文档库 最新最全的文档下载
当前位置:文档库 › 固定污染源废气氮氧化物的测定化学发光法

固定污染源废气氮氧化物的测定化学发光法

固定污染源废气氮氧化物的测定化学发光法
固定污染源废气氮氧化物的测定化学发光法

ICS

DB 37 山东省地方标准

固定污染源废气氮氧化物的测定

化学发光法

Stationary source emission-Determination of nitrogen oxides-

Chemiluminescence method

(征求意见稿)

20XX-XX-XX发布20XX-XX-XX实施山东省质量技术监督局发布

DBXX/T XXXX-2017

目次

前言....................................................................................................................................................................... I I

1 适用范围 (1)

2 规范性引用文件 (1)

3 术语和定义 (1)

4 方法原理 (2)

5 干扰和消除 (2)

6 试剂和材料 (2)

7 仪器和设备 (2)

8 采样和测定 (3)

9 结果计算与表示 (4)

10 精密度和准确度 (4)

11 质量保证和质量控制 (5)

12 注意事项 (6)

附录A(规范性附录)测定前后仪器性能审核表 (7)

I

DBXX/T XXXX-2017

II

前言

本标准按照GB/T1.1-2009给出的规则起草。

本标准由山东省环境保护厅提出并负责解释。

本标准由山东省环保标准化技术委员会归口。

本标准起草单位:山东省环境监测中心站、北京希望世纪有限公司。

本标准验证单位:淄博市环境监测站、潍坊市环境监测中心站、德州市环境保护监测中心站、聊

城市环境监测中心、陵城区环境保护监测站、山东省产品质量检验研究院。

本标准主要起草人:潘光、周成、邹康、李恒庆、谷树茂、潘齐、由希华、高文彪、吕岩、朱永超、刘文凯。

DBXX/T XXXX-2017 固定污染源废气氮氧化物的测定化学发光法

1 适用范围

本标准规定了测定固定污染源废气中氮氧化物的化学发光法。

本标准适用于固定污染源废气中氮氧化物的测定。

本方法氮氧化物(以NO2计)的检出限为1 mg/m3,测定下限为4 mg/m3。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法

HJ/T 373 固定污染源监测质量保证与质量控制技术规范

HJ/T 397 固定源废气监测技术规范

3 术语和定义

下列术语和定义适用于本标准。

3.1

氮氧化物 nitrogen oxides

指固定污染源废气中以一氧化氮(NO)和二氧化氮(NO2)形式存在的氮氧化物。

3.2

零气 zero gas

不存在测量组分或小于规定值、其它组分浓度不干扰测量组分结果或产生的测量组分干扰可忽略不计的气体。

3.3

校准量程 calibration span

仪器的校准上限,为校准所用标准气体的浓度值(进行多点校准时,为校准所用标准气体的最高浓度值),校准量程(以下用C.S.表示)应小于或等于仪器的满量程。

3.4

示值误差 calibration error

标准气体直接导入分析仪的测量结果与标准气体浓度值之间的误差。

3.5

系统偏差 system bias

1

DBXX/T XXXX-2017

2 标准气体直接导入分析仪与经采样管导入分析仪的测量结果之间的差值,占校准量程的

百分比。

3.6

零点漂移 zero drift

在测试前、后,测定仪对相同零气测量结果的差值,占校准量程的百分比。

3.7

量程漂移 span drift

在测试前、后,测定仪对相同浓度标准气体测量结果的差值,占校准量程的百分比。

4 方法原理

废气中的一氧化氮与臭氧反应生产激发态二氧化氮,激发态的二氧化氮返回基态的过程中会发出荧光,其发光强度与一氧化氮浓度成比例关系,通过检测器测量发光强度计算一氧化氮浓度,得到氮氧化物浓度。当废气中含有二氧化氮时,二氧化氮转化炉将其转化为一氧化氮,通过测定废气中所有一氧化氮浓度得到氮氧化物浓度。

5 干扰和消除

5.1 待测气体中的颗粒物、水分等易在仪器内凝结,造成管路堵塞、污染检测系统,影响氮氧化物的测定;应采用滤尘装置、除湿装置等进行滤除,消除影响。

5.2 卤素离子、重金属离子、硝基化合物等易造成荧光淬灭,影响氮氧化物的测定;应采用稀释等方法消除影响。

6 试剂和材料

6.1一氧化氮、二氧化氮校准气体

市售有证标准气体,不确定度≤2%。

6.2零气

纯度≥99.99%的氮气或不干扰测定的清洁空气。

7仪器和设备

7.1化学发光法测定仪

7.1.1组成

化学发光法氮氧化物测定仪(简称:测定仪或仪器)组成:分析仪(含气体流量计和控制单元、抽气泵、二氧化氮转化器、空气净化器、臭氧发生器、臭氧分解器、分析检测单元等)、采样管(含滤尘装置和加热装置)、导气管、除湿装置、便携式打印机等。

DBXX/T XXXX-2017 7.1.2性能要求

a)示值误差:不超过±5%(标准气体浓度值<100 μmol/mol时,不超过±5 μmol/mol);

b)系统偏差:不超过±5%;

c)零点漂移:不超过±3%(校准量程≤200 μmol/mol时,不超过±5%);

d)量程漂移:不超过±3%(校准量程≤200 μmol/mol时,不超过±5%);

e)具有采样流量显示功能。

7.2标准气体钢瓶

配可调式减压阀、可调式转子流量计及导气管。

7.3集气袋

用于气袋法校准测定仪。容积不小于4 L,内衬材料应选用对被测成分影响小的铝塑复合膜、聚四氟乙烯膜等惰性材料。

8采样和测定

8.1采样点和采样频次的确定

按GB/T 16157、HJ/T 373和HJ/T 397及有关规定,确定采样位置、采样点及频次。

8.2测定仪气密性检查

按仪器使用说明书,正确连接分析仪、采样管、除湿装置、导气管等,达到仪器工作条件后按GB/T16157检查气密性。若检查不合格,应查漏和维护,直至检查合格。

8.3测定仪校准

8.3.1零点校准

将零气(6.2)导入测定仪,校准仪器零点。

8.3.2量程校准

预估待测气体浓度,设置校准量程。将一氧化氮标准气体(6.1)通入测定仪进行测定,示值误差应符合7.1.2条a)的要求,否则,需要校准。校准方法如下:

a)气袋法:用标准气体(6.1)将洁净的集气袋充满后排空,反复三次,再充满后备用。按仪器使用说明书中规定的校准步骤进行校准。

b)钢瓶法:将标准气体(6.1)钢瓶与测定仪采样管连接,打开钢瓶气阀门,调节减压阀和转子流量计,以测定仪规定的流量,将标准气体导入测定仪。按仪器使用说明书中规定的校准步骤进行校准。

8.4样品测定

8.4.1将测定仪采样管前端置于排气筒中采样点上,堵严采样孔,使之不漏气。

3

DBXX/T XXXX -2017

4 8.4.2

启动抽气泵,以测定仪规定的采样流量取样测定,待测定仪稳定后,按分钟保存测定数据,取连续5分钟~15分钟测定数据的平均值,作为一次测量值。 8.4.3

一次测量结束后,依照仪器说明书的规定用零气(6.2)清洗仪器。 8.4.4 测试结束后,用零气(6.2)清洗测定仪;待其示值回到零点附近后,关机断电,结束测定。

9 结果计算与表示

9.1 结果计算

氮氧化物(NO x )浓度等于一氧化氮(NO )与二氧化氮(NO 2)转化得到的NO 浓度之和。按下式计算标准状态(273 K, 101.325 kPa )下废气中的NO x 质量浓度,结果以NO 2计:

x x 4

.2246NO NO ρρ ?= (1) 式中: x NO ρ——标准状态下干废气中NO x 的质量浓度,mg/m 3;

