数学公式大全(考研必备)

高等数学公式篇 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 导数公式: 基本积分 a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222????+-+--=-+++++=+-= ==-C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n ln 22)ln(221 cos sin 22222 2222222 22 2 22 2 π π

高等数学第七章微分方程习题

第七章 微分方程与差分方程 习题7-1(A ) 1. 说出下列微分方程的阶数: ;02)()1(2=+'-'x y y y x ;0)2(2=+'+'''y y x y x .0)32()67()3(=++-dy y x dx y x 2. 下列函数是否为该微分方程的解: x e x y y y y 2; 02)1(==+'-'' )(2; 0)()2(2为任意常数C x x C y xdy dx y x -==++ ),(cos sin ; 0) 3(212122 2为任意常数C C ax C ax C y y a dx y d +==+ )(ln ; 02)()4(2xy y y y y y x y x xy =='-'+'+''+ 3. 在下列各题中,确定函数关系式中所含的参数,写出符合初始条件的函数: ;5, )1(0 22==-=x y C y x ;1,0,)()2(0 221=' =+===x x x y y e x C C y . 0,1, )(sin )3(21='=-===ππx x y y C x C y 4. 写出下列条件确定的曲线所满足的微分方程: 点横坐标的平方。 处的切线的斜率等于该曲线在点),()1(y x 轴平分。被,且线段轴的交点为处的法线与曲线上点y PQ Q x y x P ),()2( 习题7-1(B ) 1.在下列各题中,对各已知曲线族(其中 C 1, C 2, C 3 都是任意常数)求出相应的微分方程: ; 1)()1(22=+-y C x . )2(21x x e C e C xy -+= 2.用微分方程表示下列物理问题: 平方成反比。温度的成正比,与的变化率与气压对于温度某种气体的气压P T P )1( 。 速度成反比(比例系数同时阻力与, 成正比(比例系数与时间用在它上面的一个力的质点作直线运动,作一质量为)))2(11k k t m 习题7-2(A ) 1.求下列微分方程的通解: ;0ln )1(=-'y y y x ;0553)2(2='-+y x x ; )()3(2y y a y x y '+='-'

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

考研数学公式大全(考研必备,免费下载

高等数学公式篇·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)

高数下要点含微分方程自己的完整版

高数下要点含微分方程 自己的 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第六章 微分方程 一、一阶微分方程 1、一阶线性方程 )()(x Q y x P dx dy =+ 2、伯努利方程 )1,0()()(d d ≠=+n y x Q y x P x y n ).()(d d 1111x Q y x P x y n n n =+?---令.1n y z -= 二、可降阶的高阶方程 1.)() (x f y n = n 次积分 2.)',("y x f y = 不显含 y 令)('x p y =,化为一阶方程 ),('p x f p =。 3.)',("y y f y = 不显含自变量 令)('y p y =,dy dp p dx y d =22,化为一阶方程。 三、线性微分方程 )()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- , 0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。

1.二阶线性齐次线性方程 0)()(=+'+''y x Q y x P y (1) 如果函数 )(1x y 与)(2x y 是方程(1)的两个解, 则)()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。 如果 )(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 则 )()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解. 两个函数 )(1x y 与)(2x y 线性无关的充要条件为 C x y x y ≡/) () (21(常数) 2.二阶线性非齐次线性方程 设 )(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+'' 的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程的 通解. 设 )(* 1x y 与)(*2 x y 分别是二阶线性非齐次方程 )()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+'' 的两个特解。则 +)(*1x y )(*2x y 是 的特解。(叠加原理)

