文档库 最新最全的文档下载
当前位置:文档库 › 铸造工艺性之粘土型砂的性能

铸造工艺性之粘土型砂的性能

铸造工艺性之粘土型砂的性能
铸造工艺性之粘土型砂的性能

铸造工艺性之粘土型砂的性能

工艺性能:与各铸造工序的操作相关的砂型性能。影响:生产率、劳动强度、同时影响铸件质量、流动性、可塑性、粘膜型、保存性、吸湿性、溃散性、复用性。

工作性能;直接影响铸件质量的型砂性能成为工作性能。如湿强度、干强度、高温强度、热湿拉强度、透气性、发气性、耐火度、退让性、导热性等。

粘土砂的性能,主要取决于粘土和原砂的材料的性质及砂、土、水的配合比例在很大程度还受混制工艺、紧实度、温度等影响。

1.湿强度

在外力作用下,型砂达到破坏时,单位面积上所承受的力称为强度。型砂在湿态势的强度为湿强度。影响:起模、翻转、合型、搬运过程中造成塌箱。而在浇注时,则可能承受不住金属液的冲刷,冲坏铸型表面,使铸件产生砂眼,甚至炮火。

湿强度包括湿压、湿拉、湿剪强度。

湿强度主要取决于粘土的质量和加入量,含水量、原砂的颗粒组成、混砂质量、紧实程度。

(1)原砂在粘土加入量足够的情况下,砂粒越细、越不均匀,则型

砂质点间的接触面积越大,湿强度越高。

(2)粘土和水分水分适当时,随着粘土量的增加,型砂的湿强度增高。湿强度最大值在水/水+粘土=20%z左右时出现。(3)混砂时间为了保证粘土砂获得一定的强度,混砂时间要充分,钠基膨润土由于吸水时间长,因此比钙基膨润土和普通粘土混砂时间长。

(4)紧实度随着紧实度的提高砂型质点紧密排列,相互接触面积增大,粘土的粘结性能更好的发挥,提高湿强度。

湿强度度对惰性粉末非常敏感,惰性粉末增加,湿强度增加,但是湿拉强度和湿剪强度会降低,砂型发脆,起模时容易损坏型腔。

2.干强度

干强度对于干型、表面干型和干芯在运输、合型及浇注初期有着实际意义通常测定抗弯、抗压、抗拉和抗剪等干强度。砂型烘干后,自由水和吸附水逸失,质点相互靠近,质点间附着力增加,砂型湿强度比干强度有显著增加。

砂粒大小对型砂干强度影响不显著。影响干强度主要是粘土和水分。

在相同的粘土加入量的情况下,一般膨润土砂的干强度高于普通

粘土砂。但在实际生产中由于膨润土的用量和水分均较低,并且膨润土砂在100-200℃脱水量集中,如果不采取严格的烘干制度将会导致砂型和砂芯开裂,因而实际强度反而回比普通粘土砂低。增加紧实度,能提高粘土砂的干强度。

3.热湿拉强度

型砂式样在高温急热的条件下,因水分向内迁移,在表面层下数毫米处形成高湿度凝聚层,此层砂的的抗拉强度称为热湿拉强度。此层砂的湿度较前增高50%以上,其温度低于水的沸点。热湿拉强度之有正常室温的几分之一,是铸件产生加沙缺陷的主要原因之一。

粘土砂的热湿拉强度主要与粘土砂的种类和加入量有关。钠基膨润土砂的热湿拉强度比钙基膨润土砂高。钙基膨润土砂经过活化处理后热湿拉强度显著提高。实验表明,NA2CO3的加入量4%左右最好。

粘土加入量增加时,各种粘土的热湿拉强度都有不同程度的提高。

其次提高式样的紧实度可使热湿拉强度提高;加入面粉、糊精等附加物可使热湿拉强度略有提高;当粘土含量不变时,随砂粒变粗,角形系数变小,热湿拉强度提高。没有揉搓作用的混砂机混

制的型砂,其热湿拉强度差。

4.高温强度

试样在高温(相当于铸型在金属液作用下)测得的强度称为高温强度。高温强度太低,型壁在金属液压力的作用下会产生移动,造成铸件壁厚偏差或变形、缩孔、缩松等缺陷。高温强度过高,会阻碍铸件的收缩,使铸件应力增大,严重时造成裂纹。

随着温度的升高,型砂的高温强度逐渐增高,达到最高值后很快下降。膨润土砂和普通粘土砂的高温强度均在950-1000℃左右。

随着粘土加入量的和湿态水分的增加热压强度会有明显的提高。提高式样的湿强度和紧实度都能提高高温强度。

5.残留强度和溃散性

铸型受高温作用后冷却至室温所具有的抗压强度称为残留强度。铸件凝固冷却后,型砂和芯砂从铸件上清理下来的难易程度称为溃散性。

残留强度于高温强度有一定的关系,加热至高温强度最大值时的温度。冷却下来的残留强度最小。钙基膨润土砂和普通粘土砂的残留强度比钠基膨润土砂低,溃散性好。增加粘土型砂的水分含量,残留强度提高;加入木屑可降低残留强度。因此在保证必要的高温强度的条件下,不应过多的加入水分和粘土。,以免恶化粘

土砂的溃散性和残留强度。

6.表面强度

型腔和砂芯表层的强度称为表面强度。如果金属液对型腔表面进行冲刷和冲击力大于表面强度,会产生冲砂、砂眼、表面粗糙等缺陷。表面强度的提高:刷涂料、在型砂中加入糖浆、糊精,提高紧实度,角形系数小和粒度分散的原砂。

7.透气性

型砂孔隙透过气体的能力称为透气性。金属液在浇入砂型时,以及浇入铸型后,在金属液的热作用下,型腔和砂型中的气体受热膨胀、水分蒸发、有机物燃烧或升华、碳酸盐分解等产生大量气体,这些气体如果不及时排出型外,浇注时容易产生呛火,甚至使金属液飞溅,铸件易产生气孔、浇不足等缺陷。

(1)原砂原砂对透气性的影响主要表现在砂的颗粒大小和颗粒均匀度方面。圆形、颗粒粗大均匀、含泥量少的砂比表面积小,气体透过时所受阻力小,型砂的透气性好。颗粒不均匀的原砂,细小颗粒镶嵌在大颗粒的空隙中,使型砂透气能力大幅下降。(2)粘土和水分透气性随粘土加入量的增加而降低,对不同的粘土加入量都有对透气性最适应的含水量。

旧砂中含有较多的灰分,若不经除尘处理就回用时,会使型砂透

气性变坏,强度降低。

(3)紧实度紧实度越高透气性越差。

(4)煤粉含量型砂中加入煤粉回使透气性降低。

(5)混制工艺为了使型砂混合均匀,混砂时间应足够,使粘土能形成粘土膜均匀包在砂粒表面。但混砂时间过长,不但影响生产率,而且在用活化膨润土砂时易使型砂结块,影响到型砂的透气性。

