文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线复习课

圆锥曲线复习课

圆锥曲线复习课
圆锥曲线复习课

圆 锥 曲 线 复 习 课

吴老师这节复习课通过大容量的例题较全面地复习了解决圆锥曲线的方法与技巧,并且也应用了数形结合、化归的数学思想以及“应用数学”的意识,

一、例题:

例1 根据下列条件,写出椭圆方程

⑴ 中心在原点、以对称轴为坐标轴、离心率为1/2、长轴长为8; ⑵ 和椭圆9x 2+4y 2=36有相同的焦点,且经过点(2,-3);

⑶ 中心在原点,焦点在x 轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶

点的距离是10-分析: 求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a 2=b 2+c 2及已知条件确定a 2、b 2的值进而写出标准方程

解 ⑴ 焦点位置可在x 轴上,也可在y 轴上,

因此有两解:

112

16112162

22=+=+x y y x 或 ⑵ 焦点位置确定,且为(0,5±),设原方程为122

22=+b

y a x ,(a>b>0),由已知条件有

?????=+=-1

4

95

2222b a

b a 10,152

2==?b a ,故方程为10152=+x y

⑶ 设椭圆方程为122

22=+b

y a x ,(a>b>0)

由题设条件有???-=-=5

10c a c

b 及a 2=b 2+

c 2,解得b=10,5=a ,

故所求椭圆的方程是

5

102

=+y x 例2 从椭圆122

22=+b

y a x ,(a>b>0)上一点M 向x 轴所作垂线恰好通过椭圆的左焦点F 1,A 、B

分别是椭圆长、短轴的端点,AB ∥OM Q 是椭圆上任意一点,当QF 2⊥AB 时,延长QF 2

与椭圆交于另一点P ,若⊿F 2PQ 的面积为203,求此时椭圆的方程

解 可用待定系数法求解

∵b=c,a=2c ,可设椭圆方程为222

22=+c

y c x

∵PQ ⊥AB,∴k PQ =-

21==b

a

k AB ,则PQ 的方程为y=2(x-c), 代入椭圆方程整理得5x 2-8cx+2c 2=0, 根据弦长公式,得c PQ 5

2

6=

, 又点F 1到PQ 的距离d=

3

6

2 c ∴==

?d PQ S PQ F 2112534c ,由,253205

3422

==c c ,得 故所求椭圆方程为

125

502

2=+y x 例3 已知椭圆:

19

22

=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长

解:a=3,b=1,c=22; 则F (-22,0)

由题意知:)22(3

1

:+=

x y l 与1922

=+y x 联立消去y 得: 01521242=++x x

设A (),11y x 、B (),22y x ,则21,x x 是上面方程的二实根,由违达定理,2321-=+x x

415

21=

?x x ,2

23221-=+=x x x M 又因为A 、B 、F 都是直线l 上的点,

所以|AB|=215183

24)(3

2||3

1

12122121=-=

-+?=

-?+x x x x x x

点评:也可让学生利用“焦半径”公式计算

例4 直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当a 为何值时,A 、B 在双曲线的同一支上?当a 为何值时,A 、B 分别在双曲线的两支上? 解: 把1+=kx y 代入1322=-y x 整理得:022)3(22=---ax x a ……(1) 当3±≠a 时,424a -=?由?>0得66??-a 且3±≠a 时,方程组有两解,直线与双曲线有两个交点

若A 、B 在双曲线的同一支,须3

2

2

21-=

a x x >0 ,所以3?-a 或a 故当36?-?-a 或63a ?时,A 、B 两点在同一支上;当33a ?-时,A 、B 两点在双曲线的两支上 例5 如图,线段AB 过x 轴正半轴上一点M (m ,0)(m >0),端点A 、B 到x 轴距离之积为m 2,以x 轴为对称轴,过A ,O ,B 三点作抛物线 (1)求抛物线方程;

(2)若m AOB tg ,求1-=∠的取值范围

解:(1)当AB 不垂直x 轴时,设AB 方程为

)0(2).(2>=-=p px y m x k y 抛物线方程

由212122

|2,0222)(y y pm y y pkm py ky px

y m x k y ∴-=∴=--???=-=得|m pm 22== ,22),2,(),2,(,,.1m pm pm m Pm m B A X AB p =-⊥=∴由题意有分别为轴时当1=p ,

