文档库 最新最全的文档下载
当前位置:文档库 › 高中数学题型解法归纳《归纳法、定义法、公式法、累加法、累乘法》

高中数学题型解法归纳《归纳法、定义法、公式法、累加法、累乘法》

高中数学题型解法归纳《归纳法、定义法、公式法、累加法、累乘法》
高中数学题型解法归纳《归纳法、定义法、公式法、累加法、累乘法》

【知识要点】

一、数列的通项公式

如果数列{}n a 的第n 项n a 和项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.即()n a f n =.不是每一个数列都有通项公式.不是每一个数列只有一个通项公式. 二、数列的通项的常见求法:通项五法

1、归纳法:先通过计算数列的前几项,再观察数列中的项与系数,根据n a 与项数n 的关系,猜想数列的通项公式,最后再证明.

2、公式法:若在已知数列中存在:)0(,)(1

1≠==-++q q a a d a a n

n n n 或

常数的关系,可采用求等差数列、等比数列的通项公式的求法,确定数列的通项;若在已知数列中存在:)()(n f S a f S n n n ==或的关系,

可以利用项和公式11(1)

(2)n n

n S n a S S n -=?=?-≥?,求数列的通项.

3、累加法:若在已知数列中相邻两项存在:1()(2)n n a a f n n --=≥的关系,可用“累加法”求通项.

4、累乘法:若在已知数列中相邻两项存在:

1

()(2)n

n a g n n a -=≥的关系,可用“累乘法”求通项. 5、构造法:(见下一讲) 【方法讲评】

【例1】在数列{n a }中,16a =,且1

11n n n a a n n

---=++*(,2)n N n ∈≥, (1)求234,,a a a 的值;

(2)猜测数列{n a }的通项公式,并用数学归纳法证明.

【点评】(1)本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明.(2)归纳法在主观题中一般用的比较少,一是因为它要给予严格的证明,二是有时数列的通项并不好猜想.如果其它方法实在不行,再考虑利用归纳法.

【反馈检测1】在单调递增数列{}n a 中,11a =,22a =,且2122

1,,n n n a a a -+

成等差数列,22122

,,n n n a a a ++成等比数列,1,2,3,

n =.

(1)分别计算3a ,5a 和4a ,6a 的值; (2)求数列{}n a 的通项公式(将n a 用n 表示);

(3)设数列1{}n a 的前n 项和为n S ,证明:42

n n S n <+,n *∈N .

【例2】已知数列{}n a ,n S 是其前n 项的和,且满足21=a ,对一切*∈N n 都有2

32

1++=+n S S n n 成立,设n a b n n +=.

(1)求2a ;(2)求证:数列{}n b 是等比数列; (3)求使

81

40

11121>+???++n b b b 成立的最小正整数n 的值.

【点评】利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项. 【反馈检测2】已知等比数列{n a }中,164a =,公比1q ≠,234,,a a a 又分别是某等差数列的第7项,第

3项,第1项.

(1)求n a ;(2)设2log n n b a =,求数列{||}n b 的前n 项和n T .

【例3】数列{n a }的前n 项和为n S ,1a =1,12n n a S += ( n ∈N *

),求{n a }的通项公式.

【点评】(1)已知)()(n f S a f S n n n ==或,一般利用和差法.如果已知1()n n S f a +=1()n f a -或也可 以采用和差法.(2)利用此法求数列的通项时,一定要注意检验1n =是否满足,能并则并,不并则分.

【例4】已知函数x x x f 63)(2

+-= ,n S 是数列}{n a 的前n 项和,点(,)n n S (n N *∈)在曲线)

(x f y =上.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若1)21

(-=n n b ,6

n

n n b a c ?=

,且n T 是数列}{n c 的前n 项和. 试问n T 是否存在最大值?若存在,请求出n T 的最大值;若不存在,请说明理由.

【解析】(Ⅰ)因为点(,)n n S 在曲线)(x f y =上,又x x x f 63)(2

+-=,所以n n S n 632

+-=.

当1n =时,311==S a .

当1n >时,22

1(36)[3(1)6(1)]96n n n a S S n n n n n -=-=-+---+-=-

所以n a n 69-=.