NOx ρ

——干废气中NO x 的体积浓度,μmol/mol 。 9.2 NO 2至NO 转化效率的计算

%100?=s d E ρρ (2)

式中:

E ——NO 2至NO 转化效率,%;

d ρ——NO 2标准气体浓度测定值,μmol/mol ;

s ρ——NO 2标准气体浓度值,μmol/mol 。

9.3 结果表示

氮氧化物的浓度计算结果只保留整数位。

10 精密度和准确度

10.1 方法的精密度

6家实验室对浓度水平为66 mg/m 3、132 mg/m 3、264 mg/m 3的一氧化氮标准气体进行测定。

实验室内相对标准偏差分别为:0.99 %~1.90 %,0.21 %~0.66 %,0.13 %~0.47 %; 实验室间相对标准偏差分别为:1.5 %、0.4 %、0.6 %;

DBXX/T XXXX-2017

重复性限分别为:2.6 mg/m3、1.7 mg/m3、2.5 mg/m3;

再现性限分别为:3.6 mg/m3、2.1 mg/m3、5.1 mg/m3。

6家实验室对某燃气电厂排放废气中的一氧化氮浓度进行了同步测定。废气中一氧化氮浓度为9.4 mg/m3~13.4 mg/m3,平均值11.4 mg/m3。

实验室内相对标准偏差为:0.55 %~1.65 %;

实验室间相对标准偏差为:1.8 %;

重复性限为:0.5 mg/m3;

再现性限为:0.5 mg/m3。

6家实验室对某化工厂排放废气中的一氧化氮浓度进行了同步测定。通过调整工况将浓度控制在高、低两个浓度范围,高浓度废气中一氧化氮浓度为81.7 mg/m3~100.5 mg/m3,平均值93.8 mg/m3;低浓度废气中一氧化氮浓度为20.1 mg/m3~33.5 mg/m3,平均值26.8 m g/m3。

实验室内相对标准偏差为:1.29 %~4.67 %,0.69~2.19%;

实验室间相对标准偏差为:1.9 %,0.8 %;

重复性限为:1.4 mg/m3,2.7 mg/m3;

再现性限为:1.3 mg/m3,2.3 mg/m3。

6家实验室对某钢厂排放废气中的一氧化氮浓度进行了同步测定。废气中一氧化氮浓度为4.0 mg/m3~8.0 mg/m3,平均值6.0 mg/m3。

实验室内相对标准偏差为:0.61 %~2.87 %;

实验室间相对标准偏差为:1.56 %;

重复性限为:0.1 mg/m3;

再现性限为:0.3 mg/m3。

10.1 方法的精密度

6家实验室对浓度水平为66 mg/m3、132 mg/m3、264 mg/m3的一氧化氮标准气体进行测定。

相对误差分别为:-1.99%~-1.92%、-1.45%~-0.45%、0.88%~2.44%;

相对误差最终值为:-0.24%±3.0%、-0.81%±0.8%、-0.10%±1.2%。

11质量保证和质量控制

11.1 测试前,测定零气和一氧化氮标准气体(6.1),计算示值误差、系统偏差,参考附录A表格形式进行记录。若示值误差和/或系统偏差不符合7.1.2条a)和b)的要求,应查找原因,进行仪器维护或修复,直至满足要求。

11.2 测试后,再次测定零气和一氧化氮标准气体(6.1),计算示值误差、系统偏差,参考附录A表格形式进行记录。若示值误差和系统偏差符合7.1.2条a)和b)的要求,判定样品测定结果有效;否则,判定样品测定结果无效。

5

DBXX/T XXXX-2017

6 注:测试前后,可采取包括采样管、导气管、除湿装置等全系统示值误差的检查代替分析仪示值误差和系统偏差的检查[其评价执行7.1.2条a)的要求]。

11.3 样品测定结果应处于仪器校准量程的20%~100%之间,否则应重新选择校准量程;若样品测定结果不大于测定下限,则无需重新选择校准量程。

11.4 每个季度至少进行一次零点漂移、量程漂移检查,参考附录A表格形式进行记录。若零点漂移和量程漂移不符合7.1.2条c)和d)的要求,应及时维护或修复仪器。

11.5 每半年至少进行一次NO2至NO转化效率的测定,若转化效率低于85%,建议更换还原剂。

12注意事项

12.1 测定前检查除湿冷却装置和输气管路,并清洁颗粒物过滤装置,必要时更换滤料。

12.2 测定前应检查采样管加热系统是否正常工作、仪器必须充分地预热。

12.3 及时排空除湿冷却装置的冷凝水,防止影响测定结果。

12.4 采气流速的变化直接影响仪器的测定读数,测定过程中做好随时监控。

DBXX/T XXXX -2017

7 A A

附录A

(规范性附录)

测定前后仪器性能审核表

实验室名称 测试地点 仪器生产厂 仪器型号、编号 原理 仪器量程(μmol/mol ,mg/m 3) 气体流量(L/min ) 环境温度(℃) 环境压力/kPa 相对湿度(RH%) 标准气体生产单位 污染物名称及有效截止日期 测试人员 测量日期 年 月 日

表A.1 示值误差

表A.2 系统偏差

表A.3 零点漂移和量程漂移

HJ 75-2017固定污染源烟气排放连续监测技术规范与HJT 75-2007标准差异

最新版固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范HJ 75-2017与HJ/T 75-2007标准差异汇总: 1、标准号差异?HJ 75-2017规定较HJ/T 75-2007规定,正式作为行业标准,而不就是推荐性行业标准,效力更强。直接对运维工作具有约束力。 ?2、概念术语(系统响应时间与仪表响应时间) ?HJ 75-2017规定了概念术语:系统响应时间与仪表响应时间;增加了验收技术要求:示值误差与系统响应时间。 9、3、3、1条气态污染物与氧气CEMS验收,这两项就是前提条件。HJ/T 75-2007规定中无此项。3??、新增氮氧化物监测单元要求 HJ 75-2017规定:第4条氮氧化物监测单元要求,二氮可直接测量,亦可转化为一氮后一并测量,不允许只测量一氮。在现场与运维,就需要在产品选型时做好产品设计与转换要求。HJ/T 75-2007规定中无要求。? 4、新增监测站房要求?HJ 75-2017规定:第6条监测站房要求-监测站房建设规范化。对于现场人员来说,就需要注意后期签订运维合同、验收项目,涉及该项,注意核实就是否符合技术规范。如不符合,书面提醒业主单位该事项。HJ/T 75-2007规定中无此项。 5、采样监控平台面积与安全防护变化?HJ 75-2017规定:第7条7、1、1、7采样监控平台面积与安全防护a项。新增加采样监控平台面积与安全防护。技术验收应核实此项。HJ/T 75-2007规定中无此项。 6、安装要求变化 HJ 75-2017规定:第7条安装要求7、1、1、1 b项安装位置细化;采样平台

