文档库 最新最全的文档下载
当前位置:文档库 › 历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

一、2019年高考数学上海卷:(本题满分18分)

已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合

{}*|,n S x x b n N ==∈.

(1)若120,3

a d π

==,求集合S ; (2)若12

a π

=

,求d 使得集合S 恰好有两个元素;

(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的

值.

二、2019年高考数学浙江卷:(本小题满分15分)

已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34

a =-时,求函数()f x 的单调区间;

(Ⅱ)对任意21[

,)e x ∈+∞均有()2f x a

≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2

*012(1),4,n n n x a a x a x a x n n +=+++

+∈N .已知2

3242a a a =.

(1)求n 的值;

(2)设(1n

a =+*,a

b ∈N ,求223a b -的值.

四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)

给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1

2

的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;

(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;

(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在

2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

已知函数l (n )f x x =.

(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-; (Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.

六、2018年高考数学江苏卷:(本小题满分16分)

设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;

(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对

2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).

七、2017年高考数学上海卷:(本小题满分18分)

设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;

(2)若()f x 是周期函数,证明:()f x 是常值函数;

(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.

八、2017年高考数学浙江卷:(本题满分15分)

已知数列{}n x 满足:1=1x ,()()

*11ln 1N n n n x x x n ++=++∈. 证明:当*N n ∈时, (I )10n n x x +<<;

(I I )1

122

n n n n x x x x ++-≤; (III )1-21122n n n x -≤≤.

高考压轴题答案

一、2019年上海卷: 解:(1)

等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合

{}*|,n S x x b n N ==∈.

当1

20,3

a d π==,

集合22S ??=?????

. (2)12

a π

=

,数列{}n b 满足()sin n n b a =,集合{}

*|,n S x x b n N ==∈恰好有两个元素,

如图:

根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,

②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时2

3

d π=, 综上,23

d π=或者d π=.

(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.

②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,

等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2

k d π

=,又1,2k ∴= 当1k =时满足条件,此时{,1,1}S =--.

③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,

因为(0,]d π∈,故1,2k =.

当1k =时,sin ,1,sin 10

10S π

π??=-???

?满足题意.

④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,

所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.

当1k =时,S =????

,满足题意.

⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者

72n n a d k a π+=-,(0,]d π∈,故1,2,3k =

当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有

2m n a a π-=,227

d m n ππ

=

=

-,7,7m n m -=>,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有

2m n a a π-=,247

d m n ππ

=

=

-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有

2m n a a π-=或者4π,267d m n ππ=

=-,或者467

d m n ππ

==

-,此时,m n -均不是整数,不符合题意. 综上,3,4,5,6T =.

二、2019年浙江卷:

解:(1)当34a =-时,()3ln 4

f x x =-()0,∞+,且:

()3'

4f x x =-

==, 因此函数()f x 的单调递增区间是1

2

ω=

,单调递减区间是()0,3.

(2)由1(1)2f a ≤

,得04a <

当0a <()f x 2ln 0x -≥,

令1

t a

=,则t ≥

设()22ln g t t x =,t ≥

则2

()2ln g t t x

=-,

(i )当1,7x ??∈+∞????

则()(22)2ln g x g x =,

记1()ln ,

7

p x x x =≥

则1()

p x x '

=

==

∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0

(ii )当211,7x e ??

∈????时,()g t g ≥,

令211()(1),,7q x x x x e ??

=++∈????

则()10q x

'

=

+>,

故()q x 在211,7e ??????上单调递增,1()7q x q ??

∴≤ ???

由(i )得11(1)077q p p ??

??=<= ? ?????

()0,()0

q x g t g ∴<∴≥=>,

由(i )(ii )知对任意21,,),

()0x t g t e ??

∈+∞∈+∞≥????,

即对任意21,x e ??∈+∞????,均有()f x ≤

综上所述,所求的a 的取值范围是? ??

三、2019年江苏卷:

解:(1)因为0122(1)C C C C 4n n n

n n n n x x x x n +=+++

+≥,, 所以2

323(1)(1)(2)C ,C 26

n n

n n n n n a a ---====, 44(1)(2)(3)

C 24

n

n n n n a ---==. 因为2

3242a a a =,

所以2(1)(2)(1)(1)(2)(3)

[

]26224

n n n n n n n n n ------=??,

解得5n =.