对于不刷涂料的砂型,透气性不易过高,否则会造成铸件表面粗糙或粘砂缺陷。

8.发气性发气性是指型砂在加热时析出气体的能力,一般用单位面积的型砂被加热时所产生气体的量表示。随发气物质的增加和浇注温度的提高,发气量增大;当型砂中加入有机粘结剂如(糖浆、糊精)发气量急剧增加,在考虑发气性时,发气速度和开始析出气体的而时间也很重要,因在铸件凝固初期,铸型中形成气体可能性大。

9.流动性型砂在外力作用或本身重力的作用下沿模样和砂粒间相对移动的能力称为流动能力。流动性好的型砂可得到紧实度均匀、轮廓清晰、表面光洁、尺寸精确的型腔,有利于防止机械粘砂,并可减少紧砂时间和提高生产率。

粒度大而集中,角形系数小的砂流动性好。

粘结剂的性质和加入量对流动性也有很大影响。实践证明钙基膨润土砂的流动性最好,普通粘土稍次,钠基膨润土最差。在原砂加入量一定时,不能借提高水分来提高流动性。

混砂时间过久会使粘土砂结块,到哪混砂时间不足以致没混均匀,都显著降低流动性。未经松砂处理的型砂流动性也较差。加入柴油或重油提高流动性。

10.可塑性型砂在外力作用下变形,当去除外力后能完整保持所赋予的形状的能力称为可塑性。型砂的可塑性好,可以制造出形状准确,轮廓清晰的型腔;起模时不易损坏;容易修型;铸件夹砂缺陷少。但可塑性高的型砂,流动性差,型砂不易春实到需要的紧实度。

细砂配制的型砂可塑性比粗砂好。当适当提高粘土含量可提高可塑性。当粘土含量一定是适当提高水分含量可提高可塑性。钠基膨润土砂的可塑性不钙基膨润土砂的可塑性好。型砂中粉尘和失效粘土的增加,混砂时间短都可降低可塑性。

11..其它性能能

(1)耐火度一般用烧结点来衡量。型砂在高温作用发生溶化或烧结时温度称为烧结点。影响原砂耐火度的主要因素是原砂的化学成分和矿物组成。

(2)复用性型砂反复使用后保留原有性能而能多次反复使用的性能。粘土砂的复用性于原砂和粘土的性质有关。反复使用时,其中砂粒体积膨胀和收缩而破碎细化,粘土丧失结构水或丧失重新获得层间水的能力成为死粘土。钠基膨润土复用性最好,活化处理的钙基膨润土次之,普通粘土稍次,钙基膨润土最差。

(3)保存性配制好型砂放置一段时间后不损失其原有性能的能力称为保存性。保存性主要取决于粘土保持水分的性质。保存性排列顺序普通粘土、钙基膨润土、钠基膨润土、活化钙基膨润土。

(4)吸湿性烘干硬化后的型砂在储存过程中吸收水分的能力称为吸湿性。干型(芯)吸收空气中的水分后将使强度下降,可能导致铸件产生气孔和夹砂缺陷。影响吸湿性的的主要因素空气湿度、停放时间和附加物种类,型砂中加入纸浆残夜或水溶性材料等均会增加吸湿性。

(5)退让性当铸件凝固和凝固后继续冷却收缩时,型砂能被压缩而不阻碍铸件收缩的性能。型砂退让性差会使铸件产生应力甚至产生裂纹缺陷。型砂的退让性主要取决于其所在温度下高温强度。高温强度高则退让性差。,钠基膨润土砂的退让性最差。随着粘土和水分的增加退让性下降。在型砂中加入木屑、焦炭末等,有助于提高退让性。在退让性要求高的铸件时常加入稻草绳。铸件收缩时稻草绳已烧坏,

就不会阻碍铸件收缩,清砂也比较容易。

(5)粘膜型造型或造芯时,型(芯)砂粘附在铸件表面的性质称为粘膜型。粘膜是由于型(芯)砂的粘结材料与模样表面的附着

力超出了砂粒之间的粘结膜的凝聚力造成的,故粘膜性于粘结

材料和磨具材料有关。膨润土特别是钠基膨润土产生粘膜时含

水量较高,故较不易粘膜。湿润的粘土对木材的附着力比较大,故木模较易发生粘膜。

当型砂的温度高,摸样温度低,因水气粘结,易发生粘膜。粘土砂中含水量越高,越易发生粘膜

为了减少粘膜,木质模样和木质芯盒表面应刷漆,或檫拭防粘膜材料,如石墨粉、松子粉、滑石粉、经稀释的重油、煤油等;降低型砂含水量,使用内聚力较大的钠基膨润土,旧砂温度不宜过高。

型(芯)砂需要具备多种性能,但无法同时使各种性能都较好,在制订和控制型砂性能时,必须根据合金种类、铸件类型和大小、生产方式等条件来具体确定,由此相应确定原砂、粘土种类及加入量、紧实度和配制工艺。

(工艺技术)第章铸造工艺设计基础

第1章铸造工艺设计基础 § 1-1零件结构的铸造工艺性分析 § 1-2铸造工艺方案的确定 § 1-3铸造工艺参数的确定 § 1-4砂芯设计 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的 前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知 识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 § 1-1零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化 铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1 .铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1 )壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1?表7-5 表1-1砂型铸造时铸件最小允许壁厚(单位:mm) 合金种类铸件最大轮廓尺寸为下列值时/ mm

铸造型砂性能测试方法

紧实率 粘土砂的紧实率是指湿态的型砂混合料在一定紧实力的作用下其体积变化的百分率,用试样紧实前后高度变化的百分数来表示。 (1)主要仪器:SAC型锤击式制样机、SBT型投砂器等。 (2)试验步骤:试验时,将试样通过投砂器,落入有效高度为120mm圆柱形试样筒中,刮去试样筒上部多余砂子,再将它放在锤击式制样机上捶打3次,试样体积被压缩的程度作为其紧实率,其数值可直接从制样机上读出或用式计算:JS=(h0-h1)/h0*100% 式中JS——紧实率(%); h0——试样紧实前的高度(mm) h1——试样紧实后的高度(mm) 湿压强度 英文:wet-compressive strength 释文:湿压强度是表示物体在饱水状态下,抵抗外部压力能力的物理量,以试样受力作用时的应力值(1.05帕)表示之。是评价膨润土矿产质量的重要指标。测定方法是①标准型砂2000克,膨润土100克,蒸馏水80毫升放入轮辗式混合机中混合成试料,将试料盛于带盖容器内或塑料袋内,放置时间不少于10分钟,但不得超过1小时。②称取155~160克混合料,放入特制的圆形试样筒内,制成三个标准试样块。③将试样块放人手摇压力机中进行抗压试验。增加负荷的速度为每分钟1.96 X 10^5帕,加压至样块破坏,记录观察值。湿压强度值应为三个试样的平均值。[1] 湿压强度的测定方法: 1制样 测定湿压强度用的圆柱形标准试样是在锤击式制样机上冲击三次而制成。 2测定方法 测定湿压强度时,将制备好的湿压试样,置于预先装置在强度试验机上的抗压夹具上。然后转动手轮,逐渐加载于试样上,直至试样破裂,其强度值可直接从压力表中读出。

