文档库 最新最全的文档下载
当前位置:文档库 › 电磁屏蔽玻璃

电磁屏蔽玻璃

电磁屏蔽玻璃
电磁屏蔽玻璃

电磁屏蔽玻璃

摘要:由于电子技术和设备的大量运用,随之而来的各种干扰和泄露问题迫切需要解决,电磁屏蔽玻璃也就因此应运而生。电磁屏蔽玻璃因其可透光性良好等特点,一直是电磁屏蔽材料中的研究热点。本文主要从电磁屏蔽玻璃的应用范围、主要特点、屏蔽原理、生产过程等方面对其进行介绍。

1前言

电磁波被广泛应用,为军事、工业、民用等带来莫大的方便,同时也带来了严重的危害。一是由于电子线路和元件的集成化、微型化,所使用的电流为弱电流,其控制讯号的功率与外部电磁波噪音的功率接近,容易造成误动、声音及图像障碍等;二是这些电子产品本身也向外发射不同频率的电磁波,同样会给附近运行的电子计算机以及其他通讯或电气设备等造成干扰;三是对于军工电子设备,除了防止外界电磁波对其工作产生干扰外,还要防止其本身的电磁波向外泄露。国际较为先进的技术和设备可以准确地接受几十公里外泄露出的电磁波,进行放大还原,从而导致泄密;四是电磁波通过辐射也给生物体造成伤害,如在中短电磁波辐射下,人体的神经中枢系统会出现功能失调。所以,在当今社会,不论是军用电子设备,还是民用电子设备,从环保角度出发,都应进行电磁屏蔽。电磁屏蔽材料中最常见的是电磁屏蔽玻璃。本文主要从电磁屏蔽玻璃的定义、应用、分类、原理及方法、新进展等方面对其进行介绍。

2 电磁屏蔽玻璃的定义

电磁屏蔽玻璃是经过特殊工艺处理,在玻璃表面涂覆导电涂层或在玻璃中夹入特殊介质而实现对电磁波的阻挡和衰减,达到阻挡电磁波透过、防止电磁辐射、保护信息不泄露以及抗电磁干扰的屏蔽玻璃器件。

4 电磁屏蔽玻璃的特点

电磁屏蔽比例具有良好的透光性能和高解图像,可视效果好,无网感,使图像更加清晰。电磁屏蔽玻璃主要解决电子系统与电子设备之间的电磁干扰,防止电磁信息泄露,防护电磁辐射污染;有效保障仪器设备正常工作,保障机密信息的安全,保障工作人员身体健康。因此,电磁屏蔽玻璃必须满足两个条件:一是良好的抗电磁波干扰和防信息泄漏性能;二是良好的透视性能。[1]

5 电磁屏蔽玻璃的应用

电磁屏蔽玻璃是结合电磁屏蔽技术而研制出来的特种玻璃,它主要使用在既有电磁屏蔽要求,又有一定可视要求的部位,如:特种飞机的座舱、风挡、国家安全保卫部办公室的可视窗口,军队指挥操作仪的可视面板,大使馆、外交部等部门通信室的玻璃窗,电子计算机室、医院、广播大厦的玻璃窗,商业写字楼办公室的玻璃隔墙,各种仪器设备的电磁屏蔽外壳等。

6电磁屏蔽玻璃的生产

我国生产的电磁屏蔽玻璃从性能上大致分为三类:夹金属丝网电磁屏蔽玻璃、镀膜电磁

屏蔽玻璃和镀膜玻璃夹金丝网的电磁屏蔽玻璃,使用最多的仍属夹丝网屏蔽玻璃,生产工艺流程如下:[2]

金属丝网+PVB胶片

玻璃原片预处理合片预压高压釜检验包装

6.1 金属丝网

金属丝网材料一般为铜、铝、镀锌铁丝、银丝或者镀银的网丝等,也可以使用不锈钢网。电磁屏蔽是利用电磁感应的作用而进行屏蔽,利用电磁场在屏蔽体上所感应的涡流作用,从而衰减通过的能量。也就是利用屏蔽材料的导电性和磁性将电磁波反射或吸收,达到屏蔽的目的。因此,增强丝网材料的导电性和磁性是生产高屏蔽玻璃的关键。所选择的金属丝网一般要进行化学浸镀处理,在丝网表面镀金、银、铜等金属,增强丝网的屏蔽效能。

6.2 PVB胶片

电磁屏蔽玻璃的结构为:玻璃+PVB+丝网+PVB+玻璃,PVB胶片是连接玻璃和丝网的重要材料,在使用前一定要进行处理和挑选,胶片表面不允许有任何疵点和绒毛,厚度要均匀,一般选用0.38mm和0.76mm的优质胶片。

6.3 玻璃原片

选用优质浮法玻璃原片,厚薄差符合用户要求,经前处理后的玻璃表面不允许有任何划伤。

6.4 合片

合片要在一定温度和湿度的净化车间进行。为了避免出现莫尔干涉条纹,金属丝网的经纬度要进行调整,一般先用制作好的、垂直经纬度的屏蔽玻璃在显示器的窗口初装,旋转玻璃至无干涉条纹出现,记录该角度,制作屏蔽玻璃时按照该角度铺设金属丝网。金属丝网和胶片在铺置时不能有皱褶,尤其注意胶片不能过度拉伸,以免造成制品周边的流胶,流胶过多会影响用户的安装。

6.5预压和高压釜

预压一般通过抽真空的方式来完成,目的是排出玻璃与胶片、胶片与丝网间的气体。玻璃入釜后要严格按操作规程操作,尤其温度控制,过高会引起金属丝网的收缩变形,过低胶片与金属丝网、胶片与玻璃不能很好的结合,容易开胶。

6.6生产注意事项

电磁屏蔽玻璃的生产质量主要有全片过程中产生的杂质、玻璃划伤、丝网变形、开胶、屏蔽效能差等。

6.6.1 产品中的杂质

产品中的杂质是影响质量的主要原因,而造成杂质的主要原因又在于胶片的洁净度。首先要选择优质胶片,在合片过程中,保持环境洁净,认真筛选金属丝网,避免将绒毛及空中灰尘合入制品中。