(Ⅱ)因为1

11

(96)()1112(),(32)()2662

n n n n n n n n b c a b n ---====- ①所以 231111

(1)()(3)()(32)(),2222n n T n =+-+-++- ②

234111111

()(1)()(3)()(32)(),22222

n n T n +=+-++-++- ③ ②-③得 132)21

)(23()21)(2()21)(2()21)(2(2121+---++-+-+=n n n n T

112)21)(23(211]

)21(1[)21()2(21+-----=-+=n n n .

整理得1)2

1

)(12(-+=n n n T , ④

方法一 利用差值比较法

由④式得1)2

1)(32(11-+=++n n n T ,所以

111111(23)()(21)()[(23)()(21)]()

2222

3111[(21)]()()().

2222

n

n n n n n n

T T n n n n n n n ++-=+-+=+-+=+-+=-

因为1≥n ,所以

02

1

<-n . 又0)2

1(>n ,所以01<-+n n T T 所以n n T T <+1,

所以 >>>>>>+1321n n T T T T T . 所以T n 存在最大值11.2

T =

方法三 利用放缩法

由①式得0)2

1)(21()21)](1(23[111<-=+-=+++n n n n n c ,又因为n T 是数列}{n c 的前n 项和, 所以n n n n T c T T <+<++11. 所以 >>>>>>+1321n n T T T T T 所以n T 存在最大值2

11=

T . 【反馈检测3】已知数列{n a }的前n 项和1412

2333

n n n S a +=-?+(1,2,3,4n =???),求{n a }的通项公式.

【例4】已知数列{}n a ,{}n b ,11=a ,112--+=n n n a a ,1

11

+-+=n n n n a a a b ,n S 为数列{}n b 的前n 项和,n

T 为数列{}n S 的前n 项和.

(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n S ;(3)求证:3

12->n T n . 【解析】(1)法一:112--+=n n n a a 112211)()()(a a a a a a a a n n n n n +-++-+-=∴--- ,

122

121122

2

2

1

-=--=++++=--n n

n n

【点评】(1)本题11n n a a n --=-,符合累加法的使用情景1()(2)n n a a f n n --=≥,所以用累加法求数列的通项.(2)使用累加法时,注意等式的个数,是1n -个,不是n 个.

【反馈检测4】已知数列{}n a 满足112313n

n n a a a +=+?+=,,求数列{}n a 的通项公式.

【例5】已知数列{}n a 满足n n n a a n a a 求,1

,311+==

+

【点评】(1)由已知得

,1

1+=+n n a a n n 符合累乘法求数列通项的情景,所以使用累乘法求该数列的通项.(2)使用累乘法求数列的通项时,只要写出1n -个等式就可以了,不必写n 个等式.

【反馈检测5】 已知数列{}n a 满足112(1)53n

n n a n a a +=+?=,,求数列{}n a 的通项公式.

高中数学常见题型解法归纳及反馈检测第36讲:

数列通项的求法一(归纳法、定义法、公式法、累加法、累乘法)参考答案

【反馈检测1答案】33a =,56a =,49

2

a =

,68a =

.

①当1=n 时,21111a a ?-==,221

222

a ?==,猜想成立; ②假设(1,*)n k k k N =≥∈时,猜想成立,即21

(1)

2

k k k a -+=

,22(1)2k k a +=,那么 []22(1)121221

(1)(1)1(1)(1)22222

k k k k k k k k k a a a a +-+-+++++==-=?-=,

[]

[]2

2

2

2

2

12(1)22

2

2(1)(2)(1)1(2)22

2

(1)2

k k k k

k k k a k a a a k ++++++++====

=

+

∴1+=k n 时,猜想也成立.由①②,根据数学归纳法原理,对任意的*n N ∈,猜想成立.

∴当n 为奇数时,8

)

3)(1(212121++=???

??+++=n n n n a n ;

当n 为偶数时,8

)2(21222

+=

?

??

??+=n n a n . 即数列}{n a 的通项公式为???????+++=为偶数为奇数n n n n n a n ,8

)2(,8

)

3)(1(2

(方法2)由(2)得???

?

??

?