刘南陔 载重汽车用制动鼓生产工艺 for 百铸网

载重汽车用制动鼓生产工艺 一拖集团铸造公司刘南陔制动鼓是保安件,它涉及到人的生命财产安全,同时它又是易损易耗件。市场需求量特别大。目前国内的年产量大约在千万只以上。因产品结构相对简单,机器造型、手工造型都容易上马,几乎全国各地都有铸造厂在生产制动鼓。我去过的几家大型企业,机械化流水线生产制动鼓,年产量都在一百万只左右。我也去过一些小企业年产量几万只。也有像河北隆尧县某镇的一个工业园区,就密集着一百来家铸造厂,都在生产汽车制动鼓;其整个区的制动鼓产量也应在百万只以上。只不过大型企业生产的制动鼓,一般都是供给国内的车桥厂或是出口国外,而小型企业生产的制动鼓大部分供给零件及售后配件市场。其产品质量和信誉度难以被正规车桥厂所接受,根据我看到和了解到的这些企业,由于产品结构不同,供货对象不同,因而生产工艺各异,但从总体来讲,质量问题还是有很多,达不到车用制动鼓的质量要求,因此我想有必要和大家在一起对制动鼓的生产工艺进行讨论和研究,互相交流经验,下面就根据我的经历和了解的情况,借这次机会和大家交换意见,不对的地方请大家指正。 一、载重汽车制动鼓的质量要求 由于灰铸铁具有良好的导热性、减震性、耐磨性以及优良的铸造性能和低的制造成本,因此机动车辆的制动鼓几乎都采用灰铸铁件,其牌号为HT200和HT250。 我国只有一个灰铸铁件标准那就是JB/T9439-2010,并没有专用的汽车制动鼓用灰铸铁件标准。在机标内也没有特殊灰铸铁的说明。全世界只有美国材料试验学会ASTMA159-83(1993年重审)专门制订有汽车专用灰铸铁件标准。对制动鼓依其载重量列有3个铸铁牌号。同时美国汽车工程师学会SAEJ431的动力机械灰铸铁标准内对制动鼓的质量要求,基本上和ASTMA159-83一致。目前我国和国外大都参照美国制动鼓标准。在图纸上或验收标准上给出了自己的厂标,一个标准的高低,反映了其工艺水平和质量水平,高水平的标准才能生产出高质量的产品。 下面简要的将上述美国标准和国外的一些好的公司对制动鼓的质量要求,介绍如下供大家参考 1.

粘土砂铸造工艺

粘土砂铸造工艺 一.概述 粘土砂是以粘土(陶土)作粘结剂的型(芯)砂。粘土砂造型由于其成本低廉,适合于批量大规模生产,所以目前 仍然作为铸件生产的最主要方式。粘土砂旧沙由于在循环使用过程中各组份的热分解,发生物理性能的变化,如未 经再生就加以使用,将使型砂质量不稳定。据统计铸件废品率中30?40%为型砂质量引起,因此型砂质量的控制在粘土砂造型中起十分重要的作用。随着目前对铸件要求的提高,对型砂质量的要求也越 来越高。 二.粘土砂造型中几种与型砂质量有关的常见缺陷。 1.气孔、浇不到、冷隔 粘土砂型砂的组成绝大部分为旧砂(85?95%),由于旧砂循环使用过程中经过反复热冲击,一些组分会出现热分解,发生物理性能的变化: a.粘土在砂型温度高于500 度的区域,膨润土晶体结构受到完全破坏,就变成没有湿态粘结力的无 效粘土以粉尘状态存在与旧砂中,成为旧砂泥份中的一种; b.煤粉炭化成为枯化物; c.不稳定的砂粒(包含杂质)会粉化。这些衍生物共同成为旧砂的微粉。微粉含量超过一定的限度,微粉 堵塞砂砾空隙就会造成型砂透气性差。而且无效粘土吸水能力比有效粘土强,从有效粘土中夺取有效水分,因此当 无效粘土含量较多时,达到调匀所需的加水量就得增加。加大了型砂加水量,在某种程度上也就加大了型砂的发气量。由于发气量增加而透气性减少,浇铸时液体所收的阻力增大,必然导致侵入性气孔、浇不到、冷隔等缺陷的形成。 2.表面光洁度差(包括砂眼、毛刺、夹砂结疤等)大量的无效粘土造成型砂的抗拉强度差、韧性低、透气性差。增大型砂的脆性,使型砂易塌箱、掉砂,在浇铸时砂粒容易掉落形成砂眼、毛刺、夹渣结疤等缺陷,进而影响铸件 质量。 3.粘砂 无效粘土(死黏土)部分约占整个砂型重的2?5%,无效粘土的一部分在高温作用下包裹在砂粒表面上, 烧结形成一层牢固的膜,不能用水洗掉,成为砂粒的一部分,这层膜又称为惰性膜。型砂经过无数次循环混制和浇 铸受热,惰性膜将多层重叠包裹,这个过程又叫鱼卵石化现象。适当的鱼卵石化降低了石英含量,减轻型砂的热膨胀性,减少膨胀类缺陷。当鱼卵石化过度惰性膜太厚时,由于惰性膜溶点低,降低了型砂总体的sio2 含量,使型砂耐火度(仅有1150 度)降低,如果浇铸温度高于1400?1450 度时易引起铸件表面粘砂,产生机械粘砂,造成铸件表面不光洁。 4.造型时掉砂、塌箱死黏土没有粘结力,大量的死黏土造成型砂起模性差。使型砂易塌箱、掉砂。 5.粘模 由于死黏土含量增加,这种型砂不仅不利于输送,而且在造型时容易脱膜。 6.旧砂中瓷化现象越来越多包裹沙粒的粘土由于受高温的影响,可瓷化成膜,膜的厚度、总量在一定的范围内对粘土砂是有益的,但超过一定的界限就会影响粒度分布及均匀性,影响强度。 7.简单的人工筛砂很多企业采用双砂制,简单人工筛分,加大量新砂和较多的辅料混制后用作面砂,背砂则是 定期筛分。存在的问题较多; a.旧砂含泥量严重超过工艺要求(多数》20%); b.加水量超过(%) c.颗粒不匀,集中度很低; d.铸件表面光洁度不能瞒住市场对铸件的要求,尤其是出口铸件; e.相对废品率较高。 这一类型企业在我国铸造业中占相当大比例,其中包括一些产量上已形成较大规模(年产量超过的企 10000 吨)业,这些企业并不是不考虑旧砂的回收处理,而是受多方因素的影响。列如:完整的砂处理生产线投资 大,工人维修保养素质相对低等。这些企业都是我们重点服务的对象。综上所述,目前国内铸造业在旧砂回用中存

