文档库 最新最全的文档下载
当前位置:文档库 › 极坐标系和椭圆坐标系下薛定谔方程及其解的研究

极坐标系和椭圆坐标系下薛定谔方程及其解的研究

极坐标系和椭圆坐标系下薛定谔方程及其解的研究
极坐标系和椭圆坐标系下薛定谔方程及其解的研究

极坐标系和椭圆坐标系下薛定谔方程及其解的研究

【摘要】给出极坐标系和椭圆坐标系下薛定谔方程的表达式后,分别在这两种坐标下对特定的薛定谔方程进行求解,然后利用计算机模拟功能,得出了电子的基态能量和概率密度分布。最后对其结果进行了分析。

【关键词】极坐标;椭圆坐标;薛定谔方程;基态能量;概率密度

1.引言

量子物理在许多近代技术中得到了广泛地应用,并作为大学物理中的重要组成部分被广大学者深入研究[1-2]。薛定谔方程的求解是量子力学中的重要问题,对于复杂的问题可借助计算机软件进行求解。薛定谔方程中的能量算符与矢量微分算符▽[3]密切相关。

本文讨论的是二维约束的情况,即量子线模型。实际模型是结构,为量子线材料,x为的掺杂比例,本文中取x=0.3,GaN为势垒材料。在量子线的界面上,这两种材料的边界可以是各种形状的,如圆形、椭圆形、三角形、T形[4]等。前人曾对椭圆模型的物理问题进行了研究[5-6]。我们研究了极坐标系和椭圆坐标系下薛定谔方程的表达式及圆形和椭圆形势阱中薛定谔方程的解,得出了电子的基态能量及概率密度的变化规律。

2.圆形势阱中薛定谔方程的解

2.1 直角坐标与极坐标的坐标变换

直角坐标与极坐标之间的关系式为[7]:

(1)

二维直角坐标系下,拉普拉斯的算符为:

(2)

2.2 极坐标系下二维薛定谔方程的解

在InxGa1-xN/GaN圆形截面量子线中,电子满足的薛定谔方程为:

(3)

其中,为电子的有效质量,在InxGa1-xN材料中,x=0.15时,;在GaN材料中,。电子受到的约束势:

最新薛定谔方程及其解法

关于薛定谔方程 一.定义及重要性 薛定谔方程(Schrdinger equation)是由奥地利物理学家薛定谔提 出的量子力学中的一个基本方程,也是量子力学的一个基本假定, 其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合 建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都 有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式 以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基 本假定,它的正确性只能靠实验来检验。 二.表达式 三.定态方程 ()() 2 2 2 V r E r m η ψψ + ?? -?= ?? ?? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E是粒子本身的能量;v(x,y,z)是描述势场的函数,假设不随时间变化。

2 2 22222 z y x ??????++=? 可化为 d 0)(222 =-+ψψv E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ). ()()((3) ) ,(),()( ,,(2) )(),( 311212 2111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==?????=≤≤=++的局部截断误差使以下数值解法的值及确定常数ββα βα

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

实验三 定态薛定谔方程的矩阵解法

实验三 定态薛定谔方程的矩阵解法 一.实验目的 1.掌握定态薛定谔方程的矩阵解法。 2.掌握几种矩阵特征值问题数值解法的原理,会调用相应的子程序求解具体问题。 二.实验内容 1.问题描述 以/2ω/()m ω为长度单位,一维谐振子的哈密顿量为 2 202d H x dx =-+, 其本征值为21n E n =+,本证波函数为 2 /2)()n n x H x ?=-, 其中()n H x 为厄米多项式,满足递推关系 11()2()2()n n n H x xH x nH x +-=-。 用矩阵方法求 2 22d H x x dx =-++ 的本证能量和相应的波函数。 2.问题分析 H E ψψ= 0()|j j j t c ψ?∞ ==>∑ 0||i i j i j i j c E c x Ec ??∞ =+<>=∑ 11|j j j x ???-+>=>>