斜梯(高于2米)与升降梯设置高度(高于20米)细化。技术验收应核实此项。HJ/T 75-2007规定离地高度高于5米,设置Z字梯旋梯升降梯。 ?7、新增了参比方法采样孔预留要求 HJ 75-2017规定:第7条安装要求7、1、1、1 d项参比方法采样孔预留,技术验收应核实此项。HJ/T75-2007规定中无此项。 8、烟气分布均匀程度判定规则 HJ 75-2017规定:7、1、2、3烟气分布均匀程度判定。前四后二由之前得颗粒物增加为颗粒物与流速;新增了新建排放源采样平台与排气装置同步设计、建设,及烟气分布均匀程度判定。现场仪表在CEMS采样与分析探头安装,监测断面位置就是否合理做好判定。HJ/T75-2007规定中无此项。 9、旁路增加烟温与流量 HJ 75-2017规定:7、1、2、6旁路增加烟温与流量,HJ/T75-2007规定中仅需增加流量。 10、新增安装施工要求 HJ75-2017规定:新增了7、2 安装施工要求,7、2、1-7、2、10实际施工要求细化。CEMS安装施工要求细化,对工程施工及验收提高要求与考核指标细化。HJ/T 75-2007规定中无此项。 ?11、CEMS技术指标调试检测变化 HJ 75-2017规定:第8条CEMS技术指标调试检测附录A。主要变化有四

化学发光检测

第一章化学发光技术 一、免疫学检测发展阶段 免疫学检测主要是利用抗原和抗体的特异性反应进行检测的一种手段,由于其可以利用同位素、酶、化学发光物质等对检测信号进行放大和显示,因此常被用于检测蛋白质、激素等微量物质。我国免疫学的检测基本历经了以下几个过程,如图1.1所示。 20世纪60年代70年代90年代时间 图1.1免疫学检测发展阶段 尽管免疫诊断在临床诊断中占据着非常重要的地位,但是从我国临床免疫诊断现状来看,无论是临床应用方面,还是产业化角度,都处于相对比较落后的状态,亟待改进。下表1.1就此做一比较: 表1.1 中国免疫诊断现状 由以上分析不难看出,化学发光免疫检测是大势所趋;而取代进口,发展我国的化学发光检测事业,

正是临床检验界着手发展的方向。由此,我公司自1998年立项至今,致利于化学发光检测方案设计,自行开发了具有国内领先水平的化学发光底物,与国外知名检测仪器生产商联合开发了化学发光全自动、半自动检测仪,并自行设计开发了化学发光管理软件,而今形成了仪器、试剂、软件全面配套,为我国的临床检验界提供了一套完善的解决方案。 二、化学发光免疫分析技术 【概述】 本世纪70年代中期Arakawe首次报道用发光信号进行酶免疫分析,利用发光的化学反应分析超微量物质,特别是用于临床免疫分析中检验超微量活性物质。目前,这一技术已从实验室的稀有技术过渡到临床医学的常规检测手段。化学发光免疫分析(Chemiluminescence Immunoassay,CLIA)是将化学发光或生物发光体系与免疫反应相结合,用于检测微量抗原或抗体的一种新型标记免疫测定技术。其检测原理与放射免疫(RIA)和酶免疫(EIA)相似,不同这处是以发光物质代替放射性核素或酶作为标记物,并藉助其自身的发光强度直接进行测定。 化学发光免疫分析既具有放射免疫的高灵敏度,又具有酶联免疫的操作简便、快速的特点,易于标准化操作。且测试中不使用有害的试剂,试剂保持期长,应用于生物学、医学研究和临床实验诊断工作,成为非放射性免疫分析法中最有前途的方法之一。 【原理】 在化学发光免疫分析中包含两个部分,即免疫反应系统和化学发光系统。免疫反应系统,其基本原理同酶联免疫技术(ELISA),常采用双抗体夹心法、竞争法、间接法等反应模式,如图1.2,1.3,1.4所示。 如图1.2双抗体夹心法反应原理示意图

(完整版)固定源污染源废气监测技术规范试题

空气和废气监测技术规范试题考试时间:姓名:分数: 一、填空题(每空2分,共30 分) 1、总悬浮颗粒物(TSP)是指能悬浮在空气中,空气动力学当量直径() 的颗粒物。可吸入颗粒物(PM10)是指悬浮在空气中,空气动力学当量直径()的颗粒物。 2、采集环境空气中的二氧化硫样品时,小时均值采样时,U型吸收管内装10ml 吸收液,以()L/min 的流量采样;24h 连续采样时,多孔玻板吸收管内 装50ml 吸收液,以()L/min 流量采样。 3、我国规定气体的标准状态是指温度为(),压力为()时的状态。 4、环境空气中二氧化硫、氮氧化物平均浓度要求每日至少有()h 的采样时间。 5、环境空气中颗粒物的日平均浓度要求每日至少有()h的采样时间。 6、测定锅炉烟尘时,测点位应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测点位臵应在距弯头、接头、阀门和其他变径管段的下游方向大于()倍直径处,特殊情况下,最小()倍直径处。 7、固定污染源排气中颗粒物()的原理是:将烟尘采样管由采样孔插入烟道中,采样嘴正对气流,使采样嘴的吸气速度与测点处气流速度相等,并抽取一定量的含尘气体,根据采样管上捕集到的颗粒物量和同时所取的气体量,计算排气中颗粒物浓度。 8、按等速采样原则测定锅炉烟尘浓度时,每个断面采样次数不得少于( )

次,每个测点连续采样时间不得少于()min,每台锅炉测定时所采集样 品累计的总采气量应不少于()m3, 取3 次采样的()作为管道的烟尘浓度值。 二、选择题(每题 3 分,共30分) 1、应使用经计量检定单位检定合格的大气采样器,使用前必须经过流量校准,流量误差应()。 A.大于5% B.不大于5% C.10% D.小于10% 2、当选用气泡吸收管或冲击式吸收管采集环境空气样品时,应选择吸收率为()%以上的吸收管。 A.85 B.90 C.95 D.99 3、环境空气中二氧化硫、氮氧化物的日平均浓度要求每日至少有()h 采样时间。 A.10 B.12 C.14 D.18 4、在环境空气监测点采样周围()空间,环境空气流动不受任何影响。如果采样管的一边靠近建筑物,至少要在采样口周围要有()弧形范围的自由空间。 A.90°,180° B. 180°,90° C. 270°,180° D. 180°,270° 5、在环境空气质量监测点()m 范围内不能有明显的污染源,不能靠近炉、窑和锅炉烟囱。 A.10 B.20 C.30 D.40 E.50 6、除分析有机物的滤膜外,一般情况下,滤膜采集样品后,如果不能立即称重,应在()保存。 A.常温条件下 B.冷冻条件下 C.20C D.4C条件下冷藏 7、在进行二氧化硫24h连续采样时,吸收瓶在加热槽内最佳温度为()C。