翻砂铸造生产工艺

翻砂铸造生产工艺 翻砂是用粘土粘结砂作造型材料生产铸件,是历史悠久的工艺方法,也是应用范围最广的工艺方法。说起历史悠久,可追溯到几千年以前;论其应用范围,则可说世界各地无一处不用。 值得注意的是,在各种化学粘结砂蓬勃发展的今天,粘土湿型砂仍是最重要的造型材料,其适用范围之广,耗用量之大,是任何其他造型材料都不能与之比拟的。 “砂型铸造”时先将下半型放在平板上,放砂箱填型砂紧实刮平,下型造完,翻砂铸造将造好的砂型翻转180度,放上半型,撒分型剂,放上砂箱,填型砂并紧实、刮平,将上砂箱翻转180度,分别取出上、下半型,再将上型翻转180度和下型合好,砂型造完,等待浇注。这套工艺俗称--“翻砂”。 翻砂是将熔化的金属浇灌入铸型空腔中,冷却凝固后而获得产品的生产方法。在汽车制造过程中,采用铸铁制成毛坯的零件很多,约占全车重量的60%左右,如气缸体、变速器箱体、转向器壳体、后桥壳体、制动鼓、各种支架等。制造铸铁件通常采用砂型。砂型的原料以砂子为主,并与粘结剂、水等混合而成。砂型材料必须具有一定的粘合强度,以便被塑成所需的形状并能抵御高温铁水的冲刷而不会崩塌。为了使砂型内塑成与铸件形状相符的空腔,必须先用木材制成模型,称为木模。炽热的铁水冷却后体积会缩小,因此,木模的尺寸需要在铸件原尺寸的基础上按收缩率加大,需要切削加工的表面相应加厚。空心的铸件需要制成砂芯子和相应的芯子木模(芯盒)。有了木模,就可以翻制空腔砂型。在制造砂型时,要考虑上下砂箱怎样分开才能把木模取出,还要考虑铁水从什么地方流入,怎样灌满空腔以便得到优质的铸件。翻砂铸造制成后,就可以浇注,也就是将铁水灌入砂型的空腔中。浇注时,铁水温度在1250―1350度,熔炼时温度更高。然后还要经过除砂、修复、打磨等过程,才能够成为一件合格铸件。(end)文章内容仅供参考() (2012-5-16) 1/ 1

砂型铸造工艺流程

砂型铸造工艺流程 砂型铸造工艺流程图 制作木模-造型-熔化-浇注-落砂-冒口拆除-检验入库 熔模铸造工艺 失蜡铸造现在称为熔模铸造。这是一种很少切割或不切割的铸造工艺,是铸造行业的一项优秀技术。它被广泛使用。它不仅适用于各种类型和合金的铸造,而且可以生产出比其他铸造方法具有更高尺寸精度和表面质量的铸件,甚至复杂的、耐高温的、难以加工的、其他铸造方法难以铸造的铸件也可以通过熔模精密铸造来铸造。 熔模铸造是在古代蜡模铸造的基础上发展起来的。作为一个古老的文明,中国是最早使用这项技术的国家之一。早在公元前几百年,中国古代劳动人民就创造了这种失传的铸蜡技术,用来铸造钟鼎和具有各种精美图案和文字的器皿,如春秋时期曾侯乙墓的青铜板。曾侯乙墓雕像板的底座是多条龙缠绕在一起,首尾相连,上下交错,形成一个中间镂空的多层云纹图案。这些图案很难用普通的铸造工艺来制作,而失蜡法的铸造工艺可以利用石蜡无强度、易雕刻的特点,用普通的工具雕刻出与曾侯乙墓的雕像板相同的石蜡工艺品,然后加入浇注系统,经过上漆、脱蜡、浇注,得到精美的曾侯乙雕像板 现代熔模铸造法在20世纪40年代实际应用于工业生产当时,航空喷气发动机的发展要求制造具有复杂形状、精确尺寸和光滑表面的耐热合金部件,如叶片、叶轮和喷嘴。由于耐热合金材料难以加工,零件形状复杂,因此不可能或难以用其他方法制造。因此,需要找到一

种新的精确的成型工艺。因此,现代熔模铸造法借鉴了古代传下来的失蜡铸造法,通过对 材料和工艺的改进,在古代工艺的基础上取得了重要的发展。因此,航空工业的发展促进了熔模铸造的应用,熔模铸造的不断改进也为航空工业进一步提高性能创造了有利条件。 中国在20世纪50年代和60年代开始将熔模铸造应用于工业生产此后,这种先入为主的铸造技术得到了极大的发展,并已广泛应用于航空、汽车、机床、船舶、内燃机、燃气轮机、电信仪器、武器、医疗器械、切割工具等制造业,以及工艺品的制造。所谓的 熔模铸造工艺简单地指用易熔材料(如蜡或塑料)制作易熔模型(称为熔模或模型),在其上涂覆几层特殊的耐火涂层,干燥并硬化形成整体外壳,然后用蒸汽或温水将外壳上的模型熔化,然后将外壳放入砂箱中,在其周围填充干砂,最后将模具放入穿透式烘烤器中进行高温烘烤(例如,当使用高强度外壳时,脱模后的外壳可以不造型直接烘烤)、模具或外壳 熔模铸件尺寸精度高,一般可达CT4-6(砂型铸造CT10~13,压铸CT5~7)。当然,由于熔模铸造工艺过程复杂,影响铸件尺寸精度的因素很多,如模具材料的收缩、熔模的变形、加热和冷却过程中模壳的线性变化、合金的收缩率以及铸件在凝固过程中的变形等。因此,普通熔模铸件的尺寸精度相对较高,但其一致性仍有待提高(使用中高温蜡材料的铸件的尺寸一致性有待提高)用 压制熔体模具时,采用型腔表面光洁度高的型材,因此熔体模具的

零件结构的铸造工艺性分析

零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表1-1~表1-5

表1-1 砂型铸造时铸件最小允许壁厚(单位:㎜) 表1-2 熔模铸件的最小壁厚(单位:㎜)

表1-3 金属型铸件的最小壁厚(单位:㎜) 表1-4 压铸件的最小壁厚(单位:㎜) (2)铸件的临界壁厚 在铸件结构设计时,为了充分发挥金属的潜力,节约金属,必须考虑铸造合金的力学性能对铸件壁厚的敏感性。厚壁铸件容易产生缩孔、缩松、晶粒粗大、偏析和松软等缺陷,从而使铸件的力学性能下降。从这个方面考虑,各种铸造合金都存在一个临界壁厚。铸件的壁厚超过临界壁厚后,铸件的力学性能并不按比例地随着铸件壁厚的增加而增加,而是显著下降。因此,铸件的结构设计应科学