+++=为偶数为奇数n n n n n a n ,)2(8

,)3)(1(812

. 以下用数学归纳法证明2

4+

S n ,*n N ∈. ①当1=n 时,2

114341111+?=<==

a S ; 当2=n 时,2

22

422321111212+?=<=+=+=

a a S .∴2,1=n 时,不等式成立. ②假设)2(≥=k k n 时,不等式成立,即2

4+

S k , 那么,当k 为奇数时,

2

1

1)3(8

241+++<

+

=++k k k a S S k k k 2

2)3)(2(83)1(431)3(2243)1(4++-++=??

????++-++++++=

k k k k k k k k k k k 2)1()

1(4+++

)

4)(2(8

2411

1++++<

+

=++k k k k a S S k k k )4)(3)(2(83)1(431)4)(2(2243)1(4+++-++=??

????++-+++++++=

k k k k k k k k k k k k k

2

)1()

1(4+++<

k k .∴1+=k n 时,不等式也成立.

综上所述:42

n n

S n <

+ 【反馈检测2答案】(1)1164()2n n a -=?;(2) n T =??

???

>+--≤-).

7(212)6)(7(),7(2)13(n n n n n n

.

【反馈检测3答案】42n n

n a =-

【反馈检测4答案】3 1.n

n a n =+-学科*网

【反馈检测4详细解析】由1231n n n a a +=+?+得1231n

n n a a +-=?+则

11232211

()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+1221(231)(231)(231)(231)3n n --=?++?++

+?++?++12212(3333)(1)3n n n --=++

+++-+

13(13)2(1)313

n n --=+-+-3313n n =-+-+31n n =+- 所以3 1.n n a n =+-

【反馈检测5答案】(1)1

2

32

5

!.n n n n a n --=???

【反馈检测5详细解析】因为112(1)53n

n n a n a a +=+?=,,所以0n a ≠,则

1

2(1)5n n n

a n a +=+, 故1

32

112

21

n n n n n a a a a a a a a a a ---=

???

?? 1221[2(11)5][2(21)5][2(21)5][2(11)5]3

n n n n --=-+-+??+?+??1(1)(2)21

2[(1)32]53n n n n n --+-+

++=-?

????

(1)1

2

32

5!n n n n --=???

所以数列{}n a 的通项公式为(1)1

2

325

!.n n n n a n --=???

高中数学模型解题法

高中数学模型解题法 高中数学模型解题理念 数学模型解题首先需要明确以下六大理念(原则): 理念之一——理论化原则。解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价 值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的! 理论之二——个性化原则。倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。 理论之三——能力化原则。只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力

聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔! 理论之四——示范化原则。任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。 理论之五——形式化原则。哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。 理论之六——习惯性原则。关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题“统一”模型的思考。第三个层次,主动的解题,就是对题

[高中数学解题技巧]高中数学模型解题法

竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除 [高中数学解题技巧]高中数学模型解题 法 高中数学教学中,提升数学学习水平的关键是教师要教会学生解题的技巧和方法,好的解题技巧和方法能使学生的解题效率得到提升。接下来小编为你整理了高中数学解题技巧,一起来看看吧。 高中数学解题技巧之19条铁律 铁律1 函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

铁律2 如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。 铁律3 面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是…… 铁律4 选择与填空中出现不等式的题目,优选特殊值法。

铁律5 求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。 铁律6 恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。 铁律7 圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,

与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。 铁律8 求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。 铁律9 求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。 铁律10

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学抛物线的一个重要模型(模型解题法)

【模型解题法】高中数学抛物线焦点弦模型 【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。 过抛物线)0(22 >=p px y 的焦点弦,A B 分别抛物线准线l 的垂线,交l 构成直角梯形ABCD (图1).些重要结论呢? 【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥o 轴()时,称弦AB 为通径。 例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ?的面积. 例4. 连,(2)CF DF CF DF ⊥,求证图. 例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项, 即 2 FE CE DE =?. 例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22 >=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C 在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为 2sin p θ . 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2 NF AF BF =?. 例12. 已知抛物线y x 42 =的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M. (I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →· AB → 为定值;