荧光和化学发光免疫分析方法

荧光和化学发光免疫分析方法 免疫分析是利用抗原抗体反应进行的检测方法,即利用抗原与抗体的特异性反应, 应用制备好的抗原或抗体作为试剂,以检测标本中的相应抗体或抗原。由于免疫的特异性结合,免疫分析方法具有很好的选择性,荧光免疫分析和化学发光免疫分析是其中典型的两种。本文将对这两种免疫分析方法进行详细的介绍。 一、免疫 免疫是指机体免疫系统识别自身与异己物质,并通过免疫应答排除抗原性异物,以维持机体生理平衡的功能。免疫是人体的一种生理功能,人体依靠这种功能识别“自己”和“非己”成分,从而破坏和排斥进入人体的抗原物质,或人体本身所产生的损伤细胞和肿瘤细胞等,以维持人体的健康。 特异性免疫系统,是一个专一性的免疫机制,针对一种抗原所生成的免疫淋巴细胞(浆细胞)分泌的抗体,只能对同一种抗原发挥免疫功能。而对变异或其他抗原毫无作用。 1、抗原 1.1抗原的定义 抗原:是一类能刺激机体免疫系统使之产生特异性免疫应答(免疫原性) ,并能与相应抗体在体内或体外发生特异性结合的物质(免疫反应性)。 抗原一般为大分子物质,其分子量在10kD以上。 1.2抗原的分类

完全抗原:同时具有免疫原性和免疫反应性的抗原,如细菌、病毒、异种动物血清等。 半抗原:仅具有与相应抗原或致敏淋巴细胞结合的免疫反应性,而无免疫原性的物质。如大多数的多糖、类脂及一些简单的化学物质,它们本身不具免疫原性,但当与蛋白质大分子结合后形成复合物,便获得了免疫原性, 1.3抗原的性质 决定簇是指抗原分子表面的基团,它直接决定免疫学反映的特异性。 抗原通过抗原决定簇与相应淋巴细胞表面抗原受体结合,从而激活淋巴细胞,引起免疫应答,抗原也藉此与相应抗体或致敏淋巴细胞发生特异性结合。 因此,抗原决定簇是被免疫细胞识别的靶结构,也是免疫反应具有特异性的物质基础。 2、抗体 2.1抗体的定义 抗体:是机体受抗原刺激后,由淋巴细胞合成的一类能与相应抗原发生特异性结合的球蛋白。 2.2抗体的结构 抗体是机体受抗原刺激后,由淋巴细胞特别是浆细胞合成的一类能与相应抗原发生特异性结合的球蛋白,因其具有免疫活性故又称作免疫球蛋白。 人免疫球蛋白有五类,分别为IgG、IgA、IgM、IgD和IgE。 3、抗原抗体的结合

固定污染源废气颗粒物

DB13 河北省地方标准 DB13/ -2016 固定污染源废气颗粒物的测定β射线法 Stationary Source Emissions-Determination of Mass Concentration of Particulate Matter –Beta-ray Absorption Method (征求意见稿) 2016- - 发布2016- -实施河北省质量技术监督局 发布 河北省环境保护厅

目次 1. 适用范围 (3) 2. 规范性引用文件 (3) 3. 术语和定义 (3) 3.1 颗粒物 (3) 3.2 标准状态下的干排气 (3) 3.3 等速测定 (3) 4. 方法原理 (3) 5. 干扰和消除 (4) 6. 仪器和设备 (4) 6.1. β射线法颗粒物测定仪 (4) 6.2. 要求 (4) 7. 参数的测定 (4) 7.1 排气温度的测定 (4) 7.2 排气中水分含量的测定 (4) 7.3 排气中O2的测定 (4) 7.4 排气中压力的测定 (4) 7.5 排气流速、流量的测定 (4) 8. 监测位置和监测点 (4) 8.1. 测定位置 (4) 8.2. 测定孔、测定点位置和数目 (5) 9. 样品测定 (5) 9.1. 测定位置和测定点 (5) 9.2. 仪器准备 (5) 9.3. 定点测定 (5) 9.4. 多点测定 (5) 9.5. 测定结束 (5) 10. 颗粒物浓度计算和表示 (5) 10.1.颗粒物浓度 (5) 10.2.标准状态下干废气排放量 (6) 10.3.颗粒物排放速率 (6) 10.4.颗粒物排放浓度 (7) 11. 质量保证和质量控制 (7) 12. 注意事项 (7)

GB16297固定污染源废气环境检测限值

1997年1月1日前设立的污染源 序号污染 物 最高允许排放浓度 (mg/m3) 最高允许排放速率(kg/h) 无组织排放监控浓度 排气筒(m) 一级二级三级监控点浓度 1 二 氧 化 硫 1200 (硫、二氧化硫、硫酸和 其它含硫化合物生产) 15 20 30 40 50 60 70 80 90 100 1.6 2.6 8.8 15 23 33 47 63 82 100 3.0 5.1 17 30 45 64 91 120 160 200 4.1 7.7 26 45 69 98 140 190 240 310 无组织排放源 上风向设参照 点,下风向设监 控点 0.50 (监控点与 参照点浓度 差值) 700 (硫、二氧化硫、硫酸和 其它含硫化合物使用) 2 氮 氧 化 物 1700 (硝酸、氮肥和火炸药生 产) 15 20 30 40 50 60 70 80 90 100 0.47 0.77 2.6 4.6 7.0 9.9 14 19 24 31 0.91 1.5 5.1 8.9 14 19 27 37 47 61 1.4 2.3 7.7 14 21 29 41 56 72 92 无组织排放源 上风向设参照 点,下风向设监 控点 0.15 (监控点与 参照点浓度 差值) 420 (硝酸使用和其它) 3 颗 粒 物 22 (碳黑尘、染料尘) 15 20 30 40 禁 排 0.60 1.0 4.0 6.8 0.87 1.5 5.9 10 * 周界外浓度最 高点 肉眼不可见 80** (玻璃棉尘、石英粉尘、 矿渣棉尘) 15 20 30 40 禁 排 2.2 3.7 14 25 3.1 5.3 21 37 无组织排放源 上风向设参照 点,下风向设监 控点 2.0 (监控点与 参照点浓度 差值) 150 (其它) 15 20 30 40 50 60 2.1 3.5 14 24 36 51 4.1 6.9 27 46 70 100 5.9 10 40 69 110 150 无组织排放源 上风向设参照 点,下风向设监 控点 5.0 (监控点与 参照点浓度 差值) 4 氟150 1 5 禁0.30 0.4 6 周界外浓度最0.25

化学发光免疫分析技术原理简介

化学发光免疫分析技术原理简介 20 世纪60 年代即有人利用化学发光法测定水样中细菌含量和菌尿症患者尿液检查。1977 年Halman 等将化学发光系统与抗原抗体反应系统相结合,创建了化学发光免疫分析法,保留了化学发光的高度灵敏性,又克服了它特异性不足的缺陷。近年来对技术与仪器的不断改进,使此技术已成为一种特异,灵敏,准确的自动化的免疫学检测方法。1996 年推出的电化学发光免疫技术,在反应原理上又具有一些新的特点。这两种技术目前已在国内一些大型医院实验室用于常规免疫学检验。 一、化学发光免疫分析法 化学发光免疫分析法( chemiluminescence immunoassay , CLlA) 是把免疫反应与发光反应结合起来的一种定量分析技术,既具有发光检测的高度灵敏性,又具有免疫分析法的高度特异性。在CLIA中,主要有两个部分,即免疫反应系统和化学发光系统。免疫反应系统与放射免疫测定中的抗原抗体反应系统相同化学发光系统则是利用某些化合物如鲁米诺( luminol) 、异鲁米诺(isolu-minol) 、金刚烷( AMPPD) 及吖啶酯( AE) 等经氧化剂氧化或催化剂催化后成为激发态产物,当其回到基态时就会将剩余能量转变为光子,随后利用发光信号测量仪器测量光量子的产额。将发光物质直接标记于抗原(称为化学发光免疫分析)或抗体上(称为免疫化学发光分析) ,经氧化剂或催化剂的激发后,即可快速稳定的发光,其产生的光量子的强度与所测抗原的浓度可成比例。亦可将氧化剂(如碱性磷酸酶等)或催化剂标记于抗原或 抗体上,当抗原抗体反应结束后分离多余的标记物,再与发光底物反应,其产生的光量子的强度也与待测抗原的浓度成比例。发光免疫分析的灵敏度高于包括RIA 在内的传统检测方法,检测范围宽,测试时间短,仅需30 - 60min 即可。试