铸造工艺标准经过流程介绍

铸造生产的工艺流程 铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序: 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图; 2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备; 3)造型与制芯; 4)熔化与浇注; 5)落砂清理与铸件检验等主要工序。 成形原理 铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。 图1 铸造成形过程

铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。 型砂的性能及组成 1、型砂的性能型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。 2、型砂的组成型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。型砂结构,如图 2 所示 图2 型砂结构示意图 工艺特点 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点: 1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5 毫米到1 米左右;铸件长度可以从几毫米到十几米。 2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。 4)铸件一般使用的原材料来源广、铸件成本低。 5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 铸件的手工造型手工造型的主要方法砂型铸造分为手工造型(制芯)和机器造型(制芯)。手工造型是指造型和制芯的主要工作均由手工完成;机器造型是指主要的造型工作,包括填砂、紧实、起模、合箱等由造型机完成。泊头铸造工量具友介绍手工造型的主要方法:手工造型因其操作灵活、适应性强,工艺装备简单,无需造型设备等特点,被广泛应用于单件小批量生产。但手工造型生产率低,劳动强度较大。手工造型的方法很多,常用的有以下几种: 1.整模造型 对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。整模造型操作简便,造型时整个模样全部置于一个砂箱内,不会出现错箱缺陷。整模造型适用于形状简单、最大截面在端部的铸件,

砂型铸造的基本过程 Jun-2014

?砂型铸造的基本过程https://www.wendangku.net/doc/2f10559573.html,/20111213/62031.html ?砂型铸造有六个基本步骤: 1) 把模样放入砂中制成一个模具。 2) 在浇注系统中把原型和砂子接合起来。 3) 把模样去掉。 4) 把模具的空隙用熔化了的金属填充起来。 5) 让金属冷却。 6) 把砂型模具敲掉取出铸件。 砂型铸造案例 项目导入:轴承座铸件的造型工艺方案。 铸件简图:轴承座如图2-1所示。 铸件材料:HT150。 体积参数:轮廓尺寸240mm′65mm′75mm,铸件重量约5kg。 生产性质:单件生产。 项目要求:确定铸件的造型工艺方案并完成造型操作。

图2-1 轴承座 将液体金属浇入用型砂捣实成的铸型中,待凝固冷却后,将铸型破坏,取出铸件的铸造方法称为砂型铸造。砂型铸造是传统的铸造方法,它适用于各种形状、大小及各种常用合金铸件的生产。套筒的砂型铸造过程如图2-2所示,主要工序包括制造模样型芯盒、制备造型材料、造型、制芯、合型、熔炼、浇注、落砂、清理与检验等。 图2-2 套筒的砂型铸造过程 铸件生产前需根据零件图绘制出铸造工艺图,铸造工艺图是在零件图上用各种工艺符号及参数表示出铸造工艺方案的图形。其中包括:浇注位置,铸型分型面,型芯的数量、形状、尺寸及其固定方法,加工余量,收缩率,浇注系统,起模斜度,冒口和冷铁的尺寸和布置等。铸造工艺图是指导模样(型芯盒)设计、生产准备、铸型制造和铸件检验的基本工艺文件。砂型铸造主要工序包括: (1) 根据零件图制造模样和型芯盒; (2) 配制性能符合要求的型(芯)砂; (3) 用模样和型芯盒进行造型和造芯; (4) 烘干型芯(或砂型)并合型; (5) 熔炼金属并进行浇注; (6) 落砂、清理和检验。 2.1.1 常用造型工模具 1. 砂箱

铸造工艺性之粘土型砂的性能

铸造工艺性之粘土型砂的性能 工艺性能:与各铸造工序的操作相关的砂型性能。影响:生产率、劳动强度、同时影响铸件质量、流动性、可塑性、粘膜型、保存性、吸湿性、溃散性、复用性。 工作性能;直接影响铸件质量的型砂性能成为工作性能。如湿强度、干强度、高温强度、热湿拉强度、透气性、发气性、耐火度、退让性、导热性等。 粘土砂的性能,主要取决于粘土和原砂的材料的性质及砂、土、水的配合比例在很大程度还受混制工艺、紧实度、温度等影响。 1.湿强度 在外力作用下,型砂达到破坏时,单位面积上所承受的力称为强度。型砂在湿态势的强度为湿强度。影响:起模、翻转、合型、搬运过程中造成塌箱。而在浇注时,则可能承受不住金属液的冲刷,冲坏铸型表面,使铸件产生砂眼,甚至炮火。 湿强度包括湿压、湿拉、湿剪强度。 湿强度主要取决于粘土的质量和加入量,含水量、原砂的颗粒组成、混砂质量、紧实程度。 (1)原砂在粘土加入量足够的情况下,砂粒越细、越不均匀,则型

砂质点间的接触面积越大,湿强度越高。 (2)粘土和水分水分适当时,随着粘土量的增加,型砂的湿强度增高。湿强度最大值在水/水+粘土=20%z左右时出现。(3)混砂时间为了保证粘土砂获得一定的强度,混砂时间要充分,钠基膨润土由于吸水时间长,因此比钙基膨润土和普通粘土混砂时间长。 (4)紧实度随着紧实度的提高砂型质点紧密排列,相互接触面积增大,粘土的粘结性能更好的发挥,提高湿强度。 湿强度度对惰性粉末非常敏感,惰性粉末增加,湿强度增加,但是湿拉强度和湿剪强度会降低,砂型发脆,起模时容易损坏型腔。 2.干强度 干强度对于干型、表面干型和干芯在运输、合型及浇注初期有着实际意义通常测定抗弯、抗压、抗拉和抗剪等干强度。砂型烘干后,自由水和吸附水逸失,质点相互靠近,质点间附着力增加,砂型湿强度比干强度有显著增加。 砂粒大小对型砂干强度影响不显著。影响干强度主要是粘土和水分。 在相同的粘土加入量的情况下,一般膨润土砂的干强度高于普通

制动盘铸造工艺设计..