6.6.2 玻璃划伤

首先玻璃原片进行严格检验,不允许有划伤的玻璃进入下道工序;避免人为划伤。6.6.3丝网变形

丝网变形的原因是多方面的,主要是丝网本身变形和胶片引起的变形。丝网本身是软性材料,在铺置时不能过度拉伸,但又不能产生皱褶,尤其在制作大面积屏蔽玻璃时更应该注意。一般是在合片时按丝网的经纬方向轻轻拉平,不能操之过急。胶片变形会引起丝网变形是因为胶片的厚薄不均匀,入釜后的温度不均等产生胶片收缩变形,应严格控制胶片的质量、入釜后的温度制度,避免丝网变形。

6.6.4 开胶

开胶是夹层玻璃工艺较为常见的质量问题,环境潮湿、玻璃表面不洁净、夹层材料不洁净、蒸压过程温度低等都会造成夹层玻璃的开胶。要严格清洗材料和玻璃的表面,不能有任何油渍,要在一定的湿度下合片,在蒸压过程中要严格控制温度。

6.6.5屏蔽效能低

屏蔽效能一般分为A、B、C三档,在30MHz—1GHz频段内,A档的屏蔽效能在85dB 以上,B档在65dB以上,C档在50dB以上。在制作高效能的屏蔽玻璃时金属丝网的处理非常重要,丝网表面杂质和油渍、洗涤剂的适宜度、清洗丝网的纯净水纯度等都会影响金属丝网的化学镀膜质量。产生电磁屏蔽效能的不是玻璃,而是所选的屏蔽材料,因此,必须使金属丝网的表面连续、均匀地施镀一层高导性的金属,才能达到最大的屏蔽效能。施镀材料的选择也是很重要,金、银是最理想的材料,但价格比较昂贵,在施镀金膜时,工艺条件也比较苛刻。

为了提高玻璃的屏蔽效能, 可采用导电膜玻璃作为玻璃原片制作屏蔽玻璃。真正影响屏

蔽玻璃屏蔽效能的有两个因素: 一是整个屏蔽体表面必须是连续导电的, 另一个是不能有

直接穿透屏蔽体的导体。显然金属丝网上有很多导电不连续点, 因为此处形成了不导电缝隙, 而这些不导电的缝隙产生了电磁泄漏, 如同流体会从容器上的缝隙上泄漏一样。解决这种泄漏的一个方法是在缝隙处填充导电弹性材料, 消除不导电点。而导电膜玻璃就可以起到填充作用。

7 电磁屏蔽的原理

电磁屏蔽是电磁兼容技术的主要措施之一。即用金属屏蔽材料将电磁干扰源封闭起来,使其外部电磁场强度低于允许值的一种措施;或用金属屏蔽材料将电磁敏感电路封闭起来,使其内部电磁场强度低于允许值的一种措施。[3]

电磁屏蔽效能是在电磁场中同一地点无屏蔽时的电磁场强度与加屏蔽体后的电磁场强度之比。常用分贝数(dB)表示。屏蔽效能SE又包括吸收损失A、反射损失R和多次反射损失B

组成。如图1所示。即

SE=A+R=B

根据电磁屏蔽的基本原理还可将电磁屏蔽技术分为如下几种:

(一)静电屏蔽技术

静电屏蔽技术可分为外电场屏蔽和内电场屏蔽。

(1)外电场屏蔽

如下图为利用导体空腔屏蔽外电场的示意图。A为需要屏蔽的物体,S为导体屏蔽的空腔。由静电平衡原理可知在静电平衡的条件下,空腔为等势体,腔内无电场线,因而实现了给A电磁屏蔽的效果。

(2)内电场屏蔽

如下图为导体空腔屏蔽内电场的示意图。用导体空腔来屏蔽带电体的电场时,除了要用导体空腔屏蔽起来外,还必须将空腔接地,在将空腔接地时,空腔外表面所感应出来的电荷会流入大地,外部电场消失,电场线被限制在空腔内部,从而

达到了屏蔽的效果。

(二)交流电场的屏蔽

为降低交变电场对敏感电路的耦合干扰电压,可以在干扰源和敏感电路之间设置导电性好的金属屏蔽体,并将金属屏蔽体接地。交变电场对敏感电路的耦合干扰电压大小取决于交变电场电压、耦合电容和金属屏蔽体接地电阻之积。只要设法使金属屏蔽体良好接地,就能使交变电场对敏感电路的耦合干扰电压变得很小。电场屏蔽以反射为主,因此屏蔽体的厚度不必过大,而以结构强度为主要考虑因素。

(三)磁场的屏蔽

对于磁场的屏蔽比较复杂,要分低频磁场和高频磁场两个方面研究。

(1)低频磁场的屏蔽

低频磁场的屏蔽原理是利用高导磁材料所具有的低磁阻特性,使磁场通过磁阻小的通路而不至于扩散到外围空间去,从而达到磁屏蔽的效果,如下图所示。

(2)高频磁场的屏蔽

高频磁场的屏蔽是利用高电导率的材料产生的涡流的反向磁场来抵消干扰磁场而实现

的。具体图示如下:

通过计算可知,屏蔽体的感应电流与线圈电流成正比,说明感应电流产生的磁场足以抵消线圈磁场的干扰,起到了屏蔽的效果。

(四)综合的电磁屏蔽方法:多层实心屏蔽

如果要求屏蔽体对电场和磁场同时具有较好的屏蔽效果,可以采用多层屏蔽结构。

多层屏蔽结构主要有以下三种:

(1)兼有电屏蔽与磁屏蔽的组合屏蔽

(2)多层电屏蔽

(3)多层磁屏蔽

8 总结

随着电子技术和设备的进一步发展,电磁泄漏的问题会进一步严重化,电磁屏蔽玻璃的出现正好提供了一种较好的解决方案。在今后的发展中电磁屏蔽玻璃必将有一个更加广阔的应用前景。但由于电磁屏蔽玻璃的使用特殊性,用户一般对该产品的质量要求非常高。由于这个原因,我国的电磁屏蔽玻璃的成品较低。因此,要将电磁屏蔽玻璃质量和成品率提高,还得加强技术和生产环节的各方面的探究。

参考文献:

[1]林鸿宾,陆万顺.电磁屏蔽原理及电磁屏蔽玻璃(J).玻璃,2008(3)

