文档库 最新最全的文档下载
当前位置:文档库 › 流量计校核实验报告

流量计校核实验报告

流量计校核实验报告
流量计校核实验报告

流量计校核实验报告

一、实验目的

1、熟悉孔板流量计和文氏流量计的构造及工作原理;

2、掌握流量计标定方法之一——称量法;

3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律;

4、测定孔板流量计和文氏流量计的流量与压差的关系。

二、实验原理

常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。

孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。

(一)孔板流量计

孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U 形压差计相连接。

孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。

若管路直径为1d ,孔板锐孔直径为0d ;流体流经孔板后所形成缩脉的直径为2d ;流体密度为ρ。

在截面积I 、II 处,即孔板前导管处和缩脉处的速度和压强分别为1212u u p p ,与,,根据柏努利方程可得:

222112

2u u p p ρ

--=

(1) 或

= (2)

由于缩脉位置因流速而变,截面积2S 又难于知道,而孔板孔径的面积0S 是已知的,测压器的位置在设置一旦制成后也是不变的。因此,用孔板孔径处流速0u 来代替式(2)中的

2u ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。式(2)就

可改写为:

图1-1 孔板流量计构造原理图

= (3)

对于不可压缩流体,根据连续性方程式又可得: 0

10

S u u S

= (4) 将式(4)代入式(3),整理后可得:

0u =

(5)

令0/C C = 则式(5)可简化为

0u C = (6)

根据00u S 和即可算出流体的体积流量:

3

000(

/)s V u S C H

m s

== (7) 或

30(/)s V C S m s = (8)

式中:R ——U 形压差计示数(液柱高度差),m ;

R ρ——压差计中指示液的密度,3

/kg m ;

0C 称为孔板流量系数。它由孔板锐孔的形状、测压

口位置、孔径与管径比

1

d d 和雷诺准数R

e 所决定。具体数值由实验测定。当孔板的

1

d d 一定后,R

e 数超过某个数值后,0C 就接近于定值。一般工业上定型的流量计,就是规定在0C 为定值的流动条件下使用。

(二)文丘里流量计 孔板流量计装置简单,但其主要缺点是阻力损失大。文丘里流量计针对孔板流量计的问题,使流量计的管径逐渐缩小,然后逐渐扩大,以减少涡流损失,其构造如图1-2所示。

扩大管与收缩管接合处,即管截面积为最小处,称为文氏管喉。管喉处流速应为:

0V u C = (9)

图1-2 文丘里流量计构造原理图

0V

u C = (10)

根据0u 和管喉截面积V S ,可得流体的体积流量:

s V V

V C S = (11)

式中V C 称为文丘里流量计的流量系数,其数值随雷诺数而改变。流量系数的具体数值亦由实验测定。在湍流情况下,当喉径与管径比

0111

~42

V d d =时,C 约为0.98。 三、实验装置与流程

实验装置中,所采用的流量计都是自行制做的。装置中各有关尺寸如下: (1)孔板流量计锐孔直径0 6.86d mm = (2)文氏流量计喉部直径 6.8V d mm =

(3)实验系统管道全部为内径17mm 的白铁管; (4)称量罐为¢260×410mm

(5)指示液密度:3

13600/H g kg m ρ=

四、实验步骤及注意事项

1、实验前的准备工作

(1) 检查装置上各部件是否齐全、完好。熟悉装置上的各个设备、仪表和部件的作用及使用方法。

(2) 向储水桶内加水,到浮标所定位的水面。

图1-3 流量计实验流程示意图

1-进口阀 2-孔板流量计 3-文氏流量计 4-出口阀

5-称量罐 6-放空阀 7-U 型管压差计

(3) 调节电子秤水平,打开开关,将电子秤预热15分钟左右。

(4) 关闭装置上的各个阀门,全开泵出口旁路阀。

2、实验操作

(1) 启动水泵,打开回水阀,使管线中水能回储水桶,循环运行。

(2) 打开U型管压差计上排气(水)阀和管路系统排气阀,缓慢打开转子流量计出阀门,同时关小泵出口旁路阀,流量调至最大,待管路上见不到气泡,关闭相应排气阀。

(3) 流量调至零,观察U型管压差计压差读数是否为零,若为零则转入测试阶段;若不为零,则重新排气,即重复以上(2)操作。

(4) 调节转子流量计流量,由小到大(或反之),每调节一个流量,维持读数稳定约10分钟,称量,记时,并读取孔板和文丘里流量计的压差值及水温。依次测取8~10组数据。称量顺序:每次称量前将电子秤置零,全开进计量桶的阀门,关闭回水阀,按下秒表开始记时,待称量桶盛水16kg左右时,读取时间,并记录。将称量桶内的水排净。再测另一组数据。可在等待排水的时间内调节下一个流量并维持稳定。

(5) 实验完毕,关闭流量计处阀门,全开泵旁路阀,停泵,一切复原。

3、注意事项

要特别注意安全用汞。实验前后和实测中切勿碰撞玻璃管,避免操作中跑汞。实验终了或实验前必须全开原出口旁路,实验中流量计阀要缓慢开、闭。

五、实验报告要求

1、将所有原始数据及计算结果列成表格,并取其中一组列出计算过程;

2、在合适的坐标系上绘出流量与测量压差之间的关系曲线(即流量标定曲线)、流量系数与雷诺数的关系曲线;

3、计算孔板和文氏流量计的孔流系数;

4、讨论实验结果。

六、思考题

1、为什么实验前应排除管路及导压管中积存的空气?如何排除?

2、什么情况下的流量计需要标定?本实验是用哪一种方法进行标定的?

3、实验中需要测定哪些数据?影响实验结果准确度的因素有哪些?