故所求抛物线方程为.22x y =

(2)设知由)1(),2

(),,2(22

2

121y y B y y A

k

y y m y y 2,22121=

+-=

=-∴||21y y ,84

4)(221221m k y y y y +=

-+

,

2,21

2

211y k y k AOB tg ==-=∠又

m k

m y y y y y y y y 84

2

42|,|241

41|22|

221212

121+=+-∴-=+-=+

-∴即①, 平方后化简得

246246,

0412441222

2+>-<∴>+-∴=

+-m m m m k m m 或

又由①知

m m m ∴<∴>+-2,042的取值范围为

x AB m m ⊥-=-<<且当2462460轴时,

1tan .2)12(4),12(2),12(222121-=∠-=--=--=-=AOB m y y y y

符合条件,

故符合条件的m 取值范围为.2460-≤

1.直线()

2:-=x k y l 与曲线()012

2

>=-x y x ,相交于A 、B 两点,求直线l 的倾斜角

的范围 答案:??? ?????

?

?43,22,4ππππ 2.直线1+=kx y 与双曲线122=-y x 的左支仅有一个公共点,求K 的取值范围

答案:11≤?-k 或2=

k

3.已知双曲线12

2

2

=-y x 与点P (1,2),过P 点作直线L 与双曲线交于A 、B 两点,若P 为AB 的中点(1)求直线AB 的方程(2)若Q 为(-1,-1),证明不存在以Q 为中点的弦

答案 AB :x-y+1=0

4.双曲线)1(13

2

2

≥=-x y x ,一条长为8的弦AB 的两端在曲线上运动,其中点为M ,求距Y 轴最近的点M 的坐标 答案:???

? ??215,

25 5.顶点在原点,焦点在x 轴上的抛物线,截直线42-=x y 所得的弦长为53,求抛物线的

方程 答案:x y 42=或y 362-=6.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在抛物线准线上的射影分别为E 、G ,则EFG ∠等于 ( B )

A .045

B 0

C 0

D 0

若抛物线x y 82=被过焦点,且倾斜角为0

135的直线所截,求截得的线段的中点坐标

答案:(4,6-

过点()6,1--的直线l 与抛物线x y 42=交于A 、B 两点,求直线l 的斜率K 的取值范围

答案:()()

103,00,103+-

9.过点()4,2--A 作倾斜角为0

45的直线交抛物线()022>=p px y 于点1P 、2P ,若

212

2

1AP AP P P ?=,求实数p 的值 答案:1=p

这堂课采用数形结合、类比联想(椭圆)、启发诱导的教学方法,注重思维能力的培养和学生动手操作的能力的训练,值得我们借鉴!

圆锥曲线单元检测题及答案

圆锥曲线单元检测题 一、选择题(5分×12) 1.椭圆12 132 2y x + =1上一点P 到两个焦点的距离的和为( ) A.26 B.24 C.2 D.213 2.在双曲线标准方程中,已知a =6,b =8,则其方程是( ) A.643622y x -=1 B.366422y x -=1 C.643622x y -=1 D.643622y x -=1或64 3622x y -=1 3.已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ) A.x 2=-12y B.x 2=12y C.y 2=-12x D.y 2=12x 4.已知椭圆的方程为2 22 16m y x + =1,焦点在x 轴上,则m 的范围是( ) A.-4≤m ≤4 B.-4<m <4 C.m >4或m <-4 D.0<m <4 5.已知定点F 1(-2,0),F 2(2,0)在满足下列条件的平面内动点P 的轨迹中,为双曲线的是( ) A.|PF 1|-|PF 2|=±3 B.|PF 1|-|PF 2|=±4 C.|PF 1|-|PF 2|=±5 D.|PF 1|2-|PF 2|2=±4 6.过点(-3,2)且与4 92 2y x + =1有相同焦点的椭圆的方程是( ) A.101522y x +=1 B.10022522y x +=1 C.151022y x +=1 D.225 10022 y x +=1 7.经过点P (4,-2)的抛物线标准方程为( ) A.y 2=x 或x 2=-8y B.y 2=x 或y 2=8x C.y 2=-8x D.x 2=-8y 8.已知点(3,2)在椭圆22 a x +22b y =1上,则( ) A.点(-3,-2)不在椭圆上 B.点(3,-2)不在椭圆上 C.点(-3,2)在椭圆上 D.无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 9.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.4 422y x -=1 B.4 42 2x y -=1 C.8 42 2x y -=1 D.4 82 2y x -=1 10.过抛物线y 2=2px (p >0)的焦点作一条直线交抛物线于A (x 1,y 1),B (x 2,y 2),则 2 12 1x x y y 为( ) A.4 B.-4 C.p 2 D.-p 2 11.如果双曲线36 642 2y x - =1上一点P 到它的右焦点的距离为8,那么P 到它的右准线距离是( ) A.10 B.7732 C.27 D.5 32 12.若AB 为过椭圆错误!未找到引用源。+错误!未找到引用源。=1的中心的弦,F 1为椭圆的左焦点,则△F 1AB