【模型解析】 设直线AB 的倾角为θ,当=90AB x θ⊥o 轴()时,称弦AB 为通径。 例1 求通径长. 解: 由于=90AB x θ⊥o 轴(),)0,2 ( p F , ∴ 当2 p x - =时,代入)0(22 >=p px y 中,得22,.B y p p y p ===-A ,故y ∴ 2AB p =. 例2 求焦点弦AB 长. 解法一:设),(),,(2211y x B y x A ,当90AB θ≠o p 时,设直线的方程为:y=k(x-).2 由22, () 2y px p y k x ?=??=-??得22222 (2)04p k k x p k x -++=, ......① ∴ 1222 (1)x x p k +=+ . ......② Q =AB AF BF AD BC =++,准线方程2 p x -=, ∴ 1212()22 p p AB x x x x p =+++=++. 由②知,2 22.p AB p k =+ ......③ 当90θ=o ,由(一)知2AB p =. 说明:Q tan k θ= ∴ 22222222 11cos sin cos 1 111.tan sin sin sin k θθθθθθθ ++=+=+== 因此,由 ③ 得22122(1).sin p AB p k θ =+ = 特别,当902,AB p θ==o 时,上式为是通径长。 解法二:设),(),,(2211y x B y x A . 902;AB p θ==o 时,上式为 90AB θ≠o 时,设直线的方程为11 ()2tan p x my m k θ =+ ==其中.

高中数学通用模型解题方法技巧总结

高中数学通用模型解题方法 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: 要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有种选择,即集合A有个子集。 当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为 (3)德摩根定律: 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax2+bx+c(a>0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上,也应该马上可以想到m,n实际上就是方程的2个根 5、熟悉命题的几种形式、 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非” ∨∧? ()()().

命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 6、熟悉充要条件的性质(高考经常考) 满足条件,满足条件, 若;则是的充分非必要条件; 若;则是的必要非充分条件; 若;则是的充要条件; 若;则是的既非充分又非必要条件; 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B 的映射个数有n m个。 如:若,;问:到的映射有个,到的映射有个;到的函数有个,若,则到的一一映射有个。 函数的图象与直线交点的个数为个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法: ●分式中的分母不为零; ●偶次方根下的数(或式)大于或等于零; ●指数式的底数大于零且不等于一; ●对数式的底数大于零且不等于一,真数大于零。 ●正切函数 ●余切函数 ●反三角函数的定义域 函数y=arcsinx的定义域是[-1, 1],值域是,函数y=arccosx的定义域是[- 1, 1] ,值域是[0, π] ,函数y=arctgx的定义域是R ,值域是.,函数y=arcctgx 的定义域是R ,值域是(0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

高中数学解题模型和解法_考前复习

高中数学解题模型和解法_考前复习 高中数学学习现状 一、不会解:想不到、分不清、思维定势 据调查显示:半数中学生成绩被数学、物理拖后提,原因并不是智力问题,也不是懒惰,而是方法的问题。这些学生做题就像在荒原上开汽车,很容易迷路,绕弯路。 二、解题慢:速度慢、不熟练、记忆模糊 80%的考生感叹:考试时间段,题目做不完。其实,这隐含着一个人们最容易忽视的问题:那就是没有在解题时建立正确的方法。公式、定理背的的滚瓜烂熟,但一到做题的时候就卡壳。尤其在考试的时候,时间又紧,做题卡壳,做小题的时间都不后用,最后几道大题直接就放弃了。 三、老出错:不细心、踩陷阱、毫厘之差 很多学生会说:这个题我做错,不是我不会,是因为粗心做错了。其实这个观点是大错特错。出题人会在出提时故意设置陷阱,就算你再细心,也还是很容易犯错,也就是说,罪魁祸首根部不是你粗心、细心的问题,而是解题方法的问题。 其实,将这些总结为一句话:成绩差,归根到底,没方法,缺少正确的引导! 针对这个令广大莘莘学子头疼的问题,我们提出模型解题法。只要在科学方法的引导下,成绩一定会得到最大程度的提高。 模型三大步:看题型、套模型、出结果。 第一步:熟悉模型,不会的题有清晰的思路 第二步:掌握模型,总做错的题不会错了 第三步:活用模型,大题小题都能轻松化解 一、选择题解答模型策略 注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。 准确是解答选择题的先决条件。选择题不设中间分,一步失误,造成错选,全题无分。所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。 迅速是赢得时间,获取高分的秘诀。高考中考生“超时失分”是造成低分的一大因素。对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。 一般地,选择题解答的策略是: ① 熟练掌握各种基本题型的一般解法。 ② 结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。 ③ 挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。 二、填空题解答模型策略 填空题是一种传统的题型,也是高考试卷中又一常见题型。高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。 根据填空时所填写的内容形式,可以将填空题分成两种类型: 一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