4、流量计的流量系数与哪些因素有关?

七、附录

计算公式: 称量流量: m 3/s 孔板压差:

文丘里压差:

孔板流量系数:

2

5220

10696.300686.04

4

m

d S -??=?==ππ

文丘里流量系数:

2

5

2200106317.30068.04

4

m d S -??=

?=

=π

π

流速:u=Vs/A=4Vs/(π×0.0172) m/s 雷诺数 Re=d i u ρ/μ

=流体密度称量时间称量重量称量ρ??=t 18

)(V s

Pa R p 81.9???=?(ρ汞-ρ水)孔板孔板

Pa R p 81.9???=?(ρ汞-ρ水)文氏

文氏

孔板

ρp

V

C s ?=2S 0

文丘里

ρp

V C s

?=2S 0

化工原理实验讲义2015(2)

实验一 流量计校核实验 一、实验目的 1.了解孔板流量计、文丘里流量计的构造、原理、性能及使用方法。 2.掌握流量计的标定方法。 3.学习合理选择坐标系的方法。 二、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量有如下关系: 采用正U 形管压差计测量压差时,流量Vs 与压差计读数R 之间关系有: (1) 式中: V s 被测流体(水或空气)的体积流量,m 3/s ; C 流量系数(或称孔流系数),无因次; A 0 流量计最小开孔截面积,m 2,A 0=(π/4)d 02; 下上-P P 流量计上、下游两取压口之间的压差,P a ; ρ 被测流体(水或空气)的密度,Kg/m 3; A ρ U 形管压差计内指示液的密度,Kg/m 3; ρ1 空气的密度,Kg/m 3; R U 形管压差计读数,m ; 式3-1也可以写成如下形式: (1a) 若采用倒置U 形管测量压差: ρgR P P =-下上 (忽略空气对测量的影响)则流量系数C 与流量的关系为: () ρ 下上-P P CA V s 20 =() ρ ρρ120 -=A s gR CA V ρ ρρ) 1(2-= A gR A V C s

(2) 用体积法测量流体的流量V s ,可由下式计算: (3) (4) 式中:V s 水的体积流量,m 3/s ; △t 计量桶接受水所用的时间,s ; A 计量桶计量系数; △h 计量桶液面计终了时刻与初始时刻的高度差,mm ,△h=h 2-h 1; V 在△t 时间内计量桶接受的水量,L 。 改变一个流量在压差计上有一对应的读数,将压差计读数 R 和流量V s 绘制成一条曲线即流量标定曲线。同时用式(1a )或式(2)整理数据可进一步得到流量系数C —雷诺数Re 的关系曲线。 (5) 式中:d —实验管直径,m ; u —水在管中的流速,m/s 。 三、实验内容 1、以涡轮流量计为基准,对孔板流量计进行校核,并绘制校核曲线。 2、以转子流量计为基准,对孔板流量计进行校核,并绘制校核曲线。 实验二 离心泵特性曲线测定 一、实验目的 1. 了解离心泵结构与特性,学会离心泵的操作; 2. 掌握离心泵特性曲线测定方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实 gR A V C s 20=A h V ??=t V V s ??= 310μ ρdu = Re

LZB玻璃转子流量计操作规程

玻璃转子流量计使用规程 一.概述 玻璃转子流量计(以下简称流量计)是用来测量非混浊液体、气体等单相介质流量的仪表之一。该仪表具有结构简单、维修和使用方便、价格便宜等优点。主要用于化工、石油、轻工、医药、化肥、化纤、电力、冶金、食品、制糖、燃料、造纸、环保及科研部门。 二.工作原理与结构 仪表测量部分为一根垂直安装的玻璃锥管和管内的浮子所组成。锥管的大端向上,浮子随流量大小沿锥管轴线方向上下移动。当流体自下而上通过锥管时,由于流体的作用,浮子上下端面产生一差压,浮子在此差压作用下上升。当作用在浮子上的上升力与浮子所受的重力、浮力及粘性力三者的合力相等时,浮子便稳定在某一高度上。这时浮子在锥管中的高度与所通过的流量有对应关系。该高度就是流量大小的量度。 锥管上刻有流量刻度,流量计的读数按图一所示的读数位置读取流量示值。 图一玻璃转子流量计读数位置 我公司生产的流量计的结构按口径不同可分为表盘式、可换式和固定式三种。 表盘式结构如图二所示,它适合于口径为4、6、10mm的流量计。主要支撑件是支板2和带有针阀的下基座9及上基座3,针阀用于调节流经仪表的流量,流入、流出咀与管路用软管联接,支板上有两个螺孔用来固定仪表。 可换式结构如图三所示,它适用于口径为15、25、40mm的流量计。带法兰基座1和内衬填料8通过两支板6与锥管相连接,以压紧盖7加以密封,镶有不锈钢或塑料等制成的镶套,以提高耐腐蚀性,基座的两法兰与管路相连接,只需将螺栓9(上下共8个)旋下,就能取出锥管,进行清洗或更换。 固定式结构如图四所示,它适用于口径为50、80、100mm的流量计。?基本结构与可换式相类同,但内部不装镶套且锥管不能单独拆卸。中间装一导杆,测量大流量时,可以保证浮子依然能顺着导杆上下平稳地滑动,也可保护锥管免遭损坏。

流量计(中国石油大学流体力学实验报告)