高中数学选修2-1 2.2.1椭圆及其标准方程公开课教学设计

§2.2.1 椭圆及其标准方程 ■一、教学背景—————————————————————————————— 1.1 学生特征分析 学生的知识储备:必修二学习了直线方程,圆的方程,初步体会了方程与几何对象的对应关系,并能运用代数方程解决一些简单的几何问题。 学生的方法储备:由于必修二直线方程和圆的方程的学习和本章第一节曲线与方程的学习,学生应基本理解运用坐标法将几何问题代数化的想法,但还缺少实际运用,对方法的认识不够深刻。 1.2教师特点分析 自己教学中的优势:注重问题引导、思路分析、善于将学科课程与信息技术的整合、善于鼓励学生,能对学生进行有效指导。 不足:课堂教学语言相对不够准确简练、板书不够清晰美观。 1.3 学习内容分析 从知识上来讲:椭圆是本章中学到的第一个圆锥曲线,也是三种圆锥曲线中最重要的一个。对上一节来言,是运用坐标法研究曲线几何性质的一次实际运用,也是进一步研究椭圆几何性质的基础。 从方法上来讲:为后续双曲线和抛物线的学习奠定了理论基础,起示范的作用。 因此无论内容上还是方法上,本节都起着承上启下的作用。 ■二、设计思想———————————————————————————————— 学生已经学习了直线和圆的方程,并且学习了曲线与方程的关系,初步理解求曲线方程的想法。 本节课椭圆无论在定义的发现还是方程的推导上都是很好的教学素材。因此在定义的发现环节,精心设计学生活动,有教师的展示,有学生的动手实验,注重概念的生成过程。 在方程的推导阶段,注重数学思想方法的渗透,类比的思想,数形结合的思想。不断强调几何关系和代数表示之间的关系,为学生充分领会解析几何的思想方法提供指导。 在例题的选取上,注重层次感,让不同层次的学生都能学到不同层次的数学。讲练结合,讲在关键处,讲在练之后,让学生经历挫折,调整,成功的过程。 在问题的设计方面,充分考虑不同层次的学生情况,充分体现学生的分组讨论,团结合作。在学生的分组上,考虑4人小组,每组依据层次编为1—4号,不同小组同号码段学生层次接近,营造即有合作又有竞争的课堂教学氛围。 ■三、三维目标———————————————————————————————— (一)知识与技能 1. 掌握椭圆的定义和标准方程; 2. 会求简单的椭圆方程; (二)过程与方法 1.经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到 一般,掌握数学概念的数学本质,提高学生的归纳概括能力。 2.巩固用坐标化的方法求动点轨迹方程。 3.在数学思想方法的不断渗透过程中,学生能自觉利用数学思想方法分析和解决问题。 (三)情感、态度与价值观