(完整版)高等数学微分方程试题

第十二章 微分方程 §12-1 微分方程的基本概念 一、判断题 1.y=ce x 2(c 的任意常数)是y '=2x 的特解。 ( ) 2.y=(y '')3是二阶微分方程。 ( ) 3.微分方程的通解包含了所有特解。 ( ) 4.若微分方程的解中含有任意常数,则这个解称为通解。 ( ) 5.微分方程的通解中任意常数的个数等于微分方程的阶数。 ( ) 二、填空题 1. 微分方程.(7x-6y)dx+dy=0的阶数是 。 2. 函数y=3sinx-4cosx 微分方程的解。 3. 积分曲线y=(c 1+c 2x)e x 2中满足y x=0=0, y ' x=0=1的曲线是 。 三、选择题 1.下列方程中 是常微分方程 (A )、x 2+y 2=a 2 (B)、 y+0)(arctan =x e dx d (C)、22x a ??+22y a ??=0 (D ) 、y ''=x 2+y 2 2.下列方程中 是二阶微分方程 (A )(y '')+x 2y '+x 2=0 (B) (y ') 2+3x 2y=x 3 (C) y '''+3y ''+y=0 (D)y '-y 2=sinx 3.微分方程2 2dx y d +w 2 y=0的通解是 其中c.c 1.c 2均为任意常数 (A )y=ccoswx (B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx 4. C 是任意常数,则微分方程y '=3 23y 的一个特解是 (A )y-=(x+2)3 (B)y=x 3+1 (C) y=(x+c)3 (D)y=c(x+1)3 四、试求以下述函数为通解的微分方程。 1.2 2 C Cx y +=(其中C 为任意常数) 2.x x e C e C y 3221+=(其中21,C C 为任意常数) 五、质量为m 的物体自液面上方高为h 处由静止开始自由落下,已知物体在液体中受的阻力与运动的速度成正比。用微分方程表示物体,在液体中运动速度与时间的关系并写出初始条件。

考研必备 数学公式大全

·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式:

高等数学微分方程试题及答案.docx

第九章常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 ( 1)方程形式:dy P x Q y Q y0通解 dy P x dx C dx Q y (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) ( 2)方程形式:M1x N1 y dx M 2x N 2y dy0 通解M 1x dx N 2 y dy C M 2 x 0, N 1 y 0 M 2x N 1y 2.变量可分离方程的推广形式 dy f y ( 1)齐次方程 x dx 令y u ,则 dy u x du f u f du dx c ln | x | c x dx dx u u x 二.一阶线性方程及其推广 1.一阶线性齐次方程 dy P x y0 它也是变量可分离方程,通解y Ce P x dx ,(c为任意常数)dx 2.一阶线性非齐次方程 精品文档令 z y1把原方程化为dz1P x z 1Q x 再按照一阶线性 dx 非齐次方程求解。 dy1可化为 dx P y x Q y y x 以为自变量,.方程: P y x dy dx Q y 为未知函数再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程 方程类型解法及解的表达式 通解 y n C 2 x n 2C n 1 x C n y n f f x dx C1 x n 1 x n次 令 y p ,则 y p ,原方程 y f x, y f x, p ——一阶方程,设其解为p g x, C1 p, 即y g x, C1,则原方程的通解为y g x, C1dx C2。 令 y p ,把p看作y的函数,则 y dp dp dy p dp dx dy dx dy y f 把 y, y 的表达式代入原方程,得 dp1 f y, p—一阶方程, y, y dy p dy dx P x y Q x用常数变易法可求出通解公式设其解为 p g y, C 1 , 即 dy g y, C1,则原方程的通解为 dx 令 y C x e P x dx代入方程求出 C x 则得ye P x dx Q x e P x dx dx C 3.伯努利方程 dy Q x y0,1 P x y dx dy x C2。 g y, C1

考研数学公式大全(考研同学必备)

考研数学公式(全) ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边,

·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

高数 第七章题库 微分方程

第十二章 微分方程答案 一、 选择题 1.下列不是全微分方程的是 C 1 A.2()(2)0x y dx x y dy ++-= B.2 (3)(4)0y x dx y x dy ---= C.3 2 2 2 3(23)2(2)0x xy dx x y y dy +++= D.2 2 2(1)0x x x ye dx e dy -+= 2. 若3y 是二阶非齐次线性方程(1):()()()y P x y Q x f x '''++=的一个特解,12,y y 是对应的 齐次线性方程(2)的两个线性无关的特解,那么下列说法错误的是(123,,c c c 为任意常数) C 2 A.1122c y c y +是(2)的通解 B. 113c y y +是(1)的解 C. 112233c y c y c y ++是(1)的通解 D. 23y y +是(1)的解 3.下列是方程xdx ydy += 的积分因子的是 D 2 A.2 2x y + B. 221x y + 4.方程32 2321x x d y d y e e dx dx ++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0 5.已知方程'()0y p x y +=的一个特解cos 2y x =,则该方程满足初始特解(0)2y =的特解为( C ). 2 (A) cos 22y x =+ (B) cos 21y x =+ (C) 2cos 2y x = (D) 2cos y x = 6.方程32232 1x x d y d y e e dx dx ++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0 7.设线性无关的函数123,,y y y 都是微分方程''()'()()y p x y q x y f x ++=的解,则该方程的通解为 ( D ). 2 (A) 11223y c y c y y =++ (B) 1122123()y c y c y c c y =+-+ (C) 1122123(1)y c y c y c c y =+--- (D) 1122123(1)y c y c y c c y =++-- 8.设方程''2'3()y y y f x --=有特解*y ,则其通解为( B ). 1