中国石油大学(华东)流量计实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的矫正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力试验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,就可计算管道的理论流量 Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的 测压管水头差 ,可计算管道的理论流量 Q ,再经修正得到实际流量。孔板流量计也属压差式流量计,其特点是结构简单。 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3.理论流量 水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑 水头损失 ,速度水头的增加等于测压管水头的减小(即比压计液面高差h ?),因此,通过量测到的h ?建立了两断面平均流速v 1和v 2之间的一个关系: 如果假设动能修正系数1210.αα==,则最终得到理论流量为: 式中 2K A g =,2221 1( )()A A A A μ= -,A 为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因 粘性 造成的水头损失,流量应修正为: 其中 1.0α<,称为流量计的流量系数。

电磁流量计在化工行业的应用

电磁流量计在化工行业的应用 【摘要】文章介绍了电磁流量计的概述,技术原理,安装条件,以及电磁流量在煤化工行业上的应用。 【关键词】电磁流量计;化工行业;应用 0.概述 电磁流量计(Electromagnetic Flowmeter)是由直接接触管道介质的传感器和上端信号转换器两部分构成。它是基于法拉第电磁感应定律工作的,用来测量电导率大于5μs/cm的导电液体的流量,是一种测量导电介质流量的仪表。除了可以测量一般导电液体的流量外,还可以用于测量强酸、强碱等强腐蚀性液体和均匀含有液固两相悬浮的液体,如泥浆、矿浆、纸浆等。 电磁流量计 电磁流量计特别设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便,可以减少其他电磁流量计英文菜单所带来的不便。另外我们独家设计4-6多电极结构,进一步保证了测量精度并且任何时候无需接地环,减轻了仪表体积和安装维护的麻烦。电磁流量计在满足现场显示的同时,还可以输出4~20mA电流信号供记录、调节和控制用,现已广泛地应用于化工、环保、冶金、医药、造纸、给排水等工业技术和管理部门。 采用电磁感应原理测量介质流体流速的电磁流量计。它在管道的两侧加一个磁场,被测介质流过管道就切割磁力线,在两个检测电极上产生感应电势,其大小正比于流体的运动速度。可以用于测量酸、碱、盐溶液、水煤浆、矿浆、砂浆灰泥、纸浆、树脂、橡胶乳、合成纤维浆和感光乳胶等各种悬浮物、气化汽和粘性物质的流量。电磁流量计密封性能好,还可用于自来水和地下水道系统。而且测量过程不与流体接触,适于制药、生物化学和食品工业。这种流量计还可检测血液流量。它的量程比约为100:1,精度一般为1%,由于这种传感器必须保持管道内电阻和测量电路阻抗之间有一定比例关系,因此在制造上有一定困难。当被测介质的电导率约为10欧姆·厘米时就开始产生困难,电导率更低时就产生原理性困难。当电导率为10欧姆·厘米时,就达到导电介质和电介质之间的“分界线”,热噪声电平随内阻的增大而显著增加。 电磁流量计是高精度、高可靠和使用寿命长的流量仪表,所以在设计产品结构、选材、制定工艺、生产装配和出厂测试等过程中每一个环节我们都非常细致讲究,还自行设计了一套中国最先进的,专用于电磁流量计的生产设备和流量实流标定装置,从而在软件和硬件上都能切实保证产品长期的高质量。电磁流量计特别设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便,可以减少其他电磁流量计英文菜单所带来的不便。另外我们独家设计4-6多电极结构,进一步保证了测量精度并且任何时候无需接地环,减轻了仪表体积

流量计校核实验指导书

节流式流量计校核装置实验指导书

流量计校核实验 一.实验目的 1.熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。 2.掌握流量计的标定方法之一——容量法。 3.测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。 二.基本原理 对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。 孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。 2.1孔板流量计的校核 孔板流量计是应用最广泛的节流式流量计之一,本实 验采用自制的孔板流量计测定液体流量,用容量法进行标 定,同时测定孔流系数与雷诺准数的关系。 孔板流量计是根据流体的动能和势能相互转化原理而 设计的,流体通过锐孔时流速增加,造成孔板前后产生压 强差,可以通过引压管在压差计或差压变送器上显示。其 基本构造如图3-1所示。 若管路直径为d1,孔板锐孔直径为d0,流体流经孔板 前后所形成的缩脉直径为d2,流体的密度为ρ,则根据柏 努利方程,在界面1、2处有: 图3-1 孔板流量计

2221122u u p p p ρρ --?== (3-1) 或 22212/u u p ρ-=? (3-2) 由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此, 用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能 量损失,故需用系数C 加以校正。式(3-2)改写为 22212/u u C p ρ-=? (3-3) 对于不可压缩流体,根据连续性方程可知0101 A u u A =,代入式(3-3)并整理可得 0012/1()2C p u A A ρ ?=- (3-4) 令 02 01 1()C C A A =- (3-5) 则式(3-4)简化为 002/u C p ρ=? (3-6) 根据0u 和0A 即可计算出流体的体积流量: ρ/20000p A C A u V ?== (3-7) 或 ρρρ/)(20000-==i gR A C A u V (3-8) 式中:V -流体的体积流量, m 3/s ; R -U 形压差计的读数,m ; i ρ-压差计中指示液密度,kg/m 3; 0C -孔流系数,无因次; 0C 由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re 所决定,具体数值由实验测定。 当孔径与管径之比为一定值时,Re 超过某个数值后,0C 接近于常数。一般工业上定型的流量计,就 是规定在0C 为定值的流动条件下使用。0C 值范围一般为0.6-0.7。