[2]张义武,安钢.电磁屏蔽玻璃的生产与质量控制(J).玻璃,2007(2)

[3] 林鸿宾,陆万顺.电磁屏蔽原理及电磁屏蔽玻璃(J).玻璃,2008(3)

电磁屏蔽一般可分为三种

电磁屏蔽一般可分为三种 :静电屏蔽、静磁屏蔽和高频电磁场屏蔽。三种屏蔽的目的都是防止外界的电磁场进入到某个需要保护的区域中,原理都是利用屏蔽对外场的感应产生的效应来抵消外场的影响。 但是由于所要屏蔽的场的特性不同,因而对屏蔽壳材料的要求和屏蔽效果也就不相同。 一、静电屏蔽 静电屏蔽的目的是防止外界的静电场进入需要保护的某个区域。 静电屏蔽依据的原理是:在外界静电场的作用下导体表面电荷将重新分布,直到导体内部总场强处处为零为止。接地的封闭金属壳是一种良好的静电屏蔽装置。如图所示,接地的封闭金属壳把空间分割成壳内和壳外两个区域,金属壳维持在零电位。根据静电场的唯一性定理,可以证明:金属壳内的电场仅由壳内的带电体和壳的电位所确定,与壳外的电荷分布无关。当壳外电荷分布变化时,壳层外表面上的电荷分布随之变化,以保证壳内电场分布不变。因此,金属壳对内部区域具有屏蔽作用。壳外的电场仅由壳外的带电体和金属壳的电位以及无限远处的电位所确定,与壳内电荷分布无关。当壳内电荷分布改变时,壳层内表面的电荷分布随之变化,以保证壳外电场分布不变。因此,接地的金属壳对外部区域也具有屏蔽作用。在静电屏蔽中,金属壳接地是十分重要的。当壳内或壳外区域中的电荷分布变化时,通过接地线,电荷在壳层外表面和大地之间重新分布,以保证壳层电势恒定。从物理图像上看,因为在静电平衡时,金属内部不存在电场,壳内外的电场线被金属隔断,彼此无联系,因此,导体壳有隔离壳内外静电相互作用的效应。 如果金属壳未完全封闭,壳上开有孔或缝,也同样具有静电屏蔽作用。在许多实际应用中,静电屏蔽装置常常是用金属丝编织成的金属网代替闭合的金属壳,即使一块金属板,一根金属线,亦有一定的静电屏蔽作用,只是屏蔽的效果不如金属壳。 在外电场的作用下,电荷在导体上的重新分布,在10-19秒数量级时间内就可完成,因此对低频变化的电场,导体上的电荷有足够长的时间来保证内部

电磁屏蔽原理

利用这个特性,可以达到屏蔽电磁波,同时实现一定实体连通的目的。方法是,将波导管的截止频率设计成远高于要屏蔽的电磁波的频率,使要屏蔽的电磁波在通过波导管时产生很大的衰减。由于这种应用中主要是利用波导管的频率截止区,因此成为截止波导管。截止波导管的概念是屏蔽结构设计中的基本概念之一。常用的波导管有圆形、矩形、六角形等,它们的截止频率如下: 矩形波导管的截止频率:f c=15×109 /l式中:l是矩形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 圆形波导管的截止频率:f c=17.6×109 /d式中:d是圆形波导管的内直径,单位是cm,f c的单位是Hz。 六角形波导管的截止频率:f c=15×109 /w式中:w是六角形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 截止波导管的吸收损耗:落在波导管频率截止区内的电磁波穿过波导管时,会发生衰减,这种衰减称为截止波导管的吸收损耗,截止波导管的吸收损耗计算公式如下 A=1.8×f c×t×10-9(1-(f/f c)2)1/2(dB) 式中:t是截止波导管的长度,单位是cm,f 是所关心信号的频率(Hz),f c是截止波导管截止频率(Hz)。如果所关心的频率f远低于截止波导管截止频率(f﹤f c/5),则公式化简为:A=1.8×f c×l×10-9 (dB) 圆形截止波导管:A=32t/d(dB) 矩形(六角形)截止波导管: A=27t/l (dB) 从公式中可以看出,当干扰的频率远低于波导管的截止频率使,若波导管的长度增加一个截面最大尺寸,则损耗增加将近30分贝。 截止波导管的总屏蔽效能:截止波导管的屏蔽效能由吸收损耗部分加上前面所讨论的孔洞的屏蔽效能不能满足屏蔽要求时,就可以考虑使用截止波导管,利用截止波导管的深度提供的额外的损耗增加屏蔽效能。 16. 截止波导管的注意事项与设计步骤 1)绝对不能使导体穿过截止波导管,否则会造成严重的电磁泄漏,这是一个常见的错误。 2)一定要确保波导管相对于要屏蔽的频率处于截止状态,并且截止频率要远高于(5倍以上)需要屏蔽的频率。设计截止波导管的步骤如下所示: A) 确定需要屏蔽的最高频率F max和屏蔽效能SE B) 确定截止波导管的截止频率F c,使f c≥5F max C) 根据F c,利用计算F c的方程计算波导管的截面尺寸d D) 根据d和SE,利用波导管吸收损耗公式计算波导管长度t 说明: 在屏蔽体上,不同部分的结合处形成的缝隙会导致电磁泄漏。因此,在结构设计中,可以通过增加不同部分的重叠宽度来形成一系列“截止波导”,减小缝隙的电磁泄露。这时,截止波导的截面最大尺寸可

电磁屏蔽性结构设计规范

《电磁屏蔽性结构设计规范》摘录 一.定义:在有屏蔽体时,被屏蔽空间内某点的场强与没有屏蔽体时该点场强的比值。以dB为单位表示 ;一般低频段比高频段高10~15,也可写成30~1000MHz:20 dB。