1.结合所学知识,查找相应资料,对所给零件或铸件原铸造工艺进行分析(工艺图设计,参数选取,砂芯设计,冒口设计,模板设计等)谈谈你的体会,及对教材、课堂教学的建议。 2.查资料,完成所指定锻件的生产过程,锻件图设计、相应的计算过程、下料、加热、锻造及热处理工艺进行分析。 3.结合汽车零件生产。阐述埋弧焊原理、工艺特点、质量保证措施。 1.结合所学知识,查找相应资料,对所给零件或铸件原铸造工艺进行分析(工艺图设计,参数选取,砂芯设计,冒口设计,模板设计等)。

1.1 制动盘铸造要求及现状 一、生产技术状况:制动盘种类繁多,特点是壁薄,盘片及中心处由砂芯形成。不同种类制动盘,在盘径、盘片厚度及两片间隙尺寸上存在差异,盘毂的厚度和高度也各不相同。单层盘片的制动盘结构比较简单。铸件重量多为6-18kg。 二、技术要求:铸件外轮廓全部加工,精加工后不得有任何缩松、气孔、砂眼等铸造缺陷。金相组织为中等片状型,石墨型,组织均匀,断面敏感性小(特别是硬度差小)。 三、力学性能: σb ≥250MPa , HB180~240 , 相当于国际 HT250 牌号。 四、有些外商对铸件的化学成分也作要求,本设计不作详细介绍。 1.2 设计内容 用金属型覆砂技术克服上述局限性,解决当前所遇到的铸造问题,保证工艺出品率。即在金属型与铸件外形间覆薄砂层,形成砂型胶。优点是同时具备金属型和砂型铸造的特点,金属型与熔体不直接接触,冷却速度和金相组织易于控制,同时提高金属型寿命,铸件形状可较复杂。铸件可保证致密无气孔、缩孔、缩松等缺陷,工艺出口率高。 2.1 设计任务要求 名称:制动盘 材料:HT220 类型:成批生产 本铸件属于盘状薄壁件,盘面上的风道利于空气对流,达到散热的目的。如下图所示。采用金属型覆砂工艺,需考虑金属型材料及芯砂材料。 2.2金属型材料选择 根据以往金属型设计经验,选择常用的HT200作为金属型材料,参数如下:牌号:HT200 标准:GB 9439-88

高效切削加工制动鼓的刀具材料

一、制动鼓的加工工艺 目前,市场上面制动鼓的主要材料还是灰铸铁占多数,灰铸铁具有良好的减震性和耐磨型,并且噪音小,加工工艺简单。一般加工工艺是铸造—粗加工—半精加工—精加工—钻孔—检验。 (1)铸造:制动鼓在进行铸造时,需控制炉料质量,铁水化学成分进行控制,还有就是控制好浇注温度,配料的正确,如控制不好,可能就会出现铸造缺陷,如夹砂,气孔,白口等,出现以上铸造缺陷会对后面的加工带来困难。 (2)粗加工:铸造之后进入机械加工车间。目前,加工制动鼓常采用数控车床,原因1是降低工件的废品率,原因2是提高加工效率。粗加工制动鼓需留有大概0.5mm的余量,以便以后半精加工和精加工保证光洁度要求。 (3)半精加工:为了使制动鼓获得较高的光洁度,一般在粗加工之后进行半精加工,留有0.1- 0.2mm的余量,方面后面的精加工工序。 (4)精加工:为了获得较高的表面光洁度,一般会在半精加工之后再精加工一刀,加工至图纸要求尺寸,和Ra1.6的光洁度。 (5)钻孔:在图纸要求部位钻相应尺寸的孔。 (6)检验入库:检验制动鼓表面光洁度,和尺寸公差是否满足图纸要求,合格之后如可或装配。 二、车加工制动鼓时的刀具选择 由于车加工制动鼓需三道工序,粗加工时一般要加工3mm左右的余量,并且制动鼓的需求量大,一般采用数控车床批量加工制动鼓。在加工过程中,既要保证加工尺寸,又要提高加工效率,选择的刀具材料

要求:一是对线速度不敏感,可高速切削;二是加工余量大的能一刀完成就一刀完成,减少加工时间,提高加工效率。 刚开始选择硬质合金刀具,但硬质合金刀具对线速度敏感,只能低速切削制动鼓,生产节拍变长,影响加工效率,如小批量或少量车加工制动鼓,在不影响整体加工效益的基础上可选择合适的硬质合金刀具,对于大批量制动鼓,机械厂家会选择CBN刀片加工,其中更多的会选择华菱超硬CBN刀片BN-S30牌号和BN-K20牌号车加工制动鼓效果更明显。 华菱超硬前身是河南超硬材料研究所,是专业生产CBN刀片等超硬材料制品的高新技术企业,目前被广泛应用于高硬度材料,热处理后的高硬度工件,和其他难切削材料的零件领域,产品范围主要是车刀,铣刀和数控刀片等系列,并适应当代“高速,精密加工”等切削要求,广泛应用于汽车,航空航天,电力设备,矿山机械等行业。在超硬刀具学术界享有很高声誉。 其中华菱超硬CBN刀片BN-S30牌号属于整体聚晶CBN刀片,适合粗加工工序,BN-S20牌号属于焊接 式CBN刀片,适合精加工工序。由于工序不同,加工余量不同,选择的刀具牌号也不同,下面就针对制动鼓简单介绍一下华菱超硬CBN刀片的方案。 华菱超硬针对制动鼓研制出两款刀具牌号,分别是BN-S30牌号和BN-K20牌号,针对不同工序选择合适的刀具牌号。下面就针对制动鼓不同工序,选择最合适的华菱超硬CBN刀片。 三、针对不同工序选择合适的华菱超硬CBN刀片牌号 (1)粗加工工序:余量一般在3mm左右,选择华菱超硬CBN刀片BN-S30牌号,此牌号采用非金属(陶瓷)作为粘合剂,与传统CBN刀片相比增加了韧性,不仅高硬度高强度,而且具有良好的耐磨性和抗冲击性,可大余量车削制动鼓,制动鼓余量3mm可一刀完成。下图为华菱超硬CBN刀片BN-S30牌号车加 工制动鼓图片。

铸造工艺设计基础

铸造工艺设计基础 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5 合金种类铸件最大轮廓尺寸为下列值时/㎜ ﹤200200-400400-800800-12501250-2000﹥ 2000 碳素铸钢 低合金钢 高锰钢 不锈钢、耐热钢灰铸铁 孕育铸铁 (HT300以上)球墨铸铁8 8-9 8-9 8-11 3-4 5-6 3-4 9 9-10 10 10-12 4-5 6-8 4-8 11 12 12 12-16 5-6 8-10 8-10 14 16 16 16-20 6-8 10-12 10-12 16~18 20 20 20-25 8-10 12-16 12-14 20 25 25 - 10-12 16-20 14-16铸件最大轮廓为下列值时mm