考研数学公式大全(数三)

导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

考研数学公式大全(考研必备)

高等数学公式篇 导数公式: 基本积分表: C kx dx k +=? )1a (,C x 1 a 1 dx x 1a a -≠++=+? C x ln dx x 1+=? C e dx e x x +=? C a ln a dx a x x +=?(1a ,0a ≠>) C x cos xdx sin +-=? C x sin dx x cos +=? C x arctan dx x 11 2+=+? C a x arcsin x a dx C x a x a ln a 21x a dx C a x a x ln a 21a x dx C a x arctan a 1x a dx C x cot x csc ln xdx csc C x tan x sec ln xdx sec C x sin ln xdx cot C x cos ln xdx tan 2 2222222+=-+-+=-++-=-+=++-=++=+=+-=???????? ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C )a x x ln(a x dx C shx chxdx C chx shxdx C a ln a dx a C x csc xdx cot x csc C x sec dx x tan x sec C x cot xdx csc x sin dx C x tan xdx sec x cos dx 222 2x x 2 22 2 a ln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 2 21a a = '='?-='?='-='='='='='-2 2 22 x x x 11 )x cot arc (x 11 )x (arctan x 11 )x (arccos x 11 )x (arcsin x 1 )x (ln e )e (x sin )x (cos +- ='+= '-- ='-= '= '='-='

高数(下)要点(含微分方程)——自己整理的

第六章 微分方程 一、一阶微分方程 1、一阶线性方程 )()(x Q y x P dx dy =+ ])([)()(C dx e x Q e y dx x P dx x P +?? =?-通解 2、伯努利方程 )1,0()()(d d ≠=+n y x Q y x P x y n ).()(d d 1111x Q y x P x y n n n =+?---令.1n y z -= 二、可降阶的高阶方程 1.)()(x f y n = n 次积分 2. )',("y x f y = 不显含y 令)('x p y =,化为一阶方程 ),('p x f p =。 3. )',("y y f y = 不显含自变量 令)('y p y =,dy dp p dx y d =22,化为一阶方程。 三、线性微分方程 )()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- , 0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。 1.二阶线性齐次线性方程 0)()(=+'+''y x Q y x P y (1) 如果函数)(1x y 与)(2x y 是方程(1)的两个解, 则 )()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。 如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 则 )()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解. 两个函数)(1x y 与)(2x y 线性无关的充要条件为

C x y x y ≡/) () (21(常数) 2.二阶线性非齐次线性方程 设 )(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+'' 的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程 的通解. 设)(* 1x y 与 )(*2x y 分别是二阶线性非齐次方程 )()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+'' 的两个特解。则+ )(* 1x y )(* 2x y 是 )()()()(21x f x f y x Q y x P y +=+'+'' 的特解。(叠加原理) 3.二阶线性常系数齐次方程 0'"=++qy py y 特征方程02 =++q pr r ,特征根 ,r r 4.二阶线性常系数非齐次方程 i) 如果 x m e x P x f λ)()(=, 则二阶线性常系数非齐次方程具有形如 x m k e x Q x y λ)(*= 的特解。 其中,)(x P m 是 m 次多项式, )(x Q m 也是系数待定的m 次多项式; 2,1,0=k 依照λ为特征根的重数而取值. i) 如果 []x x P x x P e x f n l x ωωλsin )(cos )()(+=, 则二阶线性常系数非齐次方程的特解可设为 [] x x R x x R e x y m m x k ωωλsin )(cos )() 2()1(*+=

考研数学公式大全(考研必备,免费下载)