11||||j j j j x x ????-+<>= <>= 0010010 112111,211,11,1 n n n n n n n n n n n n E x c c x E x c c E x E x c c x E c c -------?????????????????????????=??????????????????????? ? 3.程序编写 子程序及调用方法见《FORTRAN 常用算法程序集(第二版)》第三章 徐士良,P97 4.实验要求 ◆用恰当的算法求解以上实对称三对角矩阵的特征值问题。 ◆取n=8,给出H 的全部特征值和相应的特征向量。 5.实验步骤 ● 启动软件开发环境Microsoft Developer Studio 。 ● 创建新工作区shiyan03。 ● 创建新项目xm3。 ● 创建源程序文件xm3.f90,编辑输入源程序文本。 ● 编译、构建、运行、调试程序。 6.实验结果 程序设计:

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

极坐标与极坐标方程

极坐标及极坐标方程的应用 1.极坐标概述 第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系。瑞士数学家J.贝努力利于1691年在《教师学报》上 发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝 努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。 在平面内建立直角坐标系,是人们公认的最容易接受并且被经常采用的方法,但它并 不是确定点的位置的唯一方法。有些复杂的曲线用直角坐标表示,形式极其复杂,但用极坐标表示,就变得十分简单且便于处理,在此基础上解决平面解析几何问题也变的极其简单。通过探究极坐标在平面解析几何中的广泛应用,使我们能够清楚的认识到,用极坐标来解决某些平面解析几何问题和某些高等数学问题比用直角坐标具有很大的优越性,故本文对其进行了初步探讨。 国内外研究动态,不仅在数学理论方面,很多学者对极坐标以及极坐标方程做了深入探究,而且在如物理、电子、军事等领域,很多学者对极坐标也有较深的研究。由此看来,极坐标已应用到各个领域。 1.1极坐标系的建立 在平面内取一个定点0,叫作极点,引一条射线0X,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。 对于平面内任意一点M,用表示线段0M的长度,表示从0X到0M的角度,叫点M的极径,叫点M的极角,有序数对,就叫点M的极坐标。这样建立的坐标系叫极坐标系,记作M , ?若点M在极点,则其极坐标为=0,可以取任意值。

薛定谔方程与提出背景

薛定谔方程 在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为 ;(1) 其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。类似地,在三维空间里,一个单独粒子运动于位势中的含时薛定谔方程为 。(2) 假若,系统有个粒子,则波函数是定义于 -位形空间,所有可能的粒子位置空间。用方程表达, 。 其中,波函数的第个参数是第个粒子的位置。所以,第个粒子的位置是。 不含时薛定谔方程 不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。 应用分离变量法,猜想的函数形式为 ; 其中,是分离常数,是对应于的函数.稍回儿,我们会察觉就是能量. 代入这猜想解,经过一番运算,含时薛定谔方程 (1) 会变为不含时薛定谔方程: 。 类似地,方程 (2) 变为

。 历史背景与发展 爱因斯坦诠释普朗克的量子为光子,光波的粒子;也就是说,光波具有粒子的性质,一种很奇奥的波粒二象性。他建议光子的能量与频率成正比。在相对论里,能量与动量之间的关系跟频率与波数之间的关系相同,所以,连带地,光子的动量与波数成正比。 1924年,路易·德布罗意提出一个惊人的假设,每一种粒子都具有波粒二象性。电子也有这种性质。电子是一种波动,是电子波。电子的能量与动量决定了它的物质波的频率与波数。1927年,克林顿·戴维和雷斯特·革末将缓慢移动的电子射击于镍晶体标靶。然后,测量反射的强度,侦测结果与X射线根据布拉格定律 (Bragg's law) 计算的衍射图案相同。戴维森-革末实验彻底的证明了德布罗意假说。 薛定谔夜以继日地思考这些先进理论,既然粒子具有波粒二象性,应该会有一个反应这特性的波动方程,能够正确地描述粒子的量子行为。于是,薛定谔试着寻找一个波动方程。哈密顿先前的研究引导著薛定谔的思路,在牛顿力学与光学之间,有一种类比,隐蔽地暗藏于一个察觉里。这察觉就是,在零波长极限,实际光学系统趋向几何光学系统;也就是说,光射线的轨道会变成明确的路径,遵守最小作用量原理。哈密顿相信,在零波长极限,波传播会变为明确的运动。可是,他并没有设计出一个方程来描述这波行为。这也是薛定谔所成就的。他很清楚,经典力学的哈密顿原理,广为学术界所知地,对应于光学的费马原理。借着哈密顿-雅可比方程,他成功地创建了薛定谔方程。薛定谔用自己设计的方程来计算氢原子的谱线,得到了与用玻尔模型计算出的能级相同的答案。 但是,薛定谔对这结果并不满足,因为,索末菲似乎已经正确地计算出氢原子光谱线精细结构常数的相对论性的修正。薛定谔试着用相对论的能量动量关系式,来寻找一个相对论性方程(现今称为克莱因-高登方程),可以描述电子在库仑位势的量子行为。薛定谔计算出这方程的定态波函数。可是,相对论性的修正与索末菲的公式有分歧。虽然如此,他认为先前非相对论性的部分,仍旧含有足够的新结果。因此,决定暂时不发表相对论性的修正,只把他的波动方程与氢原子光谱分析结果,写为一篇论文。1926年,正式发表于物理学界[2]。从此,给予了量子力学一个新的发展平台。 薛定谔方程漂亮地解释了的行为,但并没有解释的意义。薛定谔曾尝试解释代表电荷的密度,但却失败了。1926年,就在薛定谔第四篇的论文发表之后几天,马克斯·玻恩提出概率幅的概念,成功地解释了的物理意义[3]。可是,薛定谔本人一直不承认这种统计或概率的表示方法,和它所伴随的非连续性波函数坍缩。就像爱因斯坦的认为量子力学是基本为确定性理论的统计近似,薛定谔永远无法接受哥本哈根诠释。在他有生最后一年,他写给马克斯·玻恩的一封信,薛定谔清楚地表明了这看法。 含时薛定谔方程导引