直线与圆锥曲线的位置关系综合应用(附详细答案)【打印讲义】

二轮专题——直线与圆锥曲线的位置关系综合应用 【目标】掌握直线与圆锥曲线的位置关系,并会综合应用知识处理相关问题。 【重点】直线与圆锥曲线中的最值、值域、参数范围问题,定点、定值以及探究性问题。 【难点】圆锥曲线与三角、函数与方程、不等式、数列、平面向量等知识的的综合应用. 【知识与方法】 圆锥曲线中的定点、定值、最值问题是圆锥曲线的综合问题,解决此类问题需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整. 解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的. 1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的。如果试题以客观题形式出现,特殊方法往往比较奏效。 2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。 3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值或值域. 当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解. 【基础训练】 1、若实数x 、y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是( ) A 、5 B 、10 C 、9 D 、5+25 2、若关于x 的方程)2(12 -=-x k x 有两个不等实根,则实数k 的取值范围是( ) A 、)3 3,3 3(-B 、) 3,3(-C 、??? ? ?-0,33D 、??????????? ??--33, 2121,33 3、已知P 、Q 分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ 的面积为1,(0为原点),则线段PQ 中点M 的轨迹为( ) A 、双曲线x 2 -y 2 =1 B 、双曲线x 2 -y 2 =1的右支 C 、半圆x 2 +y 2 =1(x<0) D 、一段圆弧x 2 +y 2 =1(x> 2 2) 4、一个等边三角形有两个顶点在抛物线y 2=20x 上,第三个顶点在原点,则这个三角形的面积为 5、椭圆 19 16 2 2 =+ y x 在第一象限上一动点P ,若A(4,0),B(0,3),O(0,0),则APBO S 四边形 的最大 值为 题型一、最值及值域问题 例1.【广东省梅州市2013届高三总复习质检】已知F 1,F 2分别是椭圆C :222 2 1(0)y x a b a b + =>>的 上、下焦点,其中F 1也是抛物线C 1:2 4x y =的焦点, 点M 是C 1与C 2在第二象限的交点,且15||3 MF =。 (1)求椭圆C 1的方程; (2)已知A (b ,0),B (0,a ),直线y =kx (k >0)与AB 相交于点D ,与椭圆C 1相交于点E ,F 两点,求四边形AEBF 面积的最大值。 【跟踪训练1】 【广东省肇庆市2013届高三一模】已知椭圆2212 2 : 1(0)x y C a b a b + =>> 的离心率为3 e = ,直线 :2l y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程; (2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F ,且垂直于椭圆的长轴,动直线2l 垂直于1l ,垂足为点P ,线段2P F 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程; (3)设2C 与x 轴交于点Q ,不同的两点R 、S 在2C 上,且满足0=?RS QR ,求||Q S 的取值范围.

新课标人教A版选修圆锥曲线知识点整理

高二数学圆锥曲线知识整理 知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?? ???>=0e ,e d |PF ||P ,其中F 为定点,d 为P 到定直线的 距离,F ? ,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 ①定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 ②定量: 椭 圆 双 曲 线 抛 物 线 焦 距 2c 长轴长 2a —— 实轴长 —— 2a 短轴长 2b 焦点到对应 准线距离 P=2c b 2 p 通径长 2·a b 2 2p

人教a版数学【选修1-1】作业:第二章《圆锥曲线与方程》章末检测(a)(含答案)

1 第二章 章末检测(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.1 2 C .2 D .4 2.设椭圆 x 2 m 2 + y 2n 2 =1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为 1 2 ,则此椭圆的方程为( ) A. x 212+y 216=1 B.x 216+y 2 12 =1 C. x 248+y 264=1 D.x 264+y 2 48 =1 3.已知双曲线x 2a 2- y 2 b 2 =1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在 抛物线y 2=24x 的准线上,则双曲线的方程为( ) A. x 236-y 2108=1 B.x 29-y 2 27 =1 C. x 2108-y 236=1 D.x 227-y 2 9 =1 4.P 是长轴在x 轴上的椭圆x 2a 2+ y 2 b 2 =1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆 的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( ) A .1 B .a 2 C .b 2 D .c 2

1 5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则 双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 2 4=1 C.y 24-x 28=1 D.x 28-y 2 4=1 6.设a >1,则双曲线x 2a 2- y 2a +1 2 =1的离心率e 的取值范围是( ) A .(2,2) B .( 2,5) C .(2,5) D .(2, 5) 7.过点M (2,4)作直线与抛物线y 2=8x 只有一个公共点,则这样的直线的条数是( ) A .1 B .2 C .3 D .0 8.设F 为抛物线y 2=4x 的焦距,A 、B 、C 为该抛物线上三点,若FA →+FB →+FC → =0,则FB →|+|FB →|+|FC → |等于( ) A .9 B .6 C .4 D .3 9.已知双曲线x 2a 2- y 2b 2 =1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线 与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A .(1,2] B .(1,2) C .[2,+∞) D .(2,+∞) 10.若动圆圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( ) A .(4,0) B .(2,0) C .(0,2) D .(0,-2) 11.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( )