高等数学公式篇· 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·si nβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·si nβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tan β·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tan γ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1 -2sin^2(α)

微分方程总结

第七章 微分方程 1.一阶微分方程 (1)微分方程的基本概念: ①、微分方程:含有未知函数、未知函数的导数即自变量的等式叫做微分方程。未知函数是一元函数,叫做常微分方程;未知函数是多元函数,叫做偏微分方程。 ②、微分方程的阶:微分方程中所出现的未知函数导数的最高阶数,叫做微分方程的阶。 ③、微分方程的解:若某个函数代入微分方程能使该方程成为恒等式,这个函数就叫做该微分方程的解。 ④、微分方程的通解:若微分方程的解中所含相互独立的任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。 ⑤、微分方程的初始条件、特解:用来确定微分方程通解中任意常数的条件叫做初始条件。确定了通解中任意常数的解称为微分方程的特解。 (2)可分离变量方程:形如)()(dx dy x g x f =的方程称为可分离变量微分方程。设g(y)≠0,则可将方程化为dx )() (dy x f y g ,其特点是方程的一端只含有y 的函数dy ,另一端只含有x 的函数dx ,即将两个变量分离在等式两端,其接法是分离变量后两边积分得到通解。 (3)齐次方程:形如)(y x y f ='的方程称为齐次方程。其解法是做变换x y u =,则y=ux,dx du dx dy x u +=,代入方程化为可分离变量的微分方程。 (4)一阶线性微分方程:形如)()(dx dy x Q y x P =+的方程称为一阶线性微分呢方程,其特点是方程中的未知函数及其导数为一次的。如果0)(≡x Q ,则称为一阶线性齐次微分方程;如果Q(x)不恒等于零 ,则称为一阶线性非齐次微分方程,其通解为 C dx e x Q e y dx x P dx x P +?=??-)()()((。 (5)伯努利方程:形如)1,0()()('≠=+n y x Q y x P y n 的方程称为伯努利方程。次方程的特点是未知函数的导数仍是一次的,但未知函数出现n 次方幂。其解法是做变量替换n y z -=1,则: ,dx dz 11dx dy ,dx dy )1(dx dz 11n y y n n n -=-=--即 代入原方程,得: ),()1()()1(dx dz x Q n z x P n -=-+ 这是一个线性非齐次微分方程,再按线性非齐次微分方程的解法求出通解;最后以n y z -=1换回原变量,即为所求。 2、高阶微分方程,常系数线性微分方程: (1)可降价的高阶微分方程: ①、)()(x f y n =:其特点是右端仅含有自变量x ,通过连续积分n 次得到通解。 ②、)',(''y x f y =:其特点是方程不显含未知函数y 。令'''),('p y x p y ==则,代入原方程化为一阶微分

高等数学微分方程练习题

高等数学微分方程练习 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程. 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数. 1.不是一阶微分方程. A.正确 B.不正确 2.不是一阶微分方程. A.正确 B.不正确 一阶线性微分方程:未知函数及其导数都是一次的微分方程d ()() d y P x y Q x x += 称为一阶线性微分方程. 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解. 通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解. 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解. 1.是微分方程的解. A.正确 B.不正确 2.是微分方程的解. A.正确 B.不正确 3.是微分方程的通解. A.正确 B.不正确

4.微分方程 的通解是( ). A. B. C. D. (二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法是: (1)分离变量:1221()()()() g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解. 1.微分方程 的通解是( ). A. B. C. D. 2.微分方程 的通解是( ). A. B. C. D. 3.微分方程的通解是( ). A. B. C. D. 4.微分方程的通解是( ).

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?+ +-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210 a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-?, 1 3134673(31) k a a k k += ??????+, 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36 347 01[1][] 232356 2356(31)33434673(31) n x x x x x y a a x n n n n =+++ ++++++ ?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个

任意常数0a 及1a )便是所要求的通解。 例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级数2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?+ +-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0, ,,1 n n a a a a a n -==== - 因而 5678911 11,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 5 213 2! !k x x y x x k +=+++ ++ 2 4 22 (1),2! ! k x x x x x xe k =+++ ++= 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方

(完整版)高等数学第七章微分方程试题及答案

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程, 通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α -=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性 非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

相关文档
相关文档 最新文档