粘土湿型砂及其控制要点

粘土湿型砂及其控制要点 中国铸造协会李传栻 用粘土粘结砂作造型材料生产铸件,是历史悠久的工艺方法,也是应用范围最广的工艺方法,说其历史悠久,可追溯到几千年以前;论其应用范围,则可说世界各地无一处不用。 值得注意的是,在各种化学粘结砂蓬勃发展的今天,粘土湿型砂仍是最重要的造型材料,其使用范围之广,耗用量之大,是任何其他造型材料都不能与之比拟的。据报道,美国生产的钢铁铸件中,用粘土湿型砂制造的占80%以上;日本的钢铁铸件中,用粘土湿型砂制造的占73%以上。 适应各种造型条件的能力极强,也是粘土湿型砂的一大特点。从人类进入青铜时代起,长期用于手工造型,生产了无数精美绝伦的产品。1890年震压式造型机问世以后,用于机械造型也极为成功,并为此后造型作业的机械化、自动化奠定了基础。近代的高压造型、射压造型、气冲造型、静压造型及无震击真空加压造型等新工艺,也都是以粘土湿型砂为基础的。 各种新工艺的实施,使粘土湿型砂在铸造生产中的地位更加重要,也使粘土湿型砂不断面临许多新的问题,促使我们对粘土湿型砂的研究不断加强、认识不断深化。 现今,随着科学技术的迅速发展,各产业部门对铸件的需求不断增长,同时,对铸件质量的要求也越来越高。现代的铸造厂,造型设备的生产率已提高到前所未有的水平,如果不能使型砂的性能充分适应具体生产条件,或不能有效地控制其稳定、一致,则不用多久就可将铸造厂埋葬于废品之中。 目前,采用粘土湿型砂的铸造厂一般都备有适合其具体条件的砂处理系统,其中包括:回收砂的处理、新砂及辅助材料的加入、型砂的混制和型砂性能的监控。 粘土湿砂系统中,有许多不断改变的因素。如某一种或几种关键性能

铸造用砂常识

铸造用砂常识 潮模砂、粘土砂、水玻璃、覆膜砂、树脂砂都属于铸造中的砂铸,不过是不同的粘结剂的区别。 潮模砂、粘土砂、湿型砂是一样的,粘结剂都是普通粘土或膨润土,由于在混砂过程中要加入水,所以就叫潮模砂。 水玻璃砂的粘结剂是钠水玻璃,一般通过吹二氧化碳硬化或加硬化剂自硬化。覆膜砂的粘结剂一般是酚醛树脂,有微毒,一般用来说砂芯用。 树脂砂的粘结剂为呋喃树脂,树脂砂造型在浇注后发气量比较大。目前用树脂砂造型的铸件质量在砂铸中是最好的。 水玻璃砂是用来做型壳的一种材料,也可做粘结剂,并非一种独立的铸造方法 主要有两种使用方法: 1,石英砂+水玻璃(做粘结剂用)做好砂型,通入二氧化碳快速固化 2,失蜡铸造制壳工序时,加入水玻璃做粘结剂 水玻璃的蜡很软的,硅溶胶的蜡很硬。硅溶胶的产品表面比水玻璃的好。两者只是在制造型客质量上有差别,硅溶胶制造出来的型客更适合精密铸造,制造出来的产品表面光滑度好,变形小,缩水比率小,且尺寸精密不需要二次加工。 但是硅溶胶做的基本都是小产品,水玻璃消失模做的产品相对较大。两者只是在制造型客质量上有差别,硅溶胶制造出来的型客更适合精密铸造,制造出来的产品表面光滑度好,变形小,缩水比率小,且尺寸精密不需要二次加工。水玻璃的蜡很软的,硅溶胶的蜡很硬。硅溶胶的产品表面比水玻璃的好。原理都是一样的两者用的蜡、面砂、粘接剂都不一样 产品的质量有明显区别的。国外基本都是硅溶胶工艺,水玻璃工艺应该国内更多一些。还有水玻璃清砂比较麻烦,因为水玻璃会烧结在铸件表面 硅酸钠的水溶液俗名水玻璃好像也叫泡花碱,水玻璃砂具有价格低、强度高、无毒等优点,在铸造生产中获得广泛应用,但是由于其溃散性差,因此不能完全取代其它粘结剂。改善水玻璃砂溃散性的措施有多种,但均不能达到令人满意的效果。二氧化碳水玻璃砂由于造型效率高,铸型不用烘烤即能浇注等特点,因而在铸钢件及部分铸铁件生产上得到较广泛的应用。但长期以来,这种型砂存在溃散性差和旧砂再生麻烦二大难题,从而大大限制了其更广泛的应用。近年,随着技术的进步,出现了水玻璃改性及改善溃散性的添加剂等方法,使溃散性差的问题正在逐步解决;旧砂再生问题也出现了若干解决办法,笔者采用湿法再生技术,能少投资,高再生回收率,环保性好,低成本解决这一难题。特点:设备简,投资少,再生回收率高,环保性好,成本低. 1:设备简:简易磁选,破碎,搅拌水洗机,清水池,污水池,污水处理池各一个,水泵两台。 2:投资少:年产千吨铸件厂,只须投资数万元。 3:再生回收率高:旧砂再生回收率大于90%。 4:环保性好:洗砂污水经处理后循环使用,实现污水零排放.旧砂再生过程为湿法操作,环境基本无粉尘. 5:成本低:每吨旧砂再生回收成本低于30元。

粘土砂铸造工艺

粘土砂铸造工艺 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

粘土砂铸造工艺 一.概述 粘土砂是以粘土(陶土)作粘结剂的型(芯)砂。粘土砂造型由于其成本低廉,适合于批量大规模生产,所以目前仍然作为铸件生产的最主要方式。粘土砂旧沙由于在循环使用过程中各组份的热分解,发生物理性能的变化,如未经再生就加以使用,将使型砂质量不稳定。据统计铸件废品率中30~40%为型砂质量引起,因此型砂质量的控制在粘土砂造型中起十分重要的作用。随着目前对铸件要求的提高,对型砂质量的要求也越来越高。 二.粘土砂造型中几种与型砂质量有关的常见缺陷。 1.气孔、浇不到、冷隔 粘土砂型砂的组成绝大部分为旧砂(85~95%),由于旧砂循环使用过程中经过反复热冲击,一些组分会出现热分解,发生物理性能的变化: a. 粘土在砂型温度高于500度的区域,膨润土晶体结构受到完全破坏,就变成没有湿态粘结力的无效粘土以粉尘状态存在与旧砂中,成为旧砂泥份中的一种; b. 煤粉炭化成为枯化物; c. 不稳定的砂粒(包含杂质)会粉化。 这些衍生物共同成为旧砂的微粉。微粉含量超过一定的限度,微粉堵塞砂砾空隙就会造成型砂透气性差。而且无效粘土吸水能力比有效粘土强,从有效粘土中夺取有效水分,因此当无效粘土含量较多时,达到调匀所需的加水量就得增加。加大了型砂加水量,在某种程度上也就加大了型砂的发气量。由于发气量增加而透气性减少,浇铸时液体所收的阻力增大,必然导致侵入性气孔、浇不到、冷隔等缺陷的形成。 2.表面光洁度差(包括砂眼、毛刺、夹砂结疤等) 大量的无效粘土造成型砂的抗拉强度差、韧性低、透气性差。增大型砂的脆性,使型砂易塌箱、掉砂,在浇铸时砂粒容易掉落形成砂眼、毛刺、夹渣结疤等缺陷,进而影响铸件质量。 3.粘砂 无效粘土(死黏土)部分约占整个砂型重的2~5%,无效粘土的一部分在高温作用下包裹在砂粒表面上,烧结形成一层牢固的膜,不能用水洗掉,成为砂粒的一部分,这层膜又称为惰性膜。型砂经过无数次循环混制和浇铸受热,惰性膜将多层重叠包裹,这个过程又叫鱼卵石化现象。适当的鱼卵石化降低了石英含量,减轻型砂的热膨胀性,减少膨胀类缺陷。当鱼卵石化过度惰性膜太厚时,由于惰性膜溶点低,降低了型砂总体的sio2含量,使型砂耐火度(仅有1150度)降低,如果浇铸温度高于1400~1450度时易引起铸件表面粘砂,产生机械粘砂,造成铸件表面不光洁。 4.造型时掉砂、塌箱 死黏土没有粘结力,大量的死黏土造成型砂起模性差。使型砂易塌箱、掉砂。 5.粘模 由于死黏土含量增加,这种型砂不仅不利于输送,而且在造型时容易脱膜。 6.旧砂中瓷化现象越来越多 包裹沙粒的粘土由于受高温的影响,可瓷化成膜,膜的厚度、总量在一定的范围内对粘土砂是有益的,但超过一定的界限就会影响粒度分布及均匀性,影响强度。 7.简单的人工筛砂 很多企业采用双砂制,简单人工筛分,加大量新砂和较多的辅料混制后用作面砂,背砂则是定期筛分。存在的问题较多; a. 旧砂含泥量严重超过工艺要求(多数≥20%);