薛定谔方程

第一章 薛定谔方程 §1.1.波函数及其物理意义 1. 波函数: 用波函数描述微观客体的运动状态。 例:一维自由粒子的波函数 推广 :三维自由粒子波函数 2. 波函数的强度——模的平方 3. 波函数的统计解释 用光栅衍射与电子衍射对比的方式理解波函数的统计解释。 t 时刻,出现在空间(x,y,z )点附近单位体积内的粒子数与总粒子数之比。 t 时刻,粒子出现在空间(x,y,z )点附近单位体积内的概率。 t 时刻,粒子在空间分布的概率密度 4、 波函数的归一化条件和标准条件 归一化条件 粒子在整个空间出现的概率为1 标准条件:一般情况下, 有关特殊情况波函数所满足的条件参看曾谨言教程。 对微观客体的数学描述: 脱离日常生活经验,避免借用经典语言引起的表观矛盾 §1.2. 薛定谔方程 是量子力学的基本假设之一,只能建立,不能推导,其正确性由实验检验。 1. 建立 (简单→复杂, 特殊→一般) 一维自由粒子的振幅方程 非相对论考虑 2. 一维定态薛定谔方程 2 |),,,(|t z y x ψ1d d d d d ||2===?=ψ???N N N N V V N N V V V . 是单值、有限、连续的ψ0)(2d )(d 222=ψ+ψx mE x x 0)()(2d )(d 222=ψ-+ψx U E m x x

3. 三维定态薛定谔方程 4. 一般形式薛定谔方程 5. 多粒子体系的薛定谔方程 讨论: 1、薛定谔方程也称波动方程,描述在势场U 中粒子状态随时间的变化规律。 2 、建立方程而不是推导方程,正确性由实验验证。薛定谔方程实质上是一种基本假设,不能从其他更基本原理或方程推导出来,它的正确性由它解出的结果是否符合实验来检验。 3、薛定谔方程是线性方程。是微观粒子的基本方程,相当于牛顿方程。 4、自由粒子波函数必须是复数形式,否则不满足自由粒子薛定谔方程。 5、薛定谔方程是非相对论的方程。 量子力学的中心任务就是求解薛定谔方程。 求解问题的思路: 1. 写出具体问题中势函数U (r )的形式代入方程 2. 用分离变量法求解 3. 用归一化条件和标准条件确定积分常数 4. 讨论解的物理意义, 薛定谔的另一伟大科学贡献 《What is life ?》 薛定谔(Schroding,1897-1961)奥地利人,因发现原子理论的有效的新形式一波动力学与狄拉克(Dirac,1902-1984)因创立相对论性的波动方程一狄拉克方程,共同分享了1933年度诺贝尔物理学奖 定态薛定谔方程 一.定态薛定谔方程条件:V (r,t )=V(r), 与t 无关。用分离变量法, 令Ψ=φ(r)f(t),代入薛定谔方程,得两个方程: 此称定态薛定谔方程 整个定态波函数形式: ),,,(),,,()],,,(2[),,,(2121212221t r r t r r V t r r m t r r t i i i i ψ+ψ?-=ψ??∑)t (Ef t )t (f i =?? Et i ce )t (f -=)r (E )r ()r (V )r (m ?=?+??-222Et i e )r ( -?=ψ