(2)由(1)知,5n =.

5(1(1n +=+

022334455

55555C C C C C C =++++

a =+

因为*

,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,

从而222237634432a b -=-?=-.

四、2018年上海卷:

解:(1)数列{}n b 与{}n a 接近.

理由:{}n a 是首项为1,公比为1

2

的等比数列,

可得112n n a -=

,11

112

n n n

b a +=+=+, 则011111111222

n n n n b a ---=

+-=-<,*

n N ∈, 可得数列{}n b 与{}n a 接近;

(2){}n b 是一个与{}n a 接近的数列, 可得11n n n a b a +-≤≤,

数列{}n a 的前四项为:11a =,22a =,34a =,48a =, 可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,

可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,

集合1234{|,}i M x x b i ===,,,, M 中元素的个数3m =或4;

(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,

可得11n a a n d =+

-(), ①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>, 则21b b -,32b b -,?,201200b b -中有200个正数,符合题意; ②若0d =,取11

n b a n

=-

,则11111n n b a a a n n -=--=<,*n N ∈,

可得111

01

n n b b n n +-=

->+, 则21b b -,32b b -,?,201200b b -中有200个正数,符合题意; ③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,

则()2212211120n n n n b b a a d ---=+--=+>,

则21b b -,32b b -,?,201200b b -中恰有100个正数,符合题意; ④若2d

-,若存在数列{}n b 满足:{}n b 与{}n a 接近,

即为11n n n a b a -+,11111n n n a b a +++-+, 可得()111120n n n n b b a a d ++-+--=+,

21b b -,32b b -,?,201200b b -中无正数,不符合题意.

综上可得,d 的范围是(2,)-+∞.

五、2018年浙江卷:

解:(Ⅰ)函数()f x

的导函数1()f x x

'=

-, 由12()()f x f x ''=

12

11x x -=-, 因为12x x ≠

12

+=.

= 因为12x x ≠,所以12256x x >.

由题意得121212()()ln ln ln()f x f x x x x x ++=

设()ln g x x =,

则1

()4)4g x x

'=,

所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-,

即12()()88ln 2f x f x +>-. (Ⅱ)令()

e

a k m -+=,2

11a n k ?+?=+ ???

,则

()?0f m km a a k k a -->+-≥,

(0)f n kn a a n k n ?

----

<,

所以,存在0(,)x m n ∈)使00()f x kx a =+,

所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点. 由()f x kx a =+

得k =.

设()h x =

则22

ln 1()12()x a

g x a h x x x +--+'==

其中()ln g x x =

-. 由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤, 故–11613420g x a g a ln a -+-+=-++()≤()-≤,

所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.

综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.

六、2018江苏卷:

解:(Ⅰ)由题意得||1n n a b -≤

对任意1,2,3,4n =均成立 故当10a =,121q b ==时

可得|01|1

|2|1|24|1|38|1d d d -??-?

?-??-?≤≤≤≤即13352

2753

2d d d ?

??

??????≤≤≤≤≤≤

所以7

532

d ≤≤

(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立 把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+≤…,)

化简后可得1

11

11112(22)(222)

0(2,3,1)111

n n n m b q b b b q n n n m n n n ----=-+=-+=+---≤…,

因为q ∈,所以12

2n m

-≤,22(2,3,1)n n m -=+≤…,

而110(2,3,,11

n

b q n m n

->=+-…)

所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立 当1m =时,112)b d ≤

当2m ≥时,设1

11

n n b q c n -=-,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m n

n n n --+---=-==--… 设()(1)f n q n q =--,因为10q ->,所以()f n 单调递增,又因为q ∈

所以11()(1)(1)2(1)2111m m m f m q m q m m m m ??

??

?=----=-- ? ?-?? ?

-?

?≤ 设

111,0,2x x x m m ??

==∈ ???

,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =-- 因为2ln 22ln 2x ≤,

2

1

4(1)x -≥

所以'21(x)2ln 20(1)x g x =-

<-在10,2x ??

∈ ???

上恒成立,即()f x 单调递增。

所以()g x 的最大值为1202g ??

< ???