固定源废气监测技术规范关于采样口的具体要求

固定源废气监测技术规范关于采样口的具体要 求 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

固定源废气监测技术规范关于采样口的具体要求 5.1 采样位置 5.1.1 采样位置应避开对测试人员操作有危险的场所。 5.1.2 采样位置应优先选择在垂直管段,应避开烟道弯头和断面 急剧变化的部位。采样位置应设置在距弯头、阀门、变径管下游方 向不小于 6 倍直径,和距上述部件上游方向不小于 3 倍直径处。 采样断面的气流速度最好在 5m/s 以上。 5.1.3 测试现场空间位置有限,很难满足上述要求时,可选择比 较适宜的管段采样,但采样断面与弯头等的距离至少是烟道直径的 1.5 倍。 5.1.4 对于气态污染物,由于混合比较均匀,其采样位置可不受 上述规定限制,但应避开涡流区。如果同时测定排气流量,采样位 置仍按 5.1.2 选取。 5.1.5 必要时应设置采样平台,采样平台应有足够的工作面积使 工作人员安全、方便地操作。平台面积应不小于 1.5m2,并设有 1.1m 高的护栏和不低于 10cm 的脚部挡板,采样平台的承重应不 小于200kg/m2,采样孔距平台面约为 1.2m~1.3m。 5.2 采样孔 5.2.1 采样孔 单 位 为 毫 米a)带有盖板的采样孔 b)带有管堵的采样孔 c)带有 管帽的采样孔图 1 几种封闭形式的采样孔 5.2.1.1 在选定的测定位置上开设采样孔,采样孔的内径应不小 于 80mm,采样孔管长应不大于 50mm。不使用时应用盖板、管堵或 管帽封闭(图 1)。当采样孔仅用于采集气态污染物时,其内径应 不小于 40mm。 5.2.1.2 对正压下输送高温或有毒气体的烟道,应采用带有闸板 阀的密封采样孔(图 2) 图2带有闸板阀的密封采样孔

固定污染源废气监测的影响因素及应对措施

固定污染源废气监测的影响因素及应对措施 监测固定污染源废气必须确保其数据的准确性和精密性,然而因监测过程受到多种因素影响,给监测带来极大难度。为此,监测人员应对废气全程监测进行把握,以确保检测数据及监测质量的可靠和真实,为监测技术提供可靠的参考资料。 标签:固定污染源;废气监测;影响因素 一、影响固定污染源废气监测的因素 (一)对工业生产状况及其废气排放的监测 工业生产是重大的污染源,工业生产工况的变化给其废气排放量带来极大影响,而排放量的变化给监测质量带来一定影响。工业生产的工况不同时,其废气排放量存在较大差异,废气中污染物的含量也会存在较大差异。所以,监测污染源废气需要对监测时间进行准确控制,并明确工业生产工况周期,把握好各个时间段内的工况内容。监测废气排放的前期,必须明确污染源是否处于正常工作情况下的负荷量。而后对不同时段的废气排放量进行测量,并掌握其排放量變化状况,以进一步明确工况同废气排放量间的关系,为数据参照系统的构建及完善提供依据,对废气排放特征进行分析和把握,为监测的准确性提供保障。 (二)滤筒质量对监测效果的影响 样品采集时,通常以滤筒为介质来计算样品浓度和确定污染因子。因此,滤筒是监测废气的必备工具,其质量的优劣直接关系到监测效果的准确性和可靠性。因而选择滤筒时应严格关注其材质,挑选滤筒管壁好的滤筒,并确保其型号同检测器的匹配。使用滤筒过程中,对滤筒重量进行严格测量,以避免或降低其他因素对滤筒质量的影响,进而使废气监测的质量得以提高。 (三)样品数据的计算对监测结果的影响 如果样品数据计算不够准确同样会影响对固定污染源废气的监测结果。所以,计算样品数据时应严格按照技术规范及相关操作标准来计算样品浓度,计算参数必须准确,以此来确保计算结果的准确性。同时,计算排放筒废气排放量时,应以及其速率和浓度的合理分区来计算,并依据有关参数进行整个分析和计算。 二、提高固定污染源废气监测准确性的对策 (一)采样工作的精细化 采样工作同监测质量的关系密切,直接关系到监测结果的准确性。因此,应做好采样工作,达到精细化的程度。比如进行现场勘查,以此明确固定污染源废

总甲状腺素(TT4)测定试剂盒(电化学发光免疫分析法)产品技术要求lztk

总甲状腺素(TT4)测定试剂盒(电化学发光免疫分析法) 适用范围:本试剂盒用于体外定量测定人体血清样本中总甲状腺素(TT4)的含量。 1.1产品型号/规格:100人份/盒、200人份/盒。 1.2主要组成 试剂盒由磁分离试剂(M)、试剂a(Ra)、试剂b(Rb)和定标品(TT4-Cal)(选配)组成。组成及含量如下: 2.1 外观 2.1.1 试剂盒各组分应齐全、完整、液体无渗漏; 2.1.2 磁分离试剂摇匀后应为棕色含固体微粒的均匀悬浊液,无明显凝集、无絮状物; 2.1.3 其它液体组分应澄清,无异物,沉淀物或絮状物; 2.1.4 包装标签应清晰、无磨损、易识别。 2.2 空白限 应不大于0.420μg/dL 。 2.3 准确度 用T4国家标准品(150551)进行检测,实测值与理论值之比应在0.850-1.150之间。 2.4 线性 在[1.0,24.86]μg/dL范围内,线性相关系数的绝对值(|r|)应不小于0.9900。 2.5 精密度 2.5.1 分析内精密度

在试剂盒的线性范围内,浓度为(5.0±1.0μg/dL)和(20.0±4.0μg/dL)的样品检测结果的变异系数(CV)应不大于8%。 2.5.2 批间精密度 在试剂盒的线性范围内,用3个批号试剂盒分别检测浓度为(5.0±1.0μg/dL)和(20.0±4.0μg/dL)的样品,检测结果的变异系数(CV)应不大于15%。 2.6 特异性 2.6.1与三碘甲状腺原氨酸(T3) 测定浓度不低于500ng/mL的T3样品,其测定结果应不高于1.5μg/dL; 2.6.2 与反三碘甲状腺原氨酸(rT3) 测定浓度不低于50ng/mL的rT3样品,其测定结果应不高于1.5μg/dL。 2.7 效期末稳定性 本产品效期为15个月,试剂盒在2~8℃下保存至有效期末进行检测,检测结果应符合2.1、2.2、2.3、2.4、2.5.1的要求。 2.8 溯源性 依据GB/T21415-2008《体外诊断医疗器械生物样品中量的测量校准品和控制物质赋值的计量学溯源性》的要求,校准品溯源至国家标准品(编号150551)。