四.紧固方式 缝隙搭边深度值超过30mm时,作用不明显;推荐缝隙搭边深度:15~25mm。 五.局部开孔 定义:数量不多的开孔 根据经验:开口最大尺寸小于电磁波波长的1/20时,屏蔽效能20 dB;开口最大尺寸小于电磁波波长的1/50时,屏蔽效能30 dB。 例如:屏蔽效能为20 dB/1GHz时,局部开孔的最大尺寸应小于15mm。 一.提高缝隙的屏蔽效能可采取以下几种措施:增加缝隙深度、减小缝隙的最大长度尺寸、减小缝隙中紧固点的间距、增强基材的刚性和表面光洁度。 二.影响穿孔金属板屏蔽效能的最大因素是开孔的最大尺寸,其次是孔深,影响最小的是孔间距。 三.针对电缆穿透问题,可采取:在电缆出屏蔽体时增加滤波,或采用屏蔽电缆,同时屏蔽电缆屏蔽层与屏蔽体之间要良好电接触。 四.屏蔽方案 1.机柜屏蔽:成本较高,由于缺陷较多,屏蔽效能一般不能做到太高。 2.插箱/子架屏蔽:对于屏蔽电缆的接地和增加滤波都比较方便,适合大量出线的产品。 3.单板/模块屏蔽:结构复杂,成本较高,对散热不利。 4.单板局部屏蔽:在无线产品中较常见,主要通过安装屏蔽盒实现,实现较容易。 原则上,最靠近辐射源的屏蔽措施是最有效和最经济的;一般说,屏蔽需求导致结构件成本增加10%~20%左右。 五.缝隙屏蔽设计 1.紧固点连接缝隙 屏蔽效能最主要的影响因素是缝隙的最大尺寸和缝隙深度,减小紧固点间距、增加连接零件刚性。 2.增加缝隙深度 单排紧固时缝隙深度超过30mm后屏蔽效能差别就不明显,一般推荐值为15~25mm。增加缝隙深度可采取一些迷宫或嵌入式结构,或采用双排紧固点方式(最好将两排紧固点错开分布)。 3.紧固点间距 下表是按照DKBA0.460.0031屏蔽效能测试方法得出的单排紧固点缝隙在不同间距下的屏蔽效能,测试样品T=1.5mm,大小600×600mm。在选择紧固点间距时应该参照该表推荐数据,并根据实际结构形式进行一定的调整5~10mm。

电磁屏蔽技术

《电磁屏蔽技术》 1. 电磁屏蔽的目的 电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改 2. 区分不同的电磁波 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波、和平面波 电磁波的波阻抗Z定义为:电磁波中的电场分量E与磁场分量H的比值: Z W W = E / H 电磁波的波阻抗电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关 距离辐射源较近时,波阻抗取决于辐射源特性若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω 电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高 注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽 3. 度量屏蔽性能的物理量——屏蔽效能 屏蔽体的有效性用屏蔽效能(SE)来度量屏蔽效能的定义如下: SE=20lg(E/E) (dB) 21式中:E=没有屏蔽时的场强 E 有屏蔽时的场强=2 1. 如果屏蔽效能计算中使用的是磁场强度,则称为磁场屏蔽效能,如果屏蔽效能计算中使用的是电场强度,则称为电场屏蔽效能屏蔽效能的单位是分贝(dB),下表是衰减量与分贝的对应关系: 屏蔽前屏蔽后衰减量屏蔽效能 20dB 90% 1 0.1 40dB 99% 1 0.01 60dB 1 99.9% 0.001 80dB 1 99.99% 0.0001 100dB 0.00001 99.999% 1 以下,军用设备机箱的屏蔽效能一般要达到40dB一般民用产品机箱的屏蔽效能在屏蔽

电磁屏蔽基本原理

1、电磁屏蔽基本原理 如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。 钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。 钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为: AdB=(f×σ×μ) /2×t 其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度 联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为0.02米左右。 将上述参数代入公式,吸收损耗约为31dB。 反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。 近场反射损耗可按下式计算 RdB=168+10×lg(σ/μrf)

其中 r:波源与屏蔽之间的距离,估算取为200米。 将参数代入公式,得到反射损耗为。 因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。 2、链路预算 下行链路(DownLink)是指基站发,移动台接收的链路。 上行链路(UpLink)是指移动台发,基站接收的链路。 对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。 对于GSM1800M系统,其覆盖能力还不如GSM900M,也无法达到覆盖效果。 对于CDMA系统,链路预算表格如下表

电磁屏蔽室方案

电磁屏蔽室建设工程设计方案 目录 一、简介 (2) 二、设计依据 (3) 三、电磁屏蔽室简介 (4) 1、屏蔽原理: (4) 2、屏蔽材料: (5) 四、技术方案 (5) 五、结构形式:TPH1单层钢板焊接式电磁屏蔽室 (6) ①屏蔽壳体: (6) ②壳体结构 (6) ③壳体龙骨 (7) 六、屏蔽室机房尺寸 (8) 1、铰链旋转刀插式电磁密封屏蔽门: (8) 2、屏蔽门的结构特点 (8) 七、消防报警系统: (10) 八、空调通风系统: (11) 九、供配电系统: (13) 十、屏蔽内外弱电系统: (13) 十一、屏蔽壳体接地系统: (14) 十三、机房装饰方案: (15) 1、吊顶工程 (16) 2、墙面工程 (18) 3、地面工程 (18) 十四、工程质量保证措施: (21)

一、简介 在没有做屏蔽的情况下,我们的电子设备会受到直击雷或间接雷等强电磁干扰源的影响导致设备无法工作或工作出现异常,最严重时出现损坏,这是比较常见的电磁干扰显现,另外一种现象就是,我们在打雷的时候听收音机,看电视,使用电脑,收音机会出现“吱啦”的噪音,电视机,电脑会出现图像抖动等等,这些都是雷电产生的干扰造成的电磁干扰。 计算机、通信机及电子设备在正常工作时会产生一定强度的电磁波,该电磁波可能会对其它设备产生干扰或被专用设备所接收,以窃取其工作内容。同时,这些电子设备也需要在小于一定强度的电磁环境下保证其正常工作。