2.3.1双曲线及其标准方程公开课教学设计

§2.3.1双曲线及其标准方程 海南华侨中学王芳文 1.教学背景 1.1 学生特征分析 我授课班级是海南侨中理科班,方法储备上,学生经过学习,已经基本适应高中数学学习规律,但是学习方法还是停留在简单模仿,反复练习层次上,对知识的生成与发展,区别与联系认识不深,缺少抽象概括及分析综合能力。 知识储备上,学生已经系统的学习了直线方程,圆的方程以及椭圆的相关知识,学生熟知椭圆的定义,会根据题目条件求简单的椭圆的标准方程。但是由于接触学习椭圆的时间还相对较短,对椭圆的基本性质了解不深,而且理性思维比较欠缺,且计算能力的短板约束使得在处理直线与椭圆等综合问题时还存在困难。把新问题转化为已解决问题的能力有待提高,缺乏选择、调整解决问题策略的能力。 1.2教师特点分析 自己教学中的优势:注重问题引导、思路分析、善于与信息技术的整合、善于鼓励学生,能对学生进行有效指导。 不足:课堂教学语言相对不够准确简练、板书不够清晰美观。 1.3 学习内容分析 1、内容分析:学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质的学习打下基础。从高考大纲要求和课程标准角度来讲,双曲线的定义、标准方程作为了解内容,在高考的考查当中以选择、填空为主。正因如此,学生在学习过程当中对双曲线缺少应有的重视,成为了学生的一个失分点。而且由于学生对椭圆与双曲线的区别与联系认识不够,无法做到知识与方法的迁移,在学习双曲线时极易与椭圆混淆。在教学中要时刻注意运用类比的方法,让学生充分的类比体会椭圆与双曲线的异同点,使得椭圆与双曲线的学习能相互促进。 2、例题分析: 温故:帮助学生复习椭圆的定义,提出问题。 探究:如图,实验操作:1.取一条拉链,拉开一部分;

专题直线与圆、圆锥曲线知识点

专题 直线与圆、圆锥曲线 一、直线与方程 1、倾斜角与斜率:1 21 2tan x x y y k --= =α 2、直线方程:⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y += ⑶两点式: 121121y y y y x x x x --=-- ⑷截距式:1x y a b += ⑸一般式:0=++C By Ax 3、对于直线: 222111:,:b x k y l b x k y l +=+=有:⑴???≠=?21 2 121//b b k k l l ; ⑵1l 和2l 相交12k k ?≠;⑶1l 和2l 重合???==?2 12 1b b k k ;⑷12121-=?⊥k k l l . 4、对于直线: 0:, 0:22221111=++=++C y B x A l C y B x A l 有:⑴???≠=?122 11 22121//C B C B B A B A l l ;⑵1l 和2l 相交1221B A B A ≠?; ⑶1l 和2l 重合?? ?==?1 2211 221C B C B B A B A ;⑷0212121=+?⊥B B A A l l . 5、两点间距离公式: ()()21221221y y x x P P -+-= 6、点到直线距离公式: 2 2 00B A C By Ax d +++= 7、两平行线间的距离公式: 1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2 2 21B A C C d +-= 二、圆与方程 1、圆的方程:⑴标准方程:()()2 2 2 r b y a x =-+-其中圆心为(,)a b ,半径为r . ⑵一般方程:02 2=++++F Ey Dx y x . 其中圆心为(,)22 D E - - ,半径为r = 2、直线与圆的位置关系 直线0=++C By Ax 与圆2 22)()(r b y a x =-+-的位置关系有三种:

(最新)圆锥曲线单元测试题(含答案)