砂型铸造实习报告

砂型铸造实习报告 篇1:砂型铸造实习报告钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。砂型铸造所用铸型一般由外砂型和型芯组合而成。为了提高铸件的表面质量,常在砂型和型芯表面刷一层涂料。涂料的主要成分是耐火度高、高温化学稳定性好的粉状材料和粘结剂,另外还加有便于施涂的载体(水或其他溶剂)和各种附加物。 铸造分类铸造分类主要有砂型铸造和特种铸造两大类。 1 普通砂型铸造,利用砂作为铸模材料,又称砂铸,翻砂,包括湿砂型、干砂型和化学硬化砂型3类,但并非所有砂均可用以铸造。好处是成本较低,因为铸模所使用的沙可重复使用;缺点是铸模制作耗时,铸模本身不能被重复使用,须破坏后才能取得成品。 2特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、壳型铸造、负压铸造、实型铸造、陶瓷型铸造,消失模铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。 砂型材料 制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用

的铸造砂是硅质砂。硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。为使制成的砂型和型芯具有一定的强度,在搬运、合型及浇注液态金属时不致变形或损坏,一般要在铸造中加入型砂粘结剂,将松散的砂粒粘结起来成为型砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分为粘土湿砂型、粘土干砂型和化学硬化砂型3种。 1.粘土湿砂型 以粘土和适量的水为型砂的主要粘结剂,制成砂型后直接在湿态下合型和浇注。湿型铸造历史悠久,应用较广。湿型砂的强度取决于粘土和水按一定比例混合而成的粘土浆。型砂一经混好即具有一定的强度,经舂实制成砂型后,即可满足合型和浇注的要求。因此型砂中的粘土量和水分是十分重要的工艺因素。 优点:①粘土的资源丰富、价格便宜。②使用过的粘土湿砂经适当的砂处理后,绝大部分均可回收再用。③制造铸型的周期短、工效高。④混好的型砂可使用的时间长。⑤砂型舂实以后仍可容受少量变形而不致破坏,对拔模和下芯都非常有利。 缺点:①混砂时要将粘稠的粘土浆涂布在砂粒表面上,需要使用有搓揉作用的高功率混砂设备,否则不可能得到质量良好的型砂。②由于型砂混好后即具有相当高的强度,造

铸造砂

制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用的铸造砂是硅质砂。硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。为使制成的砂型和型芯具有一定的强度,在搬运、合型及浇注液态金属时不致变形或损坏,一般要在铸造中加入型砂粘结剂,将松散的砂粒粘结起来成为型砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。铸造砂按矿物组成不同分为石英砂和特种砂两大类,石英砂俗称硅砂。 石英砂:它是石英石经破碎加工而成的石英颗粒,石英石是一种非金属矿物质,是一种坚硬、耐磨、化学性能稳定的硅酸盐矿物,其主要矿物成分是SiO2,石英砂的颜色为乳白色、或无色半透明状,莫氏硬度7,石英砂是重要的工业矿物原料,非化学危险品,广泛用于玻璃、铸造、陶瓷及耐火材料、冶炼硅铁、冶金熔剂、冶金、建筑、化工、塑料、橡胶、磨料、滤料等工业。硅砂:又名二氧化硅或石英砂。是以石英为主要矿物成分、粒径在0.020mm-3.350mm 的耐火颗粒物,根据开采和加工方法的不同分为人工硅砂及水洗砂、擦洗砂、精选(浮选)砂等天然硅砂。硅砂是一种坚硬、耐磨、化学性能稳定的硅酸盐矿物,其主要矿物成分是SiO2 ,硅砂的颜色为乳白色或无色半透明状,硬度7,性脆无解理,贝壳状断口,油脂光泽,相对密度为2.65,其化学、热学和机械性能具有明显的异向性,不溶于酸,微溶于KOH溶液,熔点1750℃。颜色呈乳白色、淡黄、褐色及灰色,

硅砂有较高的耐火性能。铸造砂具备下列性能: 1)透气性型 高温金属液浇入铸型后,型内充满大量气体,这些气体必须由铸型内顺利排出去,型砂这种能让气体透过的性能称为透气性。否则将会使铸件产生气孔、浇不足等缺陷。铸型的透气性受砂的粒度、粘土含量、水分含量及砂型紧实度等因素的影响。砂的粒度越细、粘土及水分含量越高、砂型紧实度越高,透气性则越差 2) 强度 型砂抵抗外力破坏的能力称为强度。型砂必须具备足够高的强度才能在造型、搬运、合箱过程中不引起塌陷,浇注时也不会破坏铸型表面。型砂的强度也不宜过高,否则会因透气性、退让性的下降,使铸件产生缺陷。 3) 耐火性 高温的金属液体浇进后对铸型产生强烈的热作用,因此型砂要具有抵抗高温热作用的能力即耐火性。如造型材料的耐火性差,铸件易产生粘砂。型砂中SiO2含量越多,型砂颗粒越大,耐火性越好。 4) 可塑性 指型砂在外力作用下变形,去除外力后能完整地保持已有形状的能力。造型材料的可塑性好,造型操作方便,制成的砂型形状准确、轮廓清晰。 5) 退让性

相关文档