楔型流量计检维修作业指导书

楔型流量计检维修作业指导书 1 总则 1.1编写目的 1.1.1为规范北海炼化电仪中心对于楔型流量计的日常维护和大修检修作业行为。 1.1.2 为有利于检修方提高检维修工作效率,确保检维修工作质量,避免检维修作业中的错误与失误,强化维修人员的故障处理能力,提供完善、标准、规范的检修作业程序。 1.1.3 为有利于检修资料归档。 1.2 适用人员 本作业指导书为所有北海炼化电仪中心仪表作业人员所共同遵守的质量保证程序。 2 适用范围 适用于中国石化北海炼化有限责任公司对楔型流量计的日常维护、故障处理、检修等作业。 3 人员要求及职责分工 3.1 作业人员职责 3.1.1 日常作业人员职责 对本人所辖设备的健康运行、稳定运行负责,保证管辖设备的日常维护工作,保证管辖设备的故障及时消除。 3.1.2 监护人员职责 监护人应是具有相关工作经验,熟悉设备情况和相关规定的人员,监护人必须清楚工作的内容、目的和要求,以及可能需要采取的安全措施情况。 3.1.3作业质量验收人职责 保证质量监督的有效工作,负责质量事故的处理,建立质量保证体系。 3.2 作业人员要求 必须是持有北海炼化有限责任公司仪表工种上岗证的职工或得到北海炼化有限责任公司认可的有相关资质的维保单位,同一项工作的参加人员不少于两人,

监护人员不少于一人。 4 工器具及备件材料准备及要求4.1 检修所需测量用具准备 4.2 检修所需工器具准备 4.3 检修所需参考图纸资料 4.4 工作所需备品配件准备

5 技术要求及质量标准 5.1 技术要求 5.1.1 确保楔型流量计在日常维护及大修的检修全过程无不安全因素发生。5.1.2 确保楔型流量计检修项目的验收率、合格率为100%。 5.2 质量标准 1.图纸、设备说明书等设计文件; 2.石油化工仪表工程施工技术规程SH/T3521-2007; 3.自动化仪表工程施工质量验收规范GB50131-2007; 4.石油化工仪表供电设计规范 SH/T3082-2003; 5.石油化工仪表接地设计规范 SH/T3081-2003; 6.石油化工工程施工及验收统一标准SH3508-2011; 应执行的技术标准包括但不限于上述所列标准规范,相关标准规范如有更新,按最新颁布的标准规范参照执行。

文丘里流量计实验实验报告

文丘里流量计实验实验报告 实验日期:2011.12.22 一、实验目的: 1、学会使用测压管与U 型压差计的测量原理; 2、掌握文丘里流量计测量流量的方法和原理; 3、掌握文丘里流量计测定流量系数的方法。 二、实验原理: 流体流径文丘里管时,根据连续性方程和伯努利方程 Q vA =(常数) H g v p z =++22 γ(常数) 得不计阻力作用时的文丘里管过水能力关系式(1、2断面) h K p z p z g d d d Q ?=?????????? ??+-???? ? ?+???? ??-=γγπ221141222214 1 由于阻力的存在,实际通过的流量Q '恒小于Q 。引入一无量纲系数Q Q '=μ(μ称为流量系数),对计算所得的流量值进行修正。 h K Q Q ?=='μμ h K Q ?' =μ 在实验中,测得流量Q '和测压管水头差h ?,即可求得流量系数μ,μ一般在0.92~0.99之间。 上式中 K —仪器常数 g d d d K 214 141222???? ??-=π h ?—两断面测压管水头差 ??? ? ??+-???? ??+=?γγ2211p z p z h h ?用气—水多管压差计或电测仪测得,气—水多管压差计测量原理如下图所示。

1h ? 2h ? H 3 1H 2H 1z 2z 气—水多管压差计原理图 根据流体静力学方程 γγ22231311 p H h H h H H p = +?-+?--- 得 221121H h h H p p -?+?++=γγ 则 )()(222211212211γγγγp z H h h H p z p z p z +--?+?+++=??? ? ??+-???? ?? + 212211)()(h h H z H z ?+?++-+= 由图可知 )()(4321h h h h h -+-=? 式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。 三、实验数据记录及整理计算(附表) 文丘里流量计实验装置台号:2 d1=1.4cm d2=0.7cm 水温t=13.1℃ v=0.01226cm 2/s 水箱液面标尺值▽0=38cm 管轴线高程标尺值▽=35.7cm 实验数据记录表见附表 四、成果分析及小结: 经计算 K=17.60cm 2.5/s u=1.064 由实验计算结果看各组数据的相差较大,可以判断实验的精密度不高,实验 与理论值有偏差。误差来源主要有实验测量值的不准确,人为造成的主管因素较大。 五、问题讨论: 为什么计算流量Q 理论与实际流量Q 实际不相等? 答:因为实际流体在流动过程中受到阻力作用、有能量损失(或水头损失),而计算流量是假设流体没有阻力时计算得到的,所以计算流量恒大于实际流量。

过程工程原理实验指导书

过程工程原理实验讲义 南昌大学化工原理实验室 2011年3月

前言 《过程工程原理》是化工、制药、高分子、食品、应化等相近专业学科的核心课程,其主要研究内容是以工业生产中的物理加工过程为背景,按其操作原理的共性归纳成若干“单元操作”。《过程工程原理》用自然科学的原理考察、解释和处理工程实际问题,研究方法主要是理论解析和在理论指导下的实验研究,强调工程观点、定量运算、实验技能和设计能力的训练,强调理论与实际的结合,提高学生分析问题、解决问题的能力。 全国高校化工原理课程教学指导委员会第五次会议对工科本科《化工原理》课程实验教学提出了以下指导意见: 1、实验内容在下列实验中至少选做6~7个(流体力学2个,传热1~2个,传质3个),即:直管摩擦系数和局部阻力系数测定;离心泵的操作与性能测定;过滤常数测定;导热系数测定;传热实验;蒸发实验;精馏塔性能实验;吸收系数测定;干燥速率曲线测定;萃取实验及板式塔流体力学性能实验等。 2、每个实验应包含实验预习、实验操作、数据处理和实验报告四个环节。 3、实验教学还包括理论教学、演示教学和实物教学等。 4、实验应单独考核。 本实验指导书系根据上述精神和教育部发布的《普通高等学校本科教学工作水平评估方案(试行)》中有关开设综合性、设计性实验的要求编写的。实验内容包括流体力学实验6个,传热实验3个,传质实验4个,其中综合性实验10。此外,为了加强对学生动手能力和实验技能的训练编写了计算机仿真实验7个。各专业可根据教学计划及教学大纲要求选择实验内容。 限于编者水平和经验,本实验指导书难免有错误和不足之处,恳请批评指正。 编者 2011年3月