二、设计依据 1.1《计算机场地技术要求》(GB2887-89) 1.2《计算站场地安全要求》(GB9361-88) 1.3《电子计算机机房设计规范》(GB50174-93) 1.4《电子计算机机房工程施工及验收规范》(SJ/T30003-93)1.5《建筑设计防火规范》(GB5004-95) 1.6《建筑内部装修设计防火规范》(GB50222-95) 1.7《低压配电设计规范》(GBJ50054-95) 1.8《供配电系统设计规范》(GB50052-92) 1.9《电气装置安装工程施工及验收规范》(GBJ32-82) 1.10《民用建筑电气设计规范》(JGJ/T16-92) 1.11《防静电活动地板通用规范》(SJ/T10796-2001) 1.12《高性能屏蔽室屏蔽效能的测量方法》(GB12190-90) 1.13《电磁屏蔽室工程施工及验收规范》(SJ31470-2002) 1.14《涉及国家机密的计算机信息系统安全技术要求》(BMZ1-2000) 1.15《密码机屏蔽机房的安装、使用和检测》(GJBZ20397-97) 2. 项目设计要求及图纸 3. 本公司现有相关产品的企业标准及设计规范,

EMI电磁屏蔽原理-导论

在电子设备及电子产品中,电磁干扰(Electromagnetic Interference)能量通过传导性耦合和辐射性耦合来进行传输。为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。 屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。 屏蔽体对辐射干扰的抑制能力用屏蔽效能SE(Shielding Effectiveness)来衡量,屏蔽效 能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P)的场强1(1)和加入屏 蔽体后,辐射干扰源传输到空间同一点(P)的场强2(2)之比,用dB(分贝)表示。 图1 屏蔽效能定义示意图 屏蔽效能表达式为(dB) 或(dB)

工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源。由于电偶极子和磁偶极子是上述两类源的最基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成(图2)。因此通过对电偶极子和磁偶极子所产生的场进行分析,就可得出实际辐射源的远近场及波阻抗和远、近场的场特性,从而为屏蔽分类提供良好的理论依据。 图2 两类基本源在空间所产生的叠加场 远近场的划分是根据两类基本源的场随1/r(场点至源点的距离)的变化而确定的, 为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同。 表1 两类源的场与传播特性 波阻抗为空间某点电场强度与磁场强度之比,场源不同、远近场不同,则波阻抗 也有所不同,表2与图3分别用图表给出了的波阻抗特性。

电磁屏蔽技术基础知识

Thalez Group 电磁屏蔽技术基础知识

目录 1.电磁屏蔽的目的 2.区分不同的电磁波 3.度量屏蔽性能的物理量——屏蔽效能 4.屏蔽材料的屏蔽效能估算 5.影响屏蔽材料的屏蔽效能的因素 6.实用屏蔽体设计的关键 7.孔洞电磁泄漏的估算 8.减少缝隙电磁泄漏的措施 9.电磁密封衬垫的原理 10.电磁密封衬垫的选用 11.常用电磁密封衬垫的比较 12.电磁密封衬垫使用的注意事项 13.电磁密封衬垫的电化学腐蚀问题 14.与衬垫性能相关的其它环境问题 15.截止波导管的概念与应用 16.截止波导管的注意事项与设计步骤 17.面板上的显示器件的处理 18.面板上的操作器件的处理 19.通风口的处理 20.线路板的局部屏蔽 21.屏蔽胶带的作用和使用方法

电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰。另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰。电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰。在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的。用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改。 一.电磁屏蔽的目的 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同。因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识。电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波和平面波。 电磁波的波阻抗ZW 定义为: 电磁波中的电场分量E与磁场分量H的比值: ZW = E / H 电磁波的波阻抗与电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关。 距离辐射源较近时,波阻抗取决于辐射源特性。若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波。若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波。 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω。电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高。 注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意。例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区。在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽。 二. 区分不同的电磁波

电磁屏蔽原理及应用

电磁屏蔽的原理及应用 摘要:阐述了电磁屏蔽材料的屏蔽原理。介绍了电磁屏蔽材料的发展现状,其中较为详细地介绍了表层导电型屏蔽材料以及填充复合型屏蔽材料。 关键词:电磁屏蔽,危害,屏蔽原理,研究现状 AbStraCt The harms of electromagnetic radiation to electric equipment, fuel, animals and human were intoduced, andthe mechanism of electromagnetic shielding materials and its development was summarized. Key words electromagnetic radiation, shielding, harm, mechanism, development 近几十年来,随着各种电器的普及,电子计算机、通讯卫星、高压输电网和一些医用设备等的广泛应用,由此带来的电磁辐射污染也越来越严重。为此,必须进行电磁屏蔽。 1、电磁屏蔽原理 电磁屏蔽,实际上是为了限制从屏蔽材料的一侧空间向另一侧空间传递电磁能量。电磁波传播到达屏蔽材料表面时,通常有3种不同机理进行衰减:一是在入射表面的反射衰减;二是未被反射而进入屏蔽体的电磁波被材料吸收的衰减;三是在屏蔽体部的多次反射衰减。电磁波通过屏蔽材料的总屏蔽效果可按下式计算: SE=R+A+B (1) 式中:SE为电磁屏蔽效果,dB; R为表面单次反射衰减;A为吸收衰减;B为部多次

反射衰减(只在A<15dB情况下才有意义)。 一般来说,电屏蔽材料衰减的是高阻抗的电场,屏蔽作用主要由表面反射R 来决定,吸收衰减A则不是主要的。所以,电屏蔽可以用比较薄的金属材料制作;而磁屏蔽体的衰减主要由吸收衰减A决定,反射衰减R不是主要的。根据电磁学的有关知识,可分别得出A, R, B的计算公式: (2) A与电磁波的类型(电场或磁场)无关,只要电磁波通过屏蔽材料就有吸收,它与材料厚度成线性增加,并与材料的电导率及磁导率有关。 反射衰减R不仅与材料的表面阻抗有关,同时也与辐射源的类型及屏蔽体到辐射源的距离有关。对于远场源(平面波辐射源): (3) 对于近场源: 磁场: (4) 电场 (5) 金属屏蔽材料一般都比较薄,A也比较小,通常考虑部多次反射衰减B。在此情况下,部多次反射衰减B。在此情况下,部反射甚至可以发生多次, 形成多次反射。用“多次反射修正项”B来表示这种衰减。 对于近场源:

电磁屏蔽分析和应用

电磁兼容课程论文 题目名称:电磁屏蔽技术 院系名称:电子信息学院 班级:测控112 学号:201100454217 学生姓名:白凡 指导教师:魏平俊 2014年5月