第二章 薛定谔方程

第二章 薛定谔方程 本章介绍:本章将系统介绍波动力学。波函数统计解释和态叠加原理是量子力学的两个基本假设。薛定谔方程是波动力学的核心。在一定的边界条件和初始条件下求解薛定谔方程,可以给出许多能与实验直接比较的结果。 §2.1 波函数的统计解释 §2.1.1 波动—粒子两重性矛盾的分析按照德布罗意的观点,和每个粒子相联系的都有一个波。怎样理解粒子性和波动性之间的联系,这是量子力学首先遇到的根本问题。 2.1.1 波动—粒子两重性矛盾的分析能否认为波是由粒子组成? 粒子的单缝和双缝实验表明,如减小入射粒子强度,让粒子近似的一个一个从粒子源射出,实验发现,虽然开始时底片上的感光点是无规则的,但只要时间足够长,感光点足够多,底片上仍然会出现衍射条纹。如果波是由粒子做成,那末,波的干涉、衍射必然依赖于粒子间的相互作用。这和上述实验结果相矛盾,实际上,单个粒子也具有波动性的。 能否认为粒子是由波组成? 比如说,电子是三维空间的物质波包,波包的大小即电子的大小,波包的速度即电子的速度,但物质波包是色散的,即使原来的物质波包很小,但经过一段时间后,也会扩散到很大的空间去,或者形象地说,随着时间的推移,粒子将越来越“胖”,这与实验相矛盾 经典物理对自然界所形成的基本物理图像中有两类物理体系: ◆一类是实物粒子 ◆另一类是相互作用场(波)经典粒子是以同时确定的坐标和动量来描述其运动状态,粒子的运动遵从经典力学规律,在运动过程中具有确定严格的轨道。粒子的能量,动量在粒子限度的空间小区域集中;当其与其它物理体系作用时,只与粒子所在处附近的粒子相互作用,并遵从能量、动量的单个交换传递过程,其经典物理过程是粒子的碰撞;“定域”是粒子运动的特征。经典波动则是以场量(振幅、相位等)来描述其运动状态,遵从经典波动方程,波的能量和动量周期性分布于波所传播的空间而不是集中在空间一点,即波的能量、动量是空间广延的。波与其他物质体系相互作用时,可同时与波所在广延空间内的所有物理体系相互作用,其能量可连续变化,波满足叠加原理,“非定域”是波动性运动的特性。◆◆在经典物理中,粒子和波各为一类宏观体系的呈现,反映着两类对象,两种物质形态,其运动特点是不相容的,即具有粒子性运动的物质不会具有波动性;反之具有波动性运动的物质不会具有粒子性。综上所述,微观粒子既不是经典的粒子又不是经典的波,或者说它既是量子概念的粒子又是量子概念的波。其量子概念中的粒子性表示他们是具有一定的能量、动量和质量等粒子的属性,但不具有确定的运动轨道,运动规律不遵从牛顿定律;其量子概念中的波动性并不是指某个实在物理量在空间的波动,而是指用波函数的模的平方表示在空间某处粒子被发现的概率。◆现在被物理学家们普遍接受的波函数解释是玻恩提出的统计解释。他认为,粒子在衍射或干涉实验中所揭示的波动性质,既可以看成是大量粒子在同一实验中的统计结果,也可以认为是单个粒子在多次相同实验中显示的统计结果。 ◆玻恩的统计解释:波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波 §2.1.2 波函数统计解释 波函数的的特点:1.由于 2 |),(|t r ψ给出在 t 时刻,粒子在 r 处出现的几率密度,因此原 则上可由统计平均公式:? ?>= <)(r f 。在这种意义下,波函数),(t r ψ描述了微观粒子的运