,所以()0f m <

∴()0f n <对2n m ≤≤均满足,所以{}n c 单调递减

∴112,m m

b q b q d m m ??-∈????()

七、2017上海卷:

(1)解:由12(())f x f x ≤,得331212()()()0f x f x a x x -=-≤,

12x x <,33120x x ∴-<,得0a ≥.

故a 的范围是[0)+∞,;

(2)证明:若()f x 是周期函数,记其周期为k T ,任取0x ∈R ,则有

00(())k f x f x T =+,

由题意,对任意00[]k x x x T ∈+,,00(()())k f x f x f x T +≤≤, ∴00(()())k f x f x f x T ==+. 又∵00(())k f x f x nT n =+∈Z ,,并且

0000000000[][3222][][][]k k k k k k k k x T x T x T x T x T x x x T x T x T R

?+++?=-,--,-﹣,,,,

∴对任意0()()x f x f x C ∈==R ,,为常数;

(3)证明:充分性:若()f x 是常值函数,记1()f x c =,设()g x 的一个周期为g T ,则

1()()h x c g x =,则对任意0x ∈R ,

010100(((())))g g h x T c g x T c g x h x +=+==,

故()h x 是周期函数;

必要性:若()h x 是周期函数,记其一个周期为T h .

若存在1x ,2x ,使得1()0f x >,且2()0f x <,则由题意可知,

12x x >,那么必然存在正整数1N ,使得211k x N T x +>,

∴211)(()0k f x N T f x +>>,且212k h x N T h x +=()(). 又222))0)(((h x g x f x =<,而

21212120k k k h x N T g x N T f x N T h x +=++≠()()()>(),矛盾. 综上,()0f x >恒成立. 由()0f x >恒成立,

任取0x A ∈,则必存在2N ∈N ,使得020h g x N T x T -≤-, 即00020[][]g h x T x x N T x ?-,-,,

0000000000[][3222][][][]k k k k k k k k x T x T x T x T x T x x x T x T x T R

----??+++?=,,﹣,,,, ∴

02020200020202[][][]]22[h h h h h h x N T x N T x N T x x x N T x N T x N T R

?++?=--+,-,,,.

000020202))))))((((((h h h h x g x f x h x N T g x N T f x N T =---==,

∵002002((0))))((0h h g x M g x N T f x f x N T =--≥>,≥>.

因此若002))((h h x h x N T -=,必有002(())h g x M g x N T -==,且002h f x f x N T c -==()(). 而由(2)证明可知,对任意0()()x f x f x C ∈==R ,,为常数. 综上,必要性得证.

八、2017年浙江卷:

解:(Ⅰ)用数学归纳法证明:0n x >. 当1n =时,110x =>. 假设n k =时,0k x >,

那么+1n k =时,若10k x +≤,则()110=+ln 1+0k k k x x x ++≤<,矛盾,故10k x +>. 因此()n 0N*x n ∈>.

所以()111=+ln 1+n n n n x x x x +++>. 因此()10N*n n x x n +∈<≤. (Ⅱ)由()11=+ln 1+n n n x x x ++得,

()()2111111x -4=+2=22ln 1+n n n n n n n n n x x x x x x x x ++++++-++.

记函数()()()2()22ln 1+0f x x x x x x =-++≥,

()()22()ln 1+001

x x f x x x x +'=++>≥,

函数()f x 在[)0+∞,

上单调递增,所以()(0)=0f x f ≥,因此 ()()211111x 22ln 1+=()n n n n n x x x f x +++++-++≥0,

故()1

12N*2

n n n n x x x x n ++-≤

∈. (III )因为()11111x ln 1+2n n n n n n x x x x x +++++=+≤+=, 所以1

12

n n x -≥. 由

1122n n n n x x x x ++-≥得

111

112022n n x x +??-- ???

≥>, 所以

1-21111111-22=2222n n n n n x x x

--????

-- ? ?????≥≥…≥, 故2

1

2n n x -≤

.

综上,()1211

N*22

n n n x n --∈≤≤.