高中数学通用模型解题精编版通用解体模型

高中数学通用模型解题方法 上海市华师大二附中 特级数学教师:张杰 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? A 表示函数y=lgx 的定义域, B 表示的是值域,而 C 表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为 B A a ? (答:,,)-?????? 1013 显然,这里很容易解出A={-1,3}.而B 最多只有一个元素。故B 只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B 为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==,

高中数学通用模型解题方法

13. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x ;②互换x 、y ;③注明定义域) () () 如:求函数的反函数f x x x x x ()=+≥---

高中数学解题模型化及应用

高中数学解题模型化及应用 【摘要】在高中阶段,数学相对于其它学科来说是比较抽象、严密而泛味的,学生对数学的学习显得艰难而缺乏学习的兴趣。要激发学生对数学的学习兴趣,培养学以致用的意识和能力,关键还是激发他们对数学重要性和应用性的再认识。除了应将基本概念、定义、定理、方法讲清、讲透之外,在教学过程中适当地引入与课堂知识相关的简单“数学模型案例”,是行之有效的办法。本文主要研究在数学解题中的模型化方法、步骤,以及数学模型化在高中解题中的应用。 【关键词】高中数学解题模型化方法步骤应用 数学来源于实践,又高于实践,服务于实践。因此,我们学习数学的目的,就是为解决实际问题,不管是运用已有数学知识去解决实际问题,还是从社会实践去发现新的数学研究课题,去创造性地研究和发展数学科学,化实际问题为数学模型都起着极其重要的作用。 因此,本文主要研究在数学解中的模型化方法、步骤,以及数学模型化在高中解题中的应用。下面我们首先学习几个数学模型的有关概念: 1.数学模型 我们早在学习初等代数的时候就已经碰到过数学模型了,当然其中许多问题是老师为了教会学生知识而人为设置的。譬如你一定解过这样的所谓“航行问题”: 甲乙两地相距750km,船从甲到乙顺水航行需要30h,从乙到甲逆水航行需50h,问船速、水速各若干?用x 、y 分别代表船速和水速,可以列出方程(x+y)·30=750,(x-y)·50=750 实际上,这组方程就是上述航行问题的数学模型,列出方程,原问题已转化为纯粹的数学问题,方程的解x=20km/h,y=5km/h,最终给出了航行问题的答案。 一般地说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学模型是联系客观世界与数学的桥梁。数学模型是用数学语言来模拟空间形式和数量关系的模型。广义地看,一切数学概念、公式、理论体系、算法系统都可称为数学模型,如:算术是计算盈亏的模型,几何是物体外形的模型等.狭义地看,只有反映特定问题的数学结构才称为数学模型,如 一次函数是匀速直线运动的模型,不定方程是鸡兔同笼问题的模型等[1] 。

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

(完整版)高中数学通用模型解题方法技巧总结

高中数学通用模型解题方法 1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性” 中元素各表示什么? A 表示函数y=lgx 的定义域, B 表示的是值域,而 C 表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A={-1,3}. 而B 最多只有一个元素。故B 只能是-1 或者3。根据条件,可以得到a=-1,a=1/3. 但是,这里千万小心,还有一个B 为空集的情况,也就是a=0, 不要把它搞忘记了。 3.注意下列性质: 要知道它的来历:若B 为A 的子集,则对于元素a1来说,有2种选择 (在或者不在) 同样,对于元素a2, a3,??a n,都有2种选择,所以,总共有种选择,即集合A有个子集。 当然,我们也要注意到,这种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为 (3)德摩根定律: 有些版本可能是这种写法,遇到后要能够看懂 4.你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax 2+bx+c(a>0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1. 或者,我说在上,也应该马上可以想到m,n实际上就是方程的2个根 5、熟悉命题的几种形式、 可以判断真假的语句叫做命题,逻辑连接词有“或”( ),“且” ( )和“非”( ). 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。)

相关文档
相关文档 最新文档