摘要:随着电子产品的广泛应用以及电磁环境污染的加重,对电磁兼容性设 计的要求也越来越高,作为电磁兼容设计的主要技术之一——屏蔽技术的 研究也就愈显得重要。本文从电磁屏蔽技术原理出发,讨论了屏蔽体结构、 屏蔽技术分类、屏蔽材料的选择以及所要遵循的原则,在电子设备实施具 体的电磁屏蔽时提供了重要的依据。同时分析了电磁干扰形成的危害,介 绍了工程上解决电磁干扰问题的几种常用方法。 关键词:电磁屏蔽电磁干扰屏蔽技术 Abstract:With the wide application of electronic products as well as the electromagnetic environment pollution is aggravating, more and more is also high to the requirement of electromagnetic compatibility design, as one of the main technology of emc design - shielding technology research is more important.Based on principle of electromagnetic shielding technology, this paper discusses the structure of the shield, shielding the technical classification, the selection of shielding materials and to follow the principle of the electronic equipment to implement specific provides an important basis for electromagnetic shielding.At the same time analyzes the harm of electromagnetic interference, this paper introduces the engineering several commonly used methods to solve the problem of electromagnetic interference. Keywords: Electromagnetic shielding, Electromagnetic interference, Shielding technology

电磁屏蔽结构

IEC60297-5-102 电子设备机械结构 482.6mm(19in) 系列机械结构尺寸 第5-102部分:插箱及其插件 电磁屏蔽结构

目 次 前言 引言 1范围和目的 2引用标准 3定义 4增加于IEC60297-3和IEC60297-4的扩展特性 5 设备总体配置 6 具有电磁屏蔽结构的插箱和插件 6.1 电磁屏蔽结构的插箱接口尺寸 6.2具有电磁屏蔽结构的插件面板和填充面板 图1 设备总体配置——具有电磁屏蔽结构的前/后安装插件的典型6U插箱图2 电磁屏蔽结构的插箱尺寸 图3 图2中X放大和Y放大 图4 电磁屏蔽结构的插箱面板和填充面板尺寸

前 言 1 IEC(国际电工委员会)是一个由所有国家电工委员会(IEC国家委员会)组成的国际性标准化组织,IEC的目的是在电气电子领域所有与标准化有关的问题上促进国际合作。为了这一目的和其它工作,IEC出版国际标准。标准的制定工作委托各技术委员会进行,任何对此感兴趣的国家委员会,以及与IEC有联系的国际的、政府的和非政府的组织均可参加这一制定工作。IEC与国际标准化组织(ISO)之间依据该两组织协商所规定的条件,实现了密切合作。 2 由所有特别关切的国家委员会参加的技术委员会所制定的IEC有关技术问题的正式决议或协议,尽可能地表达对所涉及问题的一致意见。 3 由此产生的文件以国际标准、技术规范、技术报告或导则形式出版,以推荐形式供国际使用,并在此意义上为各国家委员会所接受。 4 为促进国际间的统一,各国家委员会在最大的可能范围内,在其国家和地区标准中明确地采用IEC标准。IEC标准与相应国家或地区标准间的任何不一致之处,均应在后者中明确指出。 5 IEC对任何宣称符合它的某一标准的设备不设标志认可申请程序,也不对此负有责任。 6 本部分的某些部分可能属于专利对象,IEC不应负责对某一或全部的这些专利进行鉴别。 IEC60297-5-102由IEC第48技术委员会(电子设备用机电元件和机械结构)的第48D分技术委员会(电子设备用机械结构)制定。 本部分文本以下列文件为基础: FDIS 投票报告 48D/240/FDIS 48D/249/RVD 有关赞成本部分的全部投票信息可见上表所列的投票报告。 本出版物的起草符合ISO/IEC指南第3部分。 IEC60297-5在“电子设备机械结构 482.6mm(19in) 系列机械结构尺寸”的总题目下包括以下部分:第5-100部分:插箱及其插件设计概述 第5-101部分:插箱及其插件插拔器手柄 第5-102部分:插箱及其插件电磁屏蔽结构 第5-103部分:插箱及其插件静电放电防护 第5-104部分:插箱及其插件编码键 第5-105部分:插箱及其插件定位/接地销 第5-107部分:插箱及其插件后安装插件 本委员会决定:本出版物的内容将保持到2004年以前不变,而后将: ·确认; ·废止; ·由修改版替代,或 ·修订。

金属网屏蔽电磁波原理

金属网可以屏蔽电磁波传播的原理是什么? 首先,不是衍射。 我们都做过直流电路实验,导线就是金属,也就谈不上屏蔽(静电屏蔽是指接地 金属罩,屏蔽静电场)。电磁波辐射,是关于时变电磁场的问题,导体对其影响大不相同 如果利用趋肤效应,解释的实际上是金属板屏蔽电磁场原理。 ?对于一个金属板(良导体),电磁波从一面辐射而来,大部分能量被反射,小部分能量进入金属,该电磁波会随进入金属的深度成e指数衰减(能量转化为表面电流),当金属层过薄时,电磁波就会穿透金属层继续传播。对于同一频率电磁波,电导率越高,衰减越快。对于相同金属材料,电磁波频率越高,衰减越快。 ?定义:趋肤深度,电磁波传输一个趋肤深度的距离后,振幅衰减到原来的 36.8%,能量衰减到13.5%。对于相同金属材料,电磁波频率越高,趋肤深度越 小。 ?例:10GHz电磁波。银,电导率 6.173e7(S/m),趋肤深度6.4e-7(m),即0.64微米;1GHz电磁波,趋肤深度20.24e-7(m),即2.24微米。【1】 那么,同材料的金属板,频率越高,趋肤深度越小,对辐射防御能力是越强

回归正题,金属网屏蔽电磁场原理,(趋肤效应解释波导也有用到,不是重点)先说矩形波导,四壁是金属,电磁波在波导中的介质中传播。金属网实际上就是下图中许许多多的矩形波导叠放组合在一起,z方向长度再缩短些就 是了。 为何电磁波不会从金属网的窟窿中穿透呢?对于金属网,每一个网孔都是一个波导。借用光的粒子说,电磁波像弹球一样,进入网孔波导后,来回在金属壁上反弹,曲折前进。【2】 ?为满足金属壁这一边界条件下的Maxwell方程,对于相同规格的矩形波导,频率越低(波长越大),theta越大;当波长大于等于截止波长时,theta=90。,电磁波只上下弹跳,不前进了。 ?截止波长=2a (a为上上图中的矩形波导长边),若孔径指半径,孑L径=a/2,则波长大于4倍孔径的电磁波就会被屏蔽。“金属网孔形式若为矩形整齐排列,金属网孔径小于电磁波波长的1/4时,则电磁波不能透过金属网”有相当