固定污染源废气颗粒物的测定β射线法.doc

《固定污染源废气颗粒物的测定β射线法》 (征求意见稿) 编制说明 标准编制组 二〇一九年十二月

目录 1 项目背景 (3) 1.1任务来源 (3) 1.2工作过程 (3) 2 标准制定的必要性分析 (4) 2.1颗粒物的环境危害 (4) 2.2颗粒物的治理技术 (4) 2.3颗粒物的监测方法 (5) 2.4现行颗粒物监测标准的实施情况和存在问题 (5) 3 国内外相关分析方法研究 (6) 3.1国外相关分析方法研究 (6) 3.2国内相关分析方法研究 (7) 3.3相关仪器方法原理研究 (8) 4 标准制定的基本原则和技术路线 (9) 4.1标准制定的基本原则 (9) 4.2标准制定的技术路线 (9) 5 方法研究报告 (10) 5.1方法研究目标 (10) 5.2适应范围 (10) 5.3规范性引用文件 (10) 5.4术语和定义 (11) 5.5方法原理 (11) 5.6试剂和材料 (12) 5.7仪器和设备 (13) 5.8样品 (16) 5.9结果计算与表示 (17) 5.10精密度和准确度 (18) 5.11质量保证和质量控制 (20) 5.12注意事项 (21) 6 方法验证 (21) 6.1验证方案的制定工作 (21) 6.2方法验证方案内容 (21) 6.3方法验证过程 (22) 6.4方法验证报告 (24) 7 仪器性能测试 (24) 8 Β射线源取得管理机构的豁免权 (25) 附件:方法验证报告 (28)

《固定污染源废气颗粒物的测定β射线法》 编制说明 1 项目背景 1.1 任务来源 (1)《固定污染源废气颗粒物的测定β射线法》标准制订项目列入2017年第一批辽宁省地方标准制修订项目计划,项目编号为2017019。 (2)《固定污染源废气颗粒物的测定β射线法》标准制订项目承担单位为辽宁省生态环境监测中心。 1.2 工作过程 (1)成立编制小组、编写有关文件 2019年3月,辽宁省生态环境监测中心作为本标准的承担单位与有关专家进行了联系,成立了由环境监测和仪器设计人员组成的标准制订小组。在调研文献资料、国内外颗粒物的测定β射线法及应用,充分考虑国内现有类似标准的基础上,形成标准初稿、制定实验室和现场验证方案。 主要起草人及其所做的工作: xx:第1起草人,负责调查研究、标准内容设计、标准草案起草和修改等全部工作; xx:主要起草人,参与标准技术路线的设计、草案的起草和修改工作; xx:主要起草人,参与方法应用过程中的采样及分析工作; xx:主要起草人,参与方法应用过程中的采样及分析工作; xx:主要起草人,参与方法应用过程中样品分析处理工作; xx:主要起草人,参与方法应用过程中的采样及分析工作; (2)召开专家论证会、修改有关文件 2019年10月,组织专家对标准初稿、实验室和现场验证方案设计进行开题论证,并根据专家的论证意见、建议对标准初稿以及验证方案进行适当的修改和补充完善。 (3)完成实验室和现场验证测试 2019年10月-2019年12月,组织验证单位进行实验室测试和现场验证,综合评价测试结果,调整分析方法的关键特性指标。

常见化学发光免疫分析技术比较

常见化学发光免疫分析技术比较 1、化学发光免疫分析 化学发光免疫分析(chemiluminescence immunoassay,CLIA),英音:[,kemi,lju:mi'nes?ns] [,imju:n?u?'sei] 是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。 CLIA是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。 1.1、化学发光免疫分析原理 化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hv) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。 1.2、化学发光免疫分析类型

化学发光免疫分析法以标记方法的不同而分为两种: (1)化学发光标记免疫分析法; (2)酶标记、以化学发光底物作信号试剂的化学发光酶免疫分析法 1.2.1化学发光标记免疫分析 化学发光标记免疫分析又称化学发光免疫分析(CL IA ) , 是用化学发光剂直接标记抗原或抗体的免疫分析方法。常用于标记的化学发光物质有吖啶酯类化合物-acridiniumester (AE) , 是有效的发光标记物,其通过起动发光试剂(NaOH-H2O2) 作用而发光, 强烈的直接发光在一秒钟内完成, 为快速的闪烁发光。吖啶酯作为标记物用于免疫分析, 其化学反应简单、快速、无须催化剂; 检测小分子抗原采用竞争法, 大分子抗原则采用夹心法, 非特异性结合少, 本底低; 与大分子的结合不会减小所产生的光量, 从而增加灵敏度。 1.2.2化学发光酶免疫分析 从标记免疫分析角度, 化学发光酶免疫分析(chemiluminescent enzyme immunoassay,CLEIA ) , 应属酶免疫分析, 只是酶反应的底物是发光剂, 操作步骤与酶免分析完全相同: 以酶标记生物活性物质(如酶标记的抗原或抗体) 进行免疫反应, 免疫反应复合物上的酶再作用于发光底物, 在信号试剂作用下发光, 用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP) 和碱性磷酸酶(AL P) , 它们有各自的发光底物。 12.2.1HRP 标记的CLEIA

固定污染源废气低浓度颗粒物的测定重量法

固定污染源废气低浓度颗粒物的测定重量法 (征求意见稿) 编制说明 编制组 2015年9月

一、项目背景 (3) 1.任务来源 (3) 2.工作过程 (3) 二、修订本标准的必要性分析 (3) 1.固定污染源颗粒物污染的危害 (4) 2.相关环保标准和环保工作的需要 (4) 3.现行环境监测分析方法标准的实施情况和存在问题 (4) 4.低浓度颗粒物测定技术的最新进展 (5) 三、国内外相关分析方法研究 (5) 1.主要国家、地区及国际组织相关分析方法研究 (5) 2.国内相关分析方法研究 (7) 四、标准制修订的基本原则和技术路线 (7) 1.标准制修订的基本原则 (7) 2.标准制修订的技术路线 (8) 五、方法研究报告 (10) 1.适用范围 (10) 2.规范性引用文件 (11) 3.术语和定义 (11) 4.方法原理 (11) 5.仪器和设备 (12) 6.采样位置和采样点 (13) 7.采样 (13) 8.结果与表述 (14) 9.质量控制措施 (14) 六、方法验证 (16) 1.实验内容 (16) 2.质量控制措施 (16) 3.验证实验室基本情况 (18) 4.验证实验结论 (18) 参考文献: (19)