数字皂膜流量计操作规程、

GL-103B数字皂膜流量计操作规程 1、目的 正确使用仪器,保证检测工作规范、顺利进行,维护检测公司形象,确保操作人员人身安全和设备安全。 2、主要技术指标: 流量范围:(5~5000)mL/min 温度范围:25±50℃压力范围:101.3±50KPa 测量精度:±1% 3、主机及配套元件 仪器箱、皂膜流量计、电源适配器、硅胶管。 4、操作 4.1、使用前准备 4.1.1、检查 检查仪器标识是否完好、是否在检定有效期内;检查玻璃管内壁是否有污垢,若有用蒸馏水或纯净水清洗,或用醋酸或酒精清洗后用蒸馏水或纯净水清洗。 4.1.2、配置皂膜液 使用普通洗涤剂,加蒸馏水稀释为10:1即可,装于干净、瓶内无污渍的小瓶。皂膜液与水溶解后在20±5℃范围内不分层、不凝固、不浑浊,皂膜液的酸碱度PH值5-8。 4.1.3、放入皂膜液 将皂膜液从皂膜管下进气口注入至皂膜管内皂膜液位线处;并保证玻璃管外壁狭缝处以上部分无水,否则将影响测量结果。 4.1.4、设置 用电源适配器将本仪器与电源插座连接,并将电源开关拨到“ON”位置,一次次按下仪器左上角“S”设置键及均值键,依次出现上次设定的气压、温度及皂膜管上下限传感器间的标准体积,在气压、温度显示屏上分别将目前的气压、温度通过“”键循环设置到仪器显示屏上。 注意:皂膜管上下限传感器间的标准体积不能变,为45.24mL。 4.2、安装及运行 4.2.1、大气采样器进气口连上负载,负载连上气容,气容进气口连上本仪器上端出气口,保证气密性完好,保证流量计垂直放正。 PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/2a17917177.html, 4.2.2、润滑:开启并运行需要校准的大气采样器,按下“R”键,挤压本仪器的橡胶球,使皂膜液连续起若干个皂膜,将皂膜管壁润滑。 4.2.3、测量:按下“R”键,屏幕出现“START READY 1”,挤压本仪器的橡胶球,使皂膜液起单片平整的皂膜,气体推动皂膜向上依次经过下游狭缝及下游狭缝,流量计金属外壳的蜂鸣器依次发出“嘟”的短促声及长促声。长促声提醒一次测量结束。显示屏显示测量结果。此时按下“S”设置键及均值键,显示这次结果的平均值。 4.2.4、再按下“R”键,屏幕出现“START READY 2”,挤压本仪器的橡胶球,使皂膜液起单片平整的皂膜,气体推动皂膜向上依次经过下游狭缝及下游狭缝,流量计金属外壳的蜂鸣器依次发出“嘟”的短促声及长促声。长促声提醒一次测量结束。显示屏显示测量结果。此时按下“S”设置键及均值键,显示的是4.2.3与4.2.4操作时显示结果的平均值。 如果此次测量过程失误,不必按“S”键,则忽略此次测量,按下“R”键进行第二次重新测定。 4.2.5、重复4.2.4的操作,重复几次,按下“R”键,屏幕出现“START READY 几+1”,最后按下“S”设置键及均值键,显示的是前面所有结果的平均值。最多5次结果平均。

中国石油大学(华东)流量计实验报告

中国石油大学(华东)工程流体力学实验报告18-19-2 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三、流量计实验 一、实验目的(填空) 1 2 3 文丘利流量计、孔板流量计,其结构如图1-3-1示。 F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A )。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道 流量 的装置,见图1-3-2属压差式流量计。它1-12 图1-3-2 文丘利流量计示意图 图1-3-3 孔板流量计示意图 3),22 1 2 22 111212()()= 22p p v v h h h z z g g ααγ γ ?=-=+ -+ - 如果假设动能修正系数1210.αα==,则最终得到理论流量为: Q μ= =理

式中 K= μ=,A为孔板锐孔断面面积。 4.流量系数 (1)流量计流过实际液体时,由于两断面测压管水头差中还包括了因黏性造成的水头损失,流量应修正为: Qα = 实 其中 1.0 α<,称为流量计的流量系数。 数 1

2.实验数据记录及处理见表1-3-1。 表1-3-1 实验数据记录及处理表 (4)= 6867.01 cm3/s (5)流量系数:α== = 0.67

电磁流量计设计与安装标准讲义(doc 7页)

电磁流量计设计与安装标准讲义(doc 7页)

电磁流量计设计资料选型和安装标准 详细介绍: 概述 电磁流量计(以下简称EMF)是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。50年代初EMF实现了工业化应用,近年来世界范围EMF产量约占工业流量仪表台数的5%~6.5%。 70年代以来出现键控低频矩形波激磁方式,逐渐替代早期应用的工频交流激磁方式,仪表性能有了很大提高,得到更为广泛的应用。 2. 原理与机构 EMF的基本原理是法拉第电磁感应定律,即导体在磁场中切割磁力线运动时在其两端产生感应电动势。如图1所示,导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式式中 E-----感应电动势,即流量信号,V; k-----系数; B-----磁感应强度,T; D----测量管内径,m;--- 平均流速,m/s。设液体的体积流量为,则式中 K 为仪