电磁屏蔽基本原理

电磁屏蔽基本原理标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

1、电磁屏蔽基本原理 如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。 钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。 钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为: AdB=(f×σ×μ) /2×t 其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度 联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为0.02米左右。 将上述参数代入公式,吸收损耗约为31dB。 反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。 近场反射损耗可按下式计算 RdB=168+10×lg(σ/μrf)

其中 r:波源与屏蔽之间的距离,估算取为200米。 将参数代入公式,得到反射损耗为。 因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。 2、链路预算 下行链路(DownLink)是指基站发,移动台接收的链路。 上行链路(UpLink)是指移动台发,基站接收的链路。 对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。 对于GSM1800M系统,其覆盖能力还不如GSM900M,也无法达到覆盖效果。 对于CDMA系统,链路预算表格如下表

结构件电磁兼容设计规范电磁屏蔽设计

结构件电磁兼容设计规范 1、概述: 本规范规定了结构件电磁兼容设计(主要是屏蔽和接地)的设计指标、设计原则和具体设计方法。 本规范适应于结构设计人员进行结构件的电磁兼容设计,目的是规范机电协调中电磁兼容方面的内容,指导结构设计人员正确地选择方案和进行详细设计。下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GJB 1046《舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法》 GJB 1210《接地、搭接和屏蔽设计的实施》 GJB/Z 25《电子设备和设施的接地搭接和屏蔽设计指南》 MIL-HDBK-419 《电子设备和设施的接地搭接和屏蔽》 IEC 61587-3 (草案)《第三部分: IEC 60917-... 和 IEC 60297-... 系列机箱、机柜和插箱屏蔽性能试验》 《结构件分类描述优化方案及图号缩写规则》 术语本规范中的专业术语符合 IEC50-161 《电磁兼容性术语》的规定。 2、设计程序要求 对于有EMC 要求的项目的开发程序,在遵守部门现有的结构造型设计流程基础上,提出以下特殊的要求: 所有需要考虑屏蔽的A 类项目以及产品定位为海外市场的所有项目,必须通过EMC 方案评审后才能进行详细的设计; 对于 C 级以上屏蔽等级(具体级别划分见 5.1)要求的项目,方案评审时必 须提交详细的 EMC 设计方案(包括屏蔽体的详细结构和具体处理措 施); 对于 C 级以上屏蔽等级的项目,样机评审时必须提交屏蔽效能测试报告;除通用结构件(例如 19" 标准机柜)外,如果样机的屏蔽效能测试结果达不到设计 134 指标的要求,只要整机(产品)的EMC 测试中相应指标符合要求,结构件 可以不要求再作优化。 3、屏蔽效能等级 3.1、屏蔽效能等级的划分 一般结构件的屏蔽效能分为以下六个等级,各级屏蔽效能指标规定如 下: E级: 30-230 MHz 20 dB;230-1000 MHz 10 dB D 级:30-230 MHz 30 dB;230-1000 MHz 20 dB C级: 30-230 MHz 40 dB;230-1000 MHz 30 dB B 级:30-230 MHz 50 dB;230-1000 MHz 40 dB A 级:30-230 MHz 60 dB;230-1000 MHz 50 dB T级:比A级高10dB或者以上,和/或对低频磁场、1GHz以上平面波屏蔽效能有特殊需求。 屏蔽效能等级由高至低分别为:T 级 A 级 B 级 C 级 D 级 E级。一

低频电磁波的屏蔽

低频电磁波的屏蔽一、前言 凡是有电源的地方、有用电设备的地方、几百米内有高压电线的地方、几十米内有地下电缆的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十以至数百毫高斯的低频电磁干扰。低频电磁干扰的强度变化常常无规律可循,短时间内就会有相当大的上下波动;低频电磁干扰的来源往往难以确定,这样就更增加了屏蔽设计的难度。 二、低频电磁屏蔽与其它屏蔽的差异比较 1、低频电磁场 根据电磁波传输的基本原理,在频率很低的时候良导体中的电磁波只存在于导体表面有“趋肤效应”(波从表面进入导电媒质越深,场的幅度就越小,能量就变得越小,这一效应就是趋肤效应)。 高频电路中,传导电流集中到导线表面附近的现象也有这样的问题又称“集肤效应”。交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种“趋肤效应”使导体的有效电阻增加。频率越高,趋肤效应越显著。当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。)、磁滞损耗(放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。铁磁材料在磁化过程中由磁滞现象引起的能量损耗。磁滞指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系。经一次循环,每单位体积铁心中的磁滞损耗等于磁滞回线的面积。这部分能量转化为热能,使设备升温,效率降低,这在交流电机一类设备中是不希望的。软磁材料的磁滞回线狭窄,其磁滞损耗相对较小。硅钢片因此而广泛应用于电机、变压器、继电器等设备中。)以及反射损耗(反射损耗是指由于屏蔽的内部反射导致的能量损耗的数量,他随着波阻和屏蔽阻抗的比率而变化)都很小,低频电磁波的能量基本由磁场能量构成。所以这时我们所要屏蔽的应该是电磁波的磁场分量(电磁屏蔽的