非线性薛定谔方程数值解的MATLAB仿真

[键入作者姓名] [键入文档标题] ——利用分步快速傅里叶变换对光纤中光信号的传输方程进行数值求解

1、非线性薛定谔方程 非线性薛定谔方程(nonlinear Schrodinger equation ,NLSE)是奥地利物理学家薛定谔于1926 年提出的,应用在量子力学系统中。由于量子力学主要研究粒子的动力学运动状态,所以不能运用牛顿力学公式来表示。通常在量子力学中,研究系统的状态一般通过波函数(x ,t)来表示。而对波函数的研究主要是求解非线性薛定谔方程。本文主要研究光脉冲在光纤中传输状态下的演变。 一般情况下,光脉冲信号在光纤中传输时,同时受到光纤的色散和非线性效应的影响。通过Maxwell 方程,考虑到光纤的色散和非线性效应,可以推导出光信号在光纤中的传输方程,即非线性薛定谔方程。NLSE 是非线性偏微分方程,一般很难直接求出解析解,于是通过数值方法进行求解。具体分为两大类:(1)分布有限差分法(split-step finite differencemethod ,SSFD);(2)分步傅里叶变换法(split-step Fourier transform method ,SSFT)。一般情况,在达到相同精度,由于分步傅里叶变换法采用运算速度快的快速傅里叶变换,所以相比较有限差分法运算速度快一到两个数量级。于是本文介绍分步傅里叶变换法来对光纤中光信号的传输方程,即非线性薛定谔方程进行数值求解。并通过MATLAB 软件对结果数值仿真。 非线性薛定谔方程的基本形式为: 22||t xx iu u u u =+ 其中u 是未知的复值函数. 目前,采用分步傅立叶算法(Split step Fourier Method)求解非线性薛定谔方程的数值解应用比较多。分步傅立叶方法最早是在1937年开始应用的,这种方法己经被证明是相同精度下数值求解非线性薛定愕方程最快的方法,部分原因是它采用了快速傅立叶变换算法(Fast Fourier Transform Algorithm)。基于MATLAB 科学计算软件以及MATLAB 强大的符号计算功能,完全可以实现分步傅立叶数值算法来对脉冲形状和频谱进行仿真。 一般情况下,光脉冲沿光纤传播时受到色散和非线性效应的共同作用,假设当传输距离 很小的时候,两者相互独立作用,那么,根据这种思想可建立如下分步傅立叶数值算法的数 学模型: 把待求解的非线性薛定谔方程写成以下形式: ??()U D N U z ?=+? (I ) (II )

大学物理-一维定态薛定谔方程的应用

一维定态薛定谔方程 的应用 授课人: 物理科学与技术学院

势 阱 日常生活中的各种井(阱) 物理学中研究微观粒子运动状态时常用的模型,因其势能函数曲线的形状如同井而得名 水井 窨井 陷阱 U x O a U

() U x x O a ∞ ∞00()0 , x a U x x x a ≤≤?=?∞<>? 这是一个理想化的物理模型, 应用定态薛定谔方程求解波函数, 有利于进一步理解在微观系统中 能量量子化和概率密度等概念 这样的势能函数称为 一维无限深势阱

建立定态薛定谔方程并求解 假设微观粒子质量为 ,由 m 22 2d ()()()2d U x x E x m x ψψ??-+=???? x a U x 0()0≤≤=阱内( ) : 22 2d ()()2d x E x m x ψψ-= x x a U x 0 , ()<>→∞ 阱外( ): 令: 2 22mE k =得通解: ()sin() x A kx ψ?=+ 微观粒子的能量不可能达到 无穷大,所以粒子不可能在阱外出现,或者说粒子在阱外出现的概率为零。 ()0 x ψ≡222 d 0d k x ψψ+=

利用标准条件确定 和 k ?因 在整个 轴上必须连续 x ()x ψsin() 0()0 0 0 A kx x a x x x ?ψ+≤≤?=? <>?,(0)sin 0 A ψ?== a A ka ()sin()0 ψ?=+=求归一化的波函数 一维无限深势阱中 微观粒子的波函数 2220π()d sin d a n x x A x x a ψ+∞-∞=??221 A a =?= 2A a = n a x x a x a x x a π2sin 0()00 , ψ? ≤≤?=??<>?() π ()sin 1,2,3n x A x n a ψ==??, 0?=π n k a =()1,2,3n =???,