一、项目背景 1.任务来源 2015年6月,河北省环境保护厅向河北省环境监测中心站下达了起草《固定污染源低浓度颗粒物的测定重量法》方法标准的任务。 标准的制定由河北省环境监测中心站牵头,石家庄环境监测中心、秦皇岛市环境保护监测站、兴隆县环境监测站、河北省大名市环境监测站、唐山永正环境监测有限公司协作;青岛明华电子仪器有限公司、青岛崂山应用技术研究所、青岛容广电子科技有限公司提供支持。 2.工作过程 按照河北省环境保护厅的要求,召集各参加单位,成立了标准编制小组,制定了详细的标准编制计划与任务分工,具体工作计划如下: (1)对国内外有关“低浓度颗粒物的测定重量法”的标准内容、包括测定原理、采样装置、采样程序、质量控制、结果计算及方法性能进行调研,对国内外固定污染源低浓度颗粒物采样设备的工作原理、测试方法、可行性及应用情况进行调研,对国内外相关分析方法进行研究比较,对国内固定污染源排放的相关法律、法规和政策进行分析研究,收集国内外关于低浓度颗粒物测定的文献资料,分类归纳。 (2)依据调研的内容,参考相关标准,确定标准的适用范围,并制定相应的技术路线; (3)对确定的技术指标和验证方案进行测试、比对,验证其可行性,形成测试报告和验证报告; (4)完成编制说明和标准文本。 目前,我们查阅了国内外“低浓度颗粒物的测定重量法”的相关标准、固定污染源颗粒物采样设备标准及检定规程、各类固定污染源颗粒物测定标准及烟尘烟气排放标准中颗粒物规定限值,结合我省各环境监测站和排废企业对低浓度颗粒物检测方法的应用研究及需求情况的广泛调研,进行了分类、归纳和总结,在此基础上完成了标准草案。 二、修订本标准的必要性分析

固定污染源废气挥发性有机物监测技术规范

ICS点击此处添加ICS号 点击此处添加中国标准文献分类号DB11 北京市地方标准 DB 11/ ****—2016 固定污染源废气挥发性有机物 监测技术规范 The Technical Specification for Monitoring of volatile organic compounds emitted from stationary source 点击此处添加与国际标准一致性程度的标识 (征求意见稿) (本稿完成日期:2016.07.01) 2016-XX-XX发布2016-XX-XX实施

目次 前言................................................................................ II 引言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 测定项目的确定 (2) 5 监测方法的选择 (2) 6 采样技术要求 (3) 7 样品的运输和保存 (5) 8 结果与计算 (6) 9 质量保证与质量控制 (6) 附录A(规范性附录)固定污染源废气苯系物的测定气袋采样-气相色谱质谱法 (8) 附录B(资料性附录)固定污染源废气非甲烷总烃或总烃标准监测方法表 (14) 附录C(资料性附录)固定污染源废气特征项目标准监测方法表 (15) 附录D(资料性附录)固定污染源废气中挥发性有机物的检测流程 (16)

固定污染源废气 氟化氢的测定 离子色谱法 (暂行)(HJ688-2013)

氟化氢检测(监测)方法指导书(方法标准号:HJ688-2013) 编制: 审核: 批准: 批准日期:

1方法原理 本方法采用加热的采样管连续从固定污染源采集废气样品,经加热的过滤器滤除颗粒物,废气样品进入冷却的碱性吸收液,气态氟化物被吸收生成氟离子。经离子色谱仪分离检测,保留时间定性,响应值定量。 2适用范围 本标准规定了测定固定污染源废气中氟化氢的离子色谱法。 本标准适用于固定污染源废气中气态氟化物的测定,以氟化氢浓度表示,不能测定碳氟 化物,如氟利昂。 当采样体积 120L,定容体积 200ml 时,检出限为 0.03mg/m 3 ,测定下限为 0.12mg/m 3 ; 定容体积 500ml 时,检出限为 0.08mg/m 3 ,测定下限为 0.32mg/m 3 。 3仪器及试剂 3.1 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂;水,GB/T 6682,二级。 3.1.1氢氧化钾(KOH)。 3.1.2无水碳酸钠(Na2CO3)。 3.1.3氟化钠(NaF),优级纯:在110℃下干燥 2h,于干燥器中保存。 3.1.4吸收液

3.1. 4.1氢氧化钾溶液:c(KOH) = 0.1mol/L。称取 5.6g 氢氧化钾(3.1.1),溶解于水,稀释至 1000ml。 3.1. 4.2氢氧化钾-碳酸钠溶液:c(KOH) = 0.006mol/L,c(Na2CO3) = 0.008mol/L。称取 0.33g 氢氧化钾(3.1.1) 和 0.85g 无水碳酸钠(3.1.2),溶解于水,稀释至 1000ml。 3.1.5 淋洗液 3.1.5.1氢氧化钾溶液:c(KOH) = 0.030mol/L。称取 1.7g 氢氧化钾(3.1.1),溶解于水,稀释至 1000ml。 3.1.5.2 氢氧化钾-碳酸钠溶液:c(KOH) = 0.0018mol/L,c(Na2CO3) = 0.0024mol/L。称取 0.1g 氢氧化钾 (3.1.1)和 0.26g 无水碳酸钠(3.1.2),溶解于水,稀释至 1000ml。 3.1.6 氟化钠标准贮备溶液:ρ(F-) = 500μg/ml。 称取 0.1105g 氟化钠(3.1.2)溶解于水中,移入 100ml 容量瓶中,用水稀释至标线,摇匀,贮于聚乙烯瓶中,在4℃下可保存一个月,临用时取出放至室温再用。也可使用有证标准溶液进行配制。 3.1.7氟化钠标准使用液:ρ(F-) = 5μg/ml。 吸取 1.00ml 氟化钠标准贮备溶液(3.1.6),移入 100ml 容量瓶中,用淋洗液(3.1.5)稀释至标线,摇匀,临用现配。 3.1.8 微孔滤膜:孔径0.45μm,材质为乙酸纤维或聚四氟乙烯(PTFE)。 3.2 仪器和设备 3.2.1 玻璃量器 除非另有说明,分析时均使用国家标准的 A 级玻璃量器。 3.2.2烟气采样器 烟气采样器应符合 HJ/T 47 的技术要求,由采样管、过滤装置、吸收单元、干燥器、冷却装置、流量计量和控制装置及抽气泵等组成,见图 1。抽气泵应保证足够的抽气量,当采 样系统负载阻力为 20kPa 时,抽气泵抽气流量应不低于 2.0L/min。

化学发光免疫分析技术题库1-0-8

化学发光免疫分析技术题库1-0-8

问题: [单选,A2型题,A1A2型题]下列有关化学发光错误的说法是(). A.化学发光是指伴随着化学反应过程所产生的光的发射现象 B.化学发光与荧光形成激发态分子的激发能相同 C.化学发光是吸收了化学能使分子激发而发射的光 D.大多数化学发光反应为氧化还原反应 E.化学发光必须提供足够的化学能 化学发光是吸收了化学能使分子激发而发射的光,而荧光是吸收了光能使分子激发而发射的光。

问题: [单选,A2型题,A1A2型题]下列关于化学发光效率说法错误的是(). A.又称化学发光反应量子产率 B.发光效率决定于生成激发态产物分子的化学激发效率 C.发光效率决定于激发态分子发射效率 D.发光效率、光辐射的能量大小以及光谱范围,完全由发光物质的性质决定 E.所有的发光反应都具有相同的化学发光效率 每一个发光反应都具有其特征性的化学发光光谱和不同的化学发光效率。

问题: [单选,A2型题,A1A2型题]化学发光剂的标记方法不包括(). A.碳二亚胺缩合法 B.过碘酸钠氧化法 C.重氮盐偶联法 D.N-羟基琥珀酰亚胺活化法 E.基因工程法 除选项E外,其余项均为化学发光剂的常用标记法。 (电子竞技 https://www.wendangku.net/doc/2f11341077.html,/)