2017年高考全国1卷理科数学试题和答案解析

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将 试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8 C . 12 D . π4 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高考数学压轴题含答案

高考数学压轴题含答案 RUSER redacted on the night of December 17,2020

【例 1】已知12,F F 为椭圆 2 2 221(0)x y a b a b +=>>的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为B A ,,若1ABF ?为等边三角形,则椭圆的离心率为( ) 1 1 C. 1 2 【课堂笔记】 【规律总结】 ............................................................................................................................................................................................................ 【例2】已知函数 x x x x ax x f ln ln )(2 -- +=有三个不同的零点321,,x x x (其中321x x x <<),则 211)ln 1(x x -)ln 1)(ln 1(3 322 x x x x --的值为 ( ) A .a -1 B .1-a C .1- D .1 【课堂笔记】 【规律总结】 【例3】已知函数()2h x x ax b =++在 ()0,1上有两个不同的零点,记 {}()( )min ,m m n m n n m n ≤??=?>??,则 ()(){}min 0,1h h 的取值范围 为 . 【课堂笔记】 【规律总结】 ........................................................................................................................................................................................................... 【例4】下表是一个由2n 个正数组成的数 表,用ij a 表示第i 行第j 个数(),,i j N ∈已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知 113161351,9,48.a a a a =+== (1)求1n a 和4n a ; (2)设 ()() ()() 4144121n n n n n n a b a n N a a += +-∈--,求数列{}n b 的前n 项和n S . 【例5】在平面直角坐标系中动点() ,P x y 到圆()2 2 :11F x y +-=的圆心F 的距离比 它到直线2y =-的距离小1. (1)求动点P 的轨迹方程;

高考理科数学压轴题及答案汇编

高考理科数学压轴题 (21)(本小题满分 12 分)已知椭圆 C 的中心在坐标原点 ,焦点在 x 轴上,椭圆 C 上的点到焦点 的距离的最大值为 3,最小值为 1. (I) 求椭圆 C 的标准方程 ; (II) 若直线l : y kx m 与椭圆 C 相交于 A,B 两点(A,B 不是左右顶点 ),且以 AB 为直径的圆 过椭 圆 C 的右顶点 .求证 :直线 l 过定点 ,并求出该定点的坐标 . (22)(本小题满分 14分)设函数 f(x) x 2 bln(x 1),其中 b 0. 1 (I) 当 b 时 ,判断函数 f (x) 在定义域上的单调性 ; 2 (II)求函数 f (x)的极值点 ; 1 1 1 (III) 证明对任意的正整数 n ,不等式 ln( 1) 2 3 都成立 . n n n 22 xy (21)解: (I) 由题意设椭圆的标准方程为 2 2 1(a b 0) ab 2 a c 3,a c 1,a 2,c 1, b 2 3 22 x 2 y 2 1. 43 Q 以AB 为直径的圆过椭圆的右顶点 D(2,0), k AD k BD 1, y kx m (II)设 A(x 1, y 1),B(x 2,y 2), 由 2 x 2 y 得 1 4 3 2 2 2 (3 4k 2 )x 2 8mkx 4(m 2 3) 2 2 2 64m 2 k 2 16( 3 4k 2)( 2 m 3) 0, 22 3 4k 2 m 2 0 8mk 2 ,x 1 x 2 2 4(m 2 3) 3 4k 2 y 1 y 2 2 (kx 1 m) (kx 2 m) k x 1x 2 mk(x 1 x 2) m 2 3(m 2 4k 2) 3 4k 2

2017高考数学压轴题+黄冈压轴100题

2017高考压轴题精选 黄冈中学高考数学压轴100题 目录 1.二次函数 ................................................................................................................................................................................ 2 2 复合函数 ............................................................................................................................................................................... 4 3.创新型函数............................................................................................................................................................................. 6 4.抽象函数 .............................................................................................................................................................................. 12 5.导函数——不等式 ............................................................................................................................................................... 13 6.函数在实际中的应用 ........................................................................................................................................................... 20 7. 函数与数列综合 ................................................................................................................................................................. 22 8.数列的概念与性质 ............................................................................................................................................................... 33 9. Sn 与an 的关系 ................................................................................................................................................................... 38 10.创新型数列......................................................................................................................................................................... 41 11.数列—不等式 ..................................................................................................................................................................... 43 12.数列与解析几何 .............................................................................................................................................................. 47 13.椭圆 ................................................................................................................................................................................. 49 14.双曲线 ................................................................................................................................................................................ 52 15.抛物线 ................................................................................................................................................................................ 56 16 解析几何中的参数范围问题 .......................................................................................................................................... 58 17 解析几何中的最值问题 .................................................................................................................................................. 64 18 解析几何中的定值问题 .................................................................................................................................................... 67 19 解析几何与向量 .......................................................................................................................................................... 70 20 探索问题............................................................................................................................................................................ 77 (1)2a b c π++..., ....................................................................................................................................................... 110 (2)2a b c π++< (110)