薛定谔方程

薛定谔方程(Schr?dinger equation)是一个由奥地利物理学家薛定谔在1926年描述量子力学中波函数的运动方程[1],被认为是量子力学的奠基理论之一。 薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。波函数又可以用来计算,在量子系统里,某个事件发生的概率幅。而概率幅的绝对值的平方,就是事件发生的概率密度。 薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。量子尺寸的粒子包括基本粒子,像电子、质子、正电子、等等,与一组相同或不相同的粒子,像原子核。 薛定谔方程可以转换为海森堡的矩阵力学,或费曼的路径积分表述 (path integral formulation) 。薛定谔方程是个非相对论性的方程,不能够用于相对论性理论。海森堡表述比较没有这么严重的问题;而费曼的路径积分表述则完全没有这方面的问题。 目录 [隐藏] ? 1 含时薛定谔方程 ? 2 不含时薛定谔方程 ? 3 历史背景与发展 ? 4 含时薛定谔方程导引 o 4.1 启发式导引 ? 4.1.1 假设 ? 4.1.2 波函数以复值平面波来表达波函数 o 4.2 薛定谔的导引 ? 5 特性 o 5.1 线性方程 ? 5.1.1 证明 o 5.2 实值的本征态 o 5.3 幺正性 ? 5.3.1 证明 o 5.4 完备基底 ? 6 相对论性薛定谔方程 ?7 解析方法 ?8 实例 o8.1 自由粒子 o8.2 一维谐振子 o8.3 球对称位势 ?8.3.1 角部分解答

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面 直角坐标系都是平面坐标系. (2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表: 点直角坐标极坐标 互化公 在一般情况下,由确定角时,可根据点所在的象限最小正角. 4.常见曲线的极坐标方程

注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程. 二、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的那么,由方程组①所确定的点都在这条曲线上,并且对于的每一个允许值,函数①. 方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. (2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致. 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 3.圆的参数 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周

非线性薛定谔方程的孤子解和怪波解

非线性薛定谔方程的孤子解和怪波解 摘要:光纤中光波的传输模型一直是当前研究的热点理论模型之一,从非线性薛定谔方程到金格堡-朗道方程,都试图对其进行更好的阐释,其次对于非线性动力学系统中,非线性薛定谔方程的解有呈现出非常多有趣的特征,对于其中特定解的研究能够让我们了解脉冲演化的本质,所以本文主要从孤子解的传输入手,并且简单介绍了怪波解的解形式。 薛定谔方程又称薛定谔波动方程,是量子力学的一个基本方程,同时又是量子力学的基本假设之一,由奥地利物理学家薛定谔1926年在《量子化就是本征值问题》中提出的,它在量子力学中的地位非常重要,相当于牛顿定律对于经典力学一样。 随着人们对世界的不断探索,非线性现象逐渐走进人们的视野,这种现象一般大都用非线性偏微分方程的数学模型来描述,显然线性方程已经不能满足人们的需求。 1973年,Hasegawa从含有非线性项的色散方程中推导出了非线性薛定谔方程。非线性薛定谔方程(NLS)是普适性很强的一个基本方程,最简单的形式是: 其中为常数。因为这个方程在几乎所有的物理分支及其他科学领域得到了广泛的应用,如超导,光孤子在光纤中传播,光波导,等离子体中的Langnui波等,所以许多学者对此方程的研究投入了很大的热情,至今还在生机勃勃的向前发展着。 1 分步傅里叶法计算演化过程 对于处理非线性性薛定谔方程,常用的数值仿真方式为分步傅里叶方法,为了简单起见,只考虑二阶色散和自相位调制,不考虑高阶色散、自陡以及四波混频等高阶非线性效应。上述方程中做 2 β为二阶色散,γ表示Kerr效应系数,g和α分别代表光纤中的增益和损耗。对上述方程转化到频域,先不考虑增益和损耗。可以得到 2 k k k k k dA i A i a a dz βγ =?+F. 其中2 2 2 k i β β ?=Ω 令() exp k k A B i z β =?可以得到 () 2exp k k k k dB i a a i z dz γβ =-? F 以上方程可以用四阶龙格库塔直接求解,但是速度较慢,所以我们需要做差分处理。 ()() ()()() 2 exp k k k k k B z z B z i a z a z i z z γβ +?- =-? ? F 再利用() exp k k A B i z β =?可以得到 ()()()() ()()() 2 2 exp exp exp k k k k k k k k A z z A i a z a z z i z a z i a z z i z γβ γβ ?? +?=+??? ?? ?? ?? ≈????? ?? F F 然后做傅里叶反变换就可以得到最终的结果 ()()()() 2 1exp exp - k k k k a z z a z i a z z i z γβ ?? +?=????? ?? F F