电磁屏蔽室

结构形式 电磁屏蔽室有钢板拼装式、钢板焊接式、钢板直贴式及铜网式四大类。拼装式为厚度1.5㎜钢板模块拼装而成,生产、安装工艺较简单,适用于小面积、屏蔽效能要求一般的工程。可拆卸移建,但移建后屏蔽效能明显降低。钢板焊接式屏蔽室采用2~3㎜冷轧钢板与龙骨框架焊接而成,屏蔽效能高,适应各种规格尺寸,是电磁屏蔽室的主要形式。直贴式和铜网式用于屏蔽效能要求较低的简易工程。 基本组成内容 壳体:此处以钢板焊接式电磁屏蔽室为例。包括六面龙骨框架、冷轧钢板。龙骨框架由槽钢、方管焊接而成,材料规格按屏蔽室大小确定地面龙骨(地梁)应与地面进行绝缘处理。墙、顶部冷轧钢板厚度2mm,底部钢板厚3㎜,先在车间预制成模块,分别焊接在龙骨框架内侧。所有焊接均采用CO2保护焊,连续满焊,并用专用设备捡漏,防止漏波。所有钢质壳体必须进行良好的防锈处理。 电磁屏蔽门:电磁屏蔽门是屏蔽室唯一活动部件,也是屏蔽室综合屏蔽效能的关键,技术含量较高,材料特殊,工艺极其复杂,共26道工序。电磁屏蔽门有铰链式插刀门、平移门两大类,各有手动、电动、全自动等形式。如考虑使用的稳定性及性价比,则首选手动插刀式铰链门(标准门1900㎜×850㎜)。 蜂窝型通风波导窗:通风换气、调节空气是屏蔽室必备设施。蜂窝型波导窗由对边距5㎜的六边形钢质波导管集合组成,波导管不妨碍空气流通,却对电磁辐射有截止作用。目前主要采用300mm×300mm×50mm规格的全焊接式蜂窝式波导窗,插入损耗150KHz~1GHz≥100dB,完全满足《规范》要求。屏蔽室按面积大小配置相应数量的波导窗,分别用于进风、排风、泻压。 强弱电滤波器:进入屏蔽室的电源线、通信信号线等导体都会夹带传导电磁干扰,必须有相应的滤波器加以滤除。滤波器是由无源元件(电感、电容)构成的无源双向网络,其主要性能参数是截止频率(低通、高通、带通、带阻)、插入损耗(阻带衰减量),滤波性能取决于滤波级数(滤波器滤波元件数)、滤波器结构类型(单电容型C型、单电感型L型、π型)等。 波导管:进入防护室的各种非导体管线如消防喷淋管、光纤等,均应通过波导管,波导管对电磁辐射的截止原理与波导窗相同。

电磁屏蔽专业技术

电磁屏蔽技术

————————————————————————————————作者:————————————————————————————————日期:

电磁干扰及其屏蔽 1、屏蔽的基本概念 屏蔽就是用导电或导磁材料制成的盒、壳、板、栅等结构形式, 将电磁千扰场限制在一定的空间范围内, 使干扰场经过屏蔽体时受到很大衰减,从而抑制电磁干扰源对相关设备或空间的干扰。屏蔽是抑制电磁干扰源的有力措施之一。从屏蔽的侧重范围可大体分为电屏蔽、磁屏蔽和电磁场屏蔽三种: (1)电屏蔽, 即对静电或电场的屏蔽, 防止或抑制寄生电容祸合, 隔离静电或电场干扰。(2)磁屏蔽, 即磁场屏蔽。用于防止磁感应,抑制寄生电感藕合, 隔离磁场干扰。 (3)电磁场屏蔽, 用于防止和抑制高频电磁场电磁波的屏蔽。 (4)屏蔽效能, 即屏蔽前后空间某点的电磁场强度之比, 常用分贝数表示。 2、电场屏蔽 2.1静电屏蔽 静电干扰分为静电场感应作用和静磁场藕合作用。当某电子元器件或电路上具有电荷时, 在其空间就会产生电场当这些电荷流动时, 在其周围空间还同时产生磁场。这种电场和磁场作用到其周围邻近的电路或元件时就将产生感应电流和电压, 这些感应电流和电压又反过来影响原来电路或元件中的电流或电压。在用电设备中通过电场和磁场产生的寄生感应干扰, 统称为静电干扰。 静电干扰可通过静电屏蔽来抑制。设导体A带有正电荷, 则其邻近导体B将由于静电感应而带负电荷, 如图1(a)。 如图1(b), 如果将导体A屏蔽, 屏蔽体外侧将感应出与A等量的正电荷, 导体A不直接影响导体B, 但导体B同样因屏蔽体的电场感应而带负电, 导体B如何才能避免导体A的静电干扰呢? 如图(C), 将屏蔽体接地, 消除屏蔽体的外电场,导体B才能免受导体A的静电干扰。可见, 将屏蔽体良好接地是防止静电干扰的关键, 接地电阻愈低愈好。 2.2 近场电屏蔽 近场电屏蔽的一种方法就是在感应源与受感器之间加一接地良好的金属板, 把感应源的寄生电容短接到地, 通过抑制寄生电容祸合, 达到电场屏蔽的目的。

不同材质金属板电磁屏蔽效果的对比分析

郑州大学毕业设计(论文) 题目:不同材质金属板电磁屏蔽效果的对比分析指导教师:职称:讲师 学生姓名:学号: 专业: 院(系): 完成时间: 2013年5月20 日

不同材质金属板电磁屏蔽效果的对比分析 摘要高导电性材料在电磁波的作用下将产生较大的感应电流。这些电流按照楞次定律将削弱电磁波的透入。采用的金属网孔愈密,直到采用整体的金属板(壳),屏蔽的效果愈好,但所费材料愈多。 本文主要使用XFDTD仿真软件编写基于FDTD算法的计算机仿真程序,计算出了喇叭天线工作时在铜金属板以及与铁,铝金属板屏蔽下电场强度分布,重点记录了距离端口60cm 平面的电磁参数,以此观察分析不同材质金属板的屏蔽效能,为金属板的电磁屏蔽应用提供科学的理论依据和定量的数据。 关键词屏蔽效能金属板时域有限差分算法喇叭天线电磁波传播模型 Abstact Shielding effectiveness is characterized the attenuation of electromagnetic waves on shield。Because of the high conductive material will be generated a large induction current under the action of electromagnetic waves。These currents according to Lenz's law will weaken the penetration of electromagnetic waves。The metal mesh is more dense, he better the shielding effectt, until the the overall metal shell, but the more charge material used. The this thesis make use of XFdtd simulation of copper metal plate, as well as iron, aluminum metal plate in an electromagnetic field environment。Through the comparison of different materials, thickness, and the source distance parameter, analysis the performance impact of metal shielding. Key Words:Shielding effectiveness Metal plate Finite difference time domain algorithm Horn antenna electromagnetic wave propagation model

相关文档