表常数,K= 4 KB/πD 。 EMF由流量传感器和转换器两大部分组成。传感器典型结构示意如图2,测量管上下装有激磁线圈,通激磁电流后产生磁场穿过测量管,一对电极装在测量管内壁与液体相接触,引出感应电势,送到转换器。激磁电流则由转换器提供。 3、优点 EMF的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。 EMF 所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阈值以上)变化明显的影响。与其他大部分流量仪表相比,前置直管段要求较低。 EMF测量范围度大,通常为20:1~50:1,可选流量范围宽。满度值液体流速可在0.5~10m/s 内选定。有些型号仪表可在现场根据需要扩大和缩小流量(例如设有4位数电位器设定仪表常数)不必取下作离线实流标定。 EMF的口径范围比其他品种流量仪表宽,从几毫米到3m。可测正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多。仪表输

涡街流量计检修作业指导书

涡街流量计检修作业指导书 1.危害辨识 1.1.检修时防止管道内的高温、高压介质喷出伤人。 1.2.检修时防止管道内介质泄漏造成气体中毒。 1.3.防止拆除仪表时管道内介质泄漏可能对环境污染。 1.4.拆卸信号线时,应注意线路绝缘,防止长时间接地导致烧毁安全栅和卡件通道。 2.准备阶段 2.1.物质:有毒气体监测仪、防护眼镜、抹布。 2.2.工具:活动扳手2把,常用工具1 套,万用表1块。 23人员:熟练仪表工1?2人,监护人员1人。 2.4.票证:由项目负责人开具《设备检修作业安全许可证》视现场情况 和检修需要开具《高处安全作业证》、《动火作业证》。 2.5.方案:根据实际检修工作,由项目负责人编写详细检修方案和安全 方案。 2.6.安全学习:根据实际检修安全,由项目负责人组织学习防中毒、防 余压伤人、防蒸汽烫伤、防止环境污染。 3.实施阶段

3.1.由项目负责人联系工艺运行岗位当班班长落实各项工艺安全措施; 由项目负责人联系DCS 系统当班人员,将与被检修仪表相关的联锁、报警装置解除。工艺运行岗位当班班长和DCS 系统当班人员在《设备检修作业安全许可证》等检修票证上签字后,项目负责人开始执行检修作业。 3.2.检查涡街流量计外包塑料布是否完好,检查仪表外壳、油漆等是否 完好,是否有腐蚀现象。 3.3.检查涡街流量计电源供电是否正确(220VAC 还是 24VDC ),检查现场电源接线是否正确(相、中、地线或正、负、屏蔽地),检查仪表供电保险、内部保险是否完好。 3.4.检查涡街流量计显示屏指示是否正常,是否有报警代码出现,按报警代码含义检查相关位置。检查涡街流量计内部参数设置是否正确。 3.5.检查仪表输出信号线接线和DCS 接线是否正确一致,检查输出信号 是否在4?20mADC之间,输出数值是否与仪表显示屏和 DCS 系统指示一致。 3.6.检查涡街流量计安装的管道是否有持续的振动或高频噪声,将其消除。 3.7.检查调节流量的调节阀、手阀是否有震荡、自激、噪声等

电磁流量计设计与安装标准讲

电磁流量计设计资料选型和安装规范 详细介绍: 概述 电磁流量计(以下简称EMF)是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。50年代初EMF实现了工业化应用,近年来世界范围EMF产量约占工业流量仪表台数的5%~6.5%。70年代以来出现键控低频矩形波激磁方式,逐渐替代早期应用的工频交流激磁方式,仪表性能有了很大提高,得到更为广泛的应用。 2. 原理与机构 EMF的基本原理是法拉第电磁感应定律,即导体在磁场中切割磁力线运动时在其两端产生感应电动势。如图1所示,导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式式中 E-----感应电动势,即流量信号,V。 k-----系数; B-----磁感应强度,T; D----测量管内径,m;--- 平均流速,m/s。设液体的体积流量为,则式中 K 为仪表常数,K= 4 KB/πD 。 EMF 由流量传感器和转换器两大部分组成。传感器典型结构示意如图2,测量管上下装有激磁线圈,通激磁电流后产生磁场穿过测量管,一对电极装在测量管内壁与液体相接触,引出感应电势,送到转换器。激磁电流则由转换器提供。 3、优点 EMF的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。 EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。 EMF所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阈值以上)变化明显的影响。与其他大部分流量仪表相比,前置直管段要求较低。 EMF测量范围度大,通常为20:1~50:1,可选流量范围宽。满度值液体流速可在0.5~10m/s内选定。有些型号仪表可在现场根据需要扩大和缩小流量(例如设有4位数电位器设定仪表常数)不必取下作离线实流标定。EMF的口径范围比其他品种流量仪表宽,从几毫M到3m。可测正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多。仪表输出本质上是线性的。易于选择与流体接触件的材料品种,可应用于腐蚀性流体。 4、缺点 EMF不能测量电导率很低的液体,如石油制品和有机溶剂等。不能测量气体、蒸汽和含有较多较大气泡的液体。通用型EMF由于衬里材料和电气绝缘材料限制,不能用于较高温度的液体;有些型号仪表用于过低于室温的液体,因测量管外凝露(或霜)而破坏绝缘。 5、分类