薛定谔方程及其解法

关于薛定谔方程 一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理 学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。

2 2 22222z y x ?? ????++=? 可化为d 0)(222=-+ψψ v E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ).()()((3) ) ,() ,() ( ,,(2) )() ,( 3112122111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==????? =≤≤=++的局部截断误差使以下数值解法 的值及确定常数ββα βα

极坐标系与极坐标方程

一、坐标系 1、数轴 它使直线上任一点P 都可以由惟一的实数x 确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P 都可以由惟一的实数对(x,y )确定。 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z )确定。 二、平面直角坐标系的伸缩变换 定义:设P (x ,y )是平面直角坐标系中的任意一点,在变换???>=>=). 0(')0(,':μμλλφy y x x ④的作用下,点P (x ,y )对应到点P ’(x ’,y ’),称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 三.例题讲解 例1 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 (1)2x+3y=0; (2)x 2+y 2=1 三、极坐标系 1、极坐标系的建立: 在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。 (其中O 称为极点,射线OX 称为极轴。) 2、极坐标系内一点的极坐标的规定 对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到 OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫 做M 的极坐标。 特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角. 3、负极径的规定 在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角 当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。 M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈ 4、数学应用 例1 写出下图中各点的极坐标 A (4,0) B (2 ) C ( ) D ( ) E ( ) F ( ) G ( ) 规定:极点的极坐标是ρ=0,θ可以取任意角。 变式训练

薛定谔方程与它的基本意义

薛定谔方程 维基百科,自由的百科全书 跳转到:导航, 搜索 汉漢▼ 量子力学 不确定性原理 入门·数学表述显示▼背景 经典力学·旧量子论·干涉 哈密顿量·狄拉克符号 显示▼基本概念 量子态·波函数·态矢量 态叠加原理·波粒二象性 量子测量·不确定性原理 泡利不相容原理·量子缠结 量子脱散·量子隧穿效应 埃伦费斯特定理 显示▼实验 双缝实验·薛定谔的猫 戴维孙-革末实验 施特恩-格拉赫实验 贝尔不等式实验 波普尔实验·量子擦除器 显示▼构想

薛定谔绘景·海森堡绘景 相互作用绘景·矩阵力学 求和的历史 显示▼方程 薛定谔方程·泡利方程 克莱因-高登方程 狄拉克方程 显示▼量子力学诠释 哥本哈根诠释·Ensemble 隐变量·交易诠释 多世界诠释·一致性历史 系综诠释·量子逻辑 显示▼进阶理论 量子场论·量子引力 万有理论 显示▼科学家 普朗克、玻尔、薛定谔、海森堡 泡利、德布罗意、埃伦费斯特、玻姆 玻恩、爱因斯坦、冯?诺伊曼 费曼、狄拉克、维恩、埃弗里特 索末菲、其他 本模板:查看? 讨论? 编辑? 历史 薛定谔方程是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程[1],也是量子力学的一个基本假定,其正确性只能靠实验来检验。就好像牛顿定律在经典力学的地位,薛定谔方程在量子力学里占有中心的地位。 薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。波函数又可以用来计算,在量子系统里,某个事件发生的几率幅。而几率幅的绝对值的平方,就是事件发生的几率密度。薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。量子尺寸的

大学物理量子力学习题附答案

1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ] 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 [ ] 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定 粒子动量的精确度最高的波函数是哪个图?

薛定谔方程及其解法

一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。 可化为 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法

二.边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 有限元方法 有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件,从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。不同于求解(往往是困难的)满足整个定义域边界条件的函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

相关文档
相关文档 最新文档