问题: [单选,A2型题,A1A2型题]影响发光剂标记的因素有(). A.被标记蛋白的性质 B.原料比 C.标记率 D.温度 E.以上都是 影响发光剂标记的因素除上还有发光剂的选择、纯化与保存等因素。

问题: [单选,A2型题,A1A2型题]电化学发光法的检测范围很广,其检测灵敏度可达(). A.gL B.mgdl C.pgml D.ngml E.mgL 电化学发光法的检测灵敏度可达pgml。

固定污染源废气的采样检测

固定污染源废气采样与检测相关问题 1.采样时如何对锅炉的负荷进行调查? 答:可找企业陪同人看蒸汽流量表或到控制室看自动记录装置或锅炉生产运行记录;小锅炉若无蒸汽流量表,可核查锅炉入水量,即查水表;还可以用燃料消耗量和热值,结合燃烧效率、锅炉热效率推算蒸汽所含热量来折算蒸汽产量。比如记录锅炉热工仪表输入和输出量,通过热水量及热水升高温度计算热耗量,来测算实际生产负荷。计算示例:锅炉负荷=(监时蒸汽产量/锅炉公称产量)×100%。 2.采样开孔位置不满足方法标准和规范要求时该怎么办? 答:采样位置不符合方法标准和规范要求时,可要求排污企业对烟道进行改造,若因场地和工艺条件限制不能改造,很难满足要求时,可选择比较适宜的管段采样,但采样断面与弯头等的距离应至少是烟道直径的1.5倍,并应适当增加测点的数量和采样频次;也可对采样位置的流速场进行预测,如监测断面最大流速与最小流速之比大于3,则采样点至少加密1倍,可在水平和垂直方向都开孔来采样。 3.《大气污染物综合排放标准》(GB16297-1996)只给出了GB/T16157-1996,其它污染物监测应采用何方法? 答:GB16297-1996除引用了GB/T16157外还引用了GB3095,因此凡与GB3095同名的污染物监测均应采用GB3095表3规定的各污染物分析方法;对于其它污染物根据环函【2010】90号精神;“在监测环境质量标准和污染物排放标准中规定的污染物项目时,任何部门或单位都应采用依法制定、现行有效的环境监测方法标准和环境监测技术规范。”如硫酸雾和沥青烟的监测应分别采用HJ544-2016和HJ/T45-1999的方法来监测。 4.含氧量不属污染指标,但为什么固定污染源原排气监测还要测含氧量? 答:在固定污染源排气监测中,为了消除燃烧设备运行工况差异和人为稀释因素的影响,必须用标准规定的基准含氧量或过量空气系数进行折算,以避免基准含氧量或过量空气系数过小造成“浓缩”,使排放浓度“增加”;或因基准含氧量或过量空气系数值过大造成“稀释”,使排放浓度“降低”造成达标排放的假像。所以必须通过测氧含量来计算排放浓度。 5.是不是只要固定污染源颗粒物浓度小于20mg/m3,便不能用 GB/T16157-1996的方法? 答:根据根据环保部GB/T16157-1996修改单(2017年第87号公告)的含义,GB/T16157-1996只适用于颗粒物浓度>20mg/m3的废气。因此当颗粒物浓度小于20mg/m3时,除单台出力65t/h及以下的锅炉外,均不宜再采用GB/16157-1996监测,而应采用HJ836-2017来监测。 6.当烟气流速太低,烟尘采样器不能自动启动采样时该怎么办?

化学发光免疫分析方法的研究及应用

本文由:华夏学术传媒网提供https://www.wendangku.net/doc/2f11341077.html, 摘要:本文根据各化学发光免疫分析方法所使用标记物质的不同,将化学发光免疫分析方法分为化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法,并对各方法经典标记物质及分析方法原理进行了分析。同时,介绍了化学发光免疫分析方法在医学检验、食品安全及环境科学方面的应用进展情况。 关键词:化学发光免疫分析;分类;研究进展 化学发光是在常温下由化学反应产生的光的发射。其发光机理是:反应体系中的某些物质分子,如反应物、中间体或者荧光物质吸收了反应释放的能量而由基态跃迁到激发态,当中间体由激发态回到基态时会释放等能级的光子,对光子进行测定而实现定量分析[1]。 化学发光免疫分析方法是将化学发光与免疫反应相结合的产物,因化学发光具有荧光的特异性,但与荧光产生需要激发光不同,化学发光由化学反应产生光强度,并不需要激发光,从而避免了荧光分析中激发光杂散光的影响。化学发光免疫分析包含了免疫化学反应和化学发光反应两个部分。免疫分析系统是将化学发光物质或酶标记在抗原或抗体上,经过抗原与抗体特异性反应形成抗原-抗体免疫复合物。化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测。待测物质浓度因为与发光强度成一定的关系而实现检测目的[2]。 一、化学发光免疫分析方法的类别化学发光免疫分析法根据标记物的不同可分为3 大类,即化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法。(一)化学发光免疫分析化学发光免疫分析是用化学发光剂直接标记抗体或抗原的一类免疫测定方法。目前常见的标记物主要为鲁米诺类和吖啶酯类化学发光剂。 1. 鲁米诺类标记的化学发光免疫分析。鲁米诺类物质的发光为氧化反应发光。在碱性溶液中,鲁米诺可被许多氧化剂氧化发光,其中H2O2最为常用。因发光反应速度较慢,需添加某些酶类或无机催化剂。酶类主要是辣根过氧化物酶(HRP),无机类包括O3、卤素及Fe3+、Cu2+、Co2+和它们的配合物。鲁米诺在碱性溶液下可在催化剂作用下,被H2O2等氧化剂氧化成3-氨基邻苯二酸的激发态中间体,当其回到基态时发出光子。鲁米诺的发光光子产率约为0.01,最大发射波长为425 nm。 2. 吖啶酯类标记的化学发光免疫分析 吖啶酯用于化学发光免疫分析方法(ChemiluminescentImmunoassay,CLIA)由于热稳定性不是很好,Klee 等研究合成了更稳定的吖啶酯衍生物。在含有H2O2的碱性条件下,吖啶酯类化合物能生成一个有张力的不稳定的二氧乙烷,此二氧乙烷分解为CO2和电子激发态的N-甲基吖啶酮,当其回到基态时发出一最大波长为430 nm 的光子。吖啶酯类化合物量子产率很高,可达0.05。吖啶酯作为标记物用于免疫分析,发光体系简单、快速,不需要加入催化剂,且标记效率高,本底低。吖啶酯或吖啶磺酰胺类化合物应用于CLIA,通常采用HNO3+H2O2和NaOH 作为发光启动试剂,有些在发光启动试剂中加入Triton X-100,CTAC,Tween-20等表面活性剂以增强发光。(二)化学发光酶免疫分析化学发光酶免疫分析(Chemiluminescent Enzyme Immunoassay,CLEIA)是以酶标记生物活性物质进行免疫反应,免疫反应复合物上的酶再作用于发光底物,在信号试剂作用下发光,用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP)和碱性磷酸酶(ALP),它们有各自的发光底物。HRP 最常用发光底物是鲁米诺及其衍生物。在CLEIA 中,使用过氧化物酶标记抗体,进行免疫反应后,利用鲁米诺作为发光底物,在过氧化物酶和起动发光试剂(NaOH和H2O2)作用下鲁米诺发光,酶免疫反应物中酶的浓度决定了化学发光的强

相关文档
相关文档 最新文档