图文解说_电磁流量计设计说明

图文解说:电磁流量计设计 由ADI_Amy于 2016-8-5 创建的讨论 ?喜欢?显示0 喜欢0 ?评论? 0 "若不能度量,则无法管理。"这是工业领域的一句口头禅,尤其适合于流量测量。简单说来,对流量监测的需求越来越多,常常还要求更高速度和精度的监测。前不久ADI举办了在线研讨会“工业过程控制应用的电磁流量计设计”,我们已经分享了完整的讲义文档,需要的戳【在线研讨会讲义PPT下载】工业过程控制应用的电磁流量计设计自取。 这里我们为大家讲解下讲义的部分容 电磁流量变送器——信号链框图 电磁流量传感器的特性是:无压力损耗,不受速度、密度、温度、压力和传导率的影响,可以实现高精度测量。流量计系统由以下组件组成:电源、信号调理、转换器、处理器、显示键盘和多个通信组件,比如无线,RS485/422,4-20毫安电流,HART。 电磁流量变送器——传感器工作原理 其工作原理基于法拉第电磁感应定律。这意味着带电导体通过一个磁场并切割磁力线时在管道两侧将会产生感应电动势。电磁场是由电流流经测量管外面的线圈产生的。感应电压的幅度直接与速度和导体的电导率、管道直径以及磁场强度的成比例,具体来说,我们可以将法拉第定律表述为E = K x B x D x V,其中V表示导电流体的速度,B表示磁场强度,D表示测量管段的直径,E表示电极上的电压,而K是一个常数。B、D、K可以是固定值,因此方程简化为E与V的比例关系。

大部分电磁流量计使用低频率方波来激励传感器线圈。可以是1/25、1/16,1/10或者1/4 电网频率,以及电网频率的一半。低频方波励磁的幅度不变,但改变电流流入流出线圈的方向。 传感器信号调理——模拟前端共模抑制比 共模电压必须被电磁流量计转换器所抑制,模拟前端电路在其中所起的作用最大。如果电路具有对于120 分贝共模抑制比,则0.28V 共模电压可以降低至0.28 μV,而如果共模抑制比是100 dB,则抑制为2.8 μV。 共模信号中的直流成分可以通过对信号进行交流耦合或者校准得以消除。但是,共模信号中的交流成分即使经过抑制也会呈现为噪声成分,出现在放大器输出端。它无法简单地通过交流耦合消除。必须采取措施,否则可能影响噪声性能。在120 dB共模抑制比的情况下,0.1V噪声下降至0.1μV。在100 dB共模抑制比的情况下,该噪声仅能抑制到最低1μV,因此共模抑制比参数很重要。 电磁流量计——信号处理电路架构比较 虽然具体的实现方式可能有所不同,电磁流量计的传感器信号处理可以分为模拟同步解调和数字过采样两种主要方法。 模拟解调是一种传统的方法,但现今仍然在业使用广泛。它通常使用前置放大器,带通滤波放大器,采样保持,同步解调,模数转换器和微控制器。 下图显示典型的模拟同步解调电路的信号链。传感器输出的微伏或毫伏级信号首先被集成仪表放大器或者分立器件搭建的仪表放大器放大。

电磁流量计检维修作业指导书剖析

电磁流量计检维修作业指导书 1 总则 1.1编写目的 1.1.1为规范北海炼化电仪中心对于电磁流量计的日常维护和大修检修作业行为。 1.1.2 为有利于检修方提高检维修工作效率,确保检维修工作质量,避免检维修作业中的错误与失误,强化维修人员的故障处理能力,提供完善、标准、规范的检修作业程序。 1.1.3 为有利于检修资料归档。 1.2 适用人员 本作业指导书为所有北海炼化电仪中心仪表作业人员所共同遵守的质量保证程序。 2 适用范围 适用于中国石化北海炼化有限责任公司对电磁流量计的日常维护、故障处理、检修等作业。 3 人员要求及职责分工 3.1 作业人员职责 3.1.1 日常作业人员职责 对本人所辖设备的健康运行、稳定运行负责,保证管辖设备的日常维护工作,保证管辖设备的故障及时消除。 3.1.2 监护人员职责 监护人应是具有相关工作经验,熟悉设备情况和相关规定的人员,监护人必须清楚工作的内容、目的和要求,以及可能需要采取的安全措施情况。 3.1.3作业质量验收人职责 保证质量监督的有效工作,负责质量事故的处理,建立质量保证体系。 3.2 作业人员要求 必须是持有北海炼化有限责任公司仪表工种上岗证的职工或得到北海炼化有限责任公司认可的有相关资质的维保单位,同一项工作的参加人员不少于两人,

监护人员不少于一人。 4 工器具及备件材料准备及要求4.1 检修所需测量用具准备 4.2 检修所需工器具准备 4.3 检修所需参考图纸资料 4.4 工作所需备品配件准备

5 技术要求及质量标准 5.1 技术要求 5.1.1 确保电磁流量计在日常维护及大修的检修全过程无不安全因素发生。5.1.2 确保电磁流量计检修项目的验收率、合格率为100%。 5.2 质量标准 1.图纸、设备说明书等设计文件; 2.石油化工仪表工程施工技术规程SH/T3521-2007; 3.自动化仪表工程施工质量验收规范GB50131-2007; 4.石油化工仪表供电设计规范 SH/T3082-2003; 5.石油化工仪表接地设计规范 SH/T3081-2003; 6.石油化工工程施工及验收统一标准SH3508-2011; 应执行的技术标准包括但不限于上述所列标准规范,相关标准规范如有更新,按最新颁布的标准规范参照执行。