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

2018高考理科数学选填压轴题专练32题(含详细答案)

学校 年级 姓名 装 装 订 线 一.选择题(共26小题) 1.设实数x ,y 满足 ,则z= +的取值范围是( ) A .[4,] B .[,] C .[4,] D .[,] 2.已知三棱锥P ﹣ABC 中,PA ⊥平面ABC ,且,AC=2AB ,PA=1,BC=3, 则该三棱锥的外接球的体积等于( ) A . B . C . D . 3.三棱锥P ﹣ABC 中,PA ⊥平面ABC 且PA=2,△ABC 是边长为的等边三角形, 则该三棱锥外接球的表面积为( ) A . B .4π C .8π D .20π 4.已知函数f (x +1)是偶函数,且x >1时,f ′(x )<0恒成立,又f (4)=0,则(x +3)f (x +4)<0的解集为( ) A .(﹣∞,﹣2)∪(4,+∞) B .(﹣6,﹣3)∪(0,4) C .(﹣∞,﹣6)∪(4,+∞) D .(﹣6,﹣3)∪(0,+∞) 5.当a >0时,函数f (x )=(x 2﹣2ax )e x 的图象大致是( ) A . B . C D . 6.抛物线y 2=4x 的焦点为F ,M 为抛物线上的动点,又已知点N (﹣1,0),则 的取值范围是( ) A .[1,2 ] B . [ , ] C .[ ,2] D .[1, ] 7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多 织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( ) A .55 B .52 C .39 D .26 8.已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3+x 2,若不等式f (﹣4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A . B . C . D . 9.将函数 的图象向左平移 个单位得到y=g (x )的图象,若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,|x 1﹣x 2|min = ,则φ的值是( ) A . B . C . D . 10.在平面直角坐标系xOy 中,点P 为椭圆C :+=1(a >b >0)的下顶点, M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若α∈ (,],则椭圆C 的离心率的取值范围为( ) A .(0, ] B .(0 , ] C .[ , ] D .[ , ]

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

北京市高考数学压轴题汇编51题(含答案)

1.如图,正方体1111ABCD A B C D -中,E ,F 分别为 棱1DD ,AB 上的点. 已知下列判断: ①1 AC ^平面1B EF ;②1B EF D 在侧面11BCC B 上 的正投影是面积为定值的三角形;③在平面 1111A B C D 内总存在与平面1B EF 平行的直线;④平 面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位 置无关. 其中正确判断的个数有 (A )1个 (B )2个 (C )3个 (D )4个(B ) 2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F//面A 1BE ,则B 1F 与平面CDD 1C 1 所成角的正切值构成的集合是 C A. {}2 B. 255?? ? ??? C. {|222}t t ≤≤ D. 2 {|52}5 t t ≤≤ 3. 如图,四面体OABC 的三条棱OC OB OA ,,两两垂直,2==OB OA ,3=OC ,D 为四 面体OABC 外一点.给出下列命题. ①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等 ④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是D (A )①② (B )②③ (C )③ (D )③④ 4. 在一个正方体1111ABCD A B C D -中,P 为正方形 1111A B C D 四边上的动点,O 为底面正方形ABCD 的中心, ,M N 分别为,AB BC 中点,点Q 为平面ABCD 内一点,线段1D Q 与OP 互相平分,则满足MQ MN λ=u u u u r u u u u r 的实数λ的值 有 C A. 0个 B. 1个 C. 2个 D. 3个 5. 空间点到平面的距离定义如下:过空间一点作平面的垂线,这点和垂足之间的距离叫做 A B C D E 1A 1 D 1 B 1 C O A B D C A 1 D 1 A 1 C 1 B D C B O P N M Q