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

化工仪表及自动化实验手册

化工仪表及自动化 实验指导书 化工教研室

绪论 生产与生活的自动化是人类长久以来所梦寐以求得目标,在18世纪自动控制系统在蒸汽机运行中得到成功的应用以后,自动化技术时代开始了。 随着工业技术的更新,特别是半导体技术、微电子技术、计算机技术和网络技术的发展,自动化已经进入了计算机控制装置时代。自动化技术的进步推动了工业生产的飞速发展,在促进产业革命中起着十分重要的作用。特别是在石油、化工、冶金、轻工等部门,由于采用了自动化仪表和集中控制装置,促进了连续生产过程自动化的发展,大提高了劳动生产率,获得了巨大的社会效益和经济效益。 为了适应社会发展的需要,同时满足应用型本科院校的教学要求,本实验教材全面系统地介绍了化工过程检测仪表的基本知识,重点介绍工业生产过程中的压力、流量、物位、温度的检测原理及相应的仪表结构选用、实验装置和实验方法、注意事项以及数据处理等。同时除介绍工业生产过程中的自动控制系统方面的应用知识,还分别介绍了构成自动控制系统的被控对象、控制仪表及装置,在简单、复杂控制系统的基础上,介绍了高级控制系统与计算机控制系统。

目录 实验1 实验安全教育、配备实验仪器 (1) 实验2 常见化工仪表的认知 (3) 实验3 压力表校验 (7) 实验4 流量计的校核 (9)

实验5 热电偶的校验 .............................................................................................. (14)

实验1 实验安全教育、配备实验仪器 一、化工仪表及自动化实验室学生守则 化工仪表及自动化实验室守则是学生正常进行实验的保证,学生进入实验室必须遵守以下规则: (1)进入实验室,须遵守实验室纪律和制度,听从老师指导。 (2)未穿实验服,未写实验预习报告者不得进入实验室进行实验。 (3)进入实验室后要熟悉周围环境,熟悉防火及急救设备器材的使用方法和存放位置,遵守安全规则。 (4)实验前,清点、检查仪器,明确仪器规操作方法及注意事项(老师会给予演示),否则不得动手操作。 (5)实验中,保持安静,认真操作,仔细观察,积极思维,如实记录,不得擅自离开岗位。 (6)实验室公用物品(包括器材、药品等)用完后,应归放回原指定位置。 (7)爱护公物,注意卫生,保持整洁,节约用水、电、气及器材。 (8)实验完毕后,要求整理,清洁实验台面,检查水、电、气源,打扫实验室卫生。(9)实验记录经教师签字认可后,方可离开实验室。 二、实验课学习方法 (1)预习并写预习报告 认真阅读实验教材及相关参考资料,明确实验目的、理解实验原理、掌握实验方法、熟悉实验容并简明扼要的写出预习报告。认真听讲。 (2)操作 认真、独立操作,仔细观察现象,做好记录。应按拟定的实验操作计划与方案进行。

E+H 80系列 质量流量计作业指导书

E+H 80系列质量流量计 1.基本操作 1.1 按键说明 1.1.1 按键“+”,“-”和“E”,需开前表盖即可按键操作。E 为确认,用“+”和“-”按键切换选项和变换数字,“+”和“-”同时按可退出到上一级菜单。注:进入菜单后右上角为菜单号。在修改参数前需要输入密码,此时屏幕上会显示四个“****”,按“+”或“-”键可输入,密码为008X,输入好后按“E”键确认。密码输入界面显示如下: 1.2 单位修改 1.2.1 按“E”键进入主菜单,此时默认菜单“SYSTEM UNIT”,显示如下: 按“E”键进入,默认菜单为“UNIT MASS FLOW”,显示如下: 该菜单下可以选择瞬时流量的单位,修改完成后按“E”键跳到下一菜单(若不修改直接按“E”键跳到下一菜单)“UNIT MASS”,显示如下: 该菜单下可选择累积流量的单位,选好后按“E”键确认,多次按“E”键直到菜单显示如下: 此菜单下可修改密度单位,修改好按“E”键跳入下一菜单,显示如下: 同时多次按住“+”和“-”键退出到测量值界面,显示如下: 1.3 量程修改 1.3.1(4~20mA)输出:按E 键进入菜单(如图二),多次按“+”走到菜单“CURRENT OUTPUT1”,显示如下: 按“E”键进入,默认菜单为“MASS FLOW”: 1.3.1.1测流量(若只测密度此步忽略):直接按“E”键进入菜单,默认菜单为“4-20mA HART NAM.”,显示如下:

按“E”键进入菜单“V ALUE 20mA”,显示如下: 此菜单下显示的是最大输出电流代表的物理量大小,修改时注意第一位为符号位,改好后按“E”进入下一步,再“+”和“-”同时按退出到测量值界面如下: 1.3.1.2测密度(若只测流量此步忽略):多次按“+”直到显示如下: 按“E”键确认并进入下一菜单,默认菜单“4-20mA HART NAM.”,按“E”键进入,默认菜单“V ALUE 0_4mA”,显示如下: 此菜单下显示的是最小输出电流代表的密度大小,用“+”或“-”进行修改,改好后按“E”进入菜单“V ALUE 20mA”,显示如下: 此菜单下显示的是最大输出电流代表密度的大小,用“+”或“-”进行修改注意,改好后按“E” 进入下一步,再“+”和“-”同时按退出到测量值界面: 1.4 空管检测/小信号切除 按“E”键进入主菜单,多次按“+”键直到显示为“PROCESSPARAMETER”,显示如下: 按“E”键进入菜单,显示如下: 选择小信号切除的物理量,默认为“MASS FLOW”,一般不需修改,直接按“E”键进入下一菜单,显示如下: 此处修改小信号切除的大小(建议修改为量程的1%~5%),修改完成按“E”进入下一菜单,显示如下: 不需要修改,直接按“E”键进入下一菜单,显示如下

相关文档
相关文档 最新文档