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

高考理科数学压轴题及答案汇编

高考理科数学压轴题 (21)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (I)求椭圆C 的标准方程; (II)若直线:l y kx m =+与椭圆C 相交于A,B 两点(A,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标. (22)(本小题满分14分)设函数2 ()ln(1)f x x b x =++,其中0b ≠. (I)当1 2 b > 时,判断函数()f x 在定义域上的单调性; (II)求函数()f x 的极值点; (III)证明对任意的正整数n ,不等式2 3111 ln(1)n n n +>-都成立. (21)解:(I)由题意设椭圆的标准方程为22 221(0)x y a b a b +=>> 3,1a c a c +=-=,22,1,3a c b === 22 1.43 x y ∴+= (II)设1122(,),(,)A x y B x y ,由2214 3y kx m x y =+?? ?+=??得 222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +->. 2121222 84(3) ,.3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()().34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ Q 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ?=-,

数学专题 高考数学压轴题15

新青蓝教育高考数学压轴100题1二次函数 2复合函数 3创新性函数 4抽象函数 5导函数(极值,单调区间)--不等式 6函数在实际中的应用 7函数与数列综合 8数列的概念和性质 9 Sn与an的关系 10创新型数列 11数列与不等式 12数列与解析几何 13椭圆 14双曲线 15抛物线 16解析几何中的参数范围问题 17解析几何中的最值问题 18解析几何中的定值问题 19解析几何与向量 20探究性问题

15.抛物线 例1.已知抛物线C :2 2y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N . (Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行; (Ⅱ)是否存在实数k 使0=?NB NA ,若存在,求k 的值;若不存在,说明理由. 解:(Ⅰ)如图,设 211(2) A x x ,, 222(2) B x x ,,把2y kx =+代入22y x =得2220x kx --=, 由韦达定理得 122k x x += ,121x x =-, ∴ 1224N M x x k x x +=== ,∴N 点的坐标为248k k ?? ???,. 设抛物线在点N 处的切线l 的方程为 284k k y m x ? ?-=- ? ??, 将2 2y x =代入上式得2 2 2048mk k x mx -+-=, 直线l 与抛物线C 相切, 22 22282()0 48mk k m m mk k m k ??∴?=--=-+=-= ???,m k ∴=. 即l AB ∥. (Ⅱ)假设存在实数k ,使0NA NB = ,则NA NB ⊥,又M 是AB 的中点, 1 ||||2MN AB ∴= . 由(Ⅰ)知121212111 ()(22)[()4] 222M y y y kx kx k x x =+=+++=++ 2 2142224k k ??=+=+ ???. MN ⊥ x 轴,22216 ||||2488M N k k k MN y y +∴=-=+-= . 又 222121212 ||1||1()4AB k x x k x x x x =+-=++- x A y 1 1 2 M N B O

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训练一(含答案及解析详解) 1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点. (Ⅰ)求这三条曲线的方程; (Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由. 解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: ………………………………………………(1分) 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆, 1222a MF MF =+ + ( 2 2 2222211321 a a b a c ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分) 对于双曲线,1222a MF MF '=- = 2222221321 a a b c a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分) (Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H 令()11113,,,22x y A x y +?? ∴ ?? ? C ………………………………………………(7分) ()111231 23 22 DC AP x CH a x a ∴= =+=-=-+

()()( )22 2 2 2 2111212 1132344-23246222 DH DC CH x y x a a x a a a DH DE DH l x ????∴=-= -+--+??? ?=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分) 2.(14分)已知正项数列{}n a 中,16a = ,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上. (Ⅰ)求数列{}{},n n a b 的通项公式; (Ⅱ)若()()() n n a f n b ??=???, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n , 不等式 1 120111111n n n a b b b +≤?? ???? +++ ? ???? ????? L 成立,求正数a 的 取值范围. 解:(Ⅰ)将点(n n A a 代入21y x =+中得 ()11111115:21,21 n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-?=+=+∴=+ 直线 …………………………………………(4分) (Ⅱ)()()()521n f n n ?+?=?+??, n 为奇数, n 为偶数………………………………(5分) ()()()()()()27274275421,42735 227145,2 4k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==Q 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。 ……………………(8分) (Ⅲ)由 1 120111111n n n a b b b +- ≤?? ???? +++ ? ???? ????? L

相关文档
相关文档 最新文档