圆锥曲线和方程单元测试(高二高三均适用) 一、选择题 1.方程231x y =- ( ) (A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.椭圆14222=+a y x 和双曲线122 2=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12 (D )1 3.双曲线22 221x y a b -=的两条渐近线互相垂直,那么该双曲线的离心率是 ( ) (A )2 (B )3 (C )2 (D ) 2 3 4、已知圆22670x y x +--=和抛物线22(0)y px p =>的准线相切,则p 为 ( ) A 、1 B 、2 C 、3 D 、4 5、过抛物线x y 42 =的焦点作一条直线和抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A 、有且仅有一条 B 、有且仅有两条 C 、有无穷多条 D 、不存在 6、一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2,3)是椭圆上一点,且1122|||||| PF F F PF 、、成等差数列,则椭圆方程为 ( ) A 、22186x y += B 、221166x y += C 、22184x y += D 、22 1164 x y += 7.设0<k <a 2, 那么双曲线x 2a 2–k – y 2b 2 + k = 1和双曲线 x 2a 2 – y 2 b 2 = 1有 ( ) (A )相同的虚轴 (B )相同的实轴 (C )相同的渐近线 (D )相同的焦点 8.若抛物线y 2= 2p x (p >0)上一点P 到准线及对称轴的距离分别为10和6, 则p 的值等于 ( ) (A )2或18 (B )4或18 (C )2或16 (D )4或16 9、设12F F 、是双曲线2 214 x y -=的两个焦点,点P 在双曲线上,且120PF PF ?=,则12||||PF PF ?的 值等于 ( ) A 、2 B 、22C 、4 D 、8 10.若点A 的坐标为(3,2),F 是抛物线x y 22 =的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为 ( ) A .()0,0 B .?? ? ??1,21 C .() 2,1 D .()2,2

《双曲线的简单几何性质》省优质课比赛一等奖教案

双曲线的简单几何性质 在人教版《普通高中课程标准实验教科书(数学选修2-1)》中,针对双曲线的简单几何性质第一课时内容,笔者从教材分析、学生分析、目标分析、过程分析、板书设计等方面设计这一节课的教学. 一、教材分析 (一)教材的地位与作用 本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,利用双曲线的标准方程研究其几何性质.它是教学大纲要求学生必须掌握的内容,也是高考的一个重要的考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质. (二)教学重点与难点的确定及依据 对圆锥曲线来说,双曲线有特殊的性质,而学生对双曲线的简单几何性质及其性质的讨论方法接受、理解和掌握有一定的困难.因此,在教学过程中我把双曲线的简单几何性质及其性质的讨论方法作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地导出了双曲线的简单几何性质.这样处理将数学思想渗透于其中,学生也易接受.因此,我把双曲线的简单几何性质及其性质的讨论方法作为重点.根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的难点. 教学重点:双曲线的简单几何性质及其性质的讨论方法. 解决办法: 1.欣赏优美的几何画板图形,以激发学生强烈的学习兴趣; 2.利用“几何画板”进行数学问题的探索以培养学生的创新能力. 教学难点:双曲线渐近线概念与性质. 解决办法:本节课我先选择由教师借助“几何画板”,利用描点法画出较为准确的图形,由学生先观察它的直观性质,然后再从方程出发给予证明. 二、学情分析与学法指导 学情分析:由于刚学习了椭圆有关问题,学生已经熟悉了图形——方程——性质的研究过程,学生已基本具有由方程研究曲线性质的能力.

2021新高考数学二轮总复习专题突破练25直线与圆及圆锥曲线含解析

专题突破练25 直线与圆及圆锥曲线 1.(2020全国Ⅱ,理19)已知椭圆C 1: x 2a + y 2b =1(a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心 与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|=4 3|AB|. (1)求C 1的离心率; (2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程. 2. 已知圆O :x 2+y 2=4,点A (√3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ. (1)求曲线Γ的方程; (2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程. 3.(2019全国Ⅰ,理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为3 2的直线l 与C 的交点为A ,B ,与x 轴的交点为P. (1)若|AF|+|BF|=4,求l 的方程; (2)若AP ????? =3PB ????? ,求|AB|.

4.(2020山东威海一模,20)已知椭圆x2 a2+y2 b2 =1(a>b>0)的左、右焦点分别为F1,F2,点P(-1,3 2 )是椭圆上 一点,|F1F2|是|PF1|和|PF2|的等差中项. (1)求椭圆的标准方程; (2)若A为椭圆的右顶点,直线AP与y轴交于点H,过点H的另一条直线与椭圆交于M,N两点,且S△HMA =6S△PHN,求直线MN的方程. 5.(2020重庆名校联盟高三二诊,19)已知椭圆C:x2 a2+y2 b2 =1(a>b>0),F1,F2为椭圆的左、右焦点,P(1,√2 2 ) 为椭圆上一点,且|PF1|=3√2 2 . (1)求椭圆的标准方程; (2)设直线l:x=-2,过点F2的直线交椭圆于A,B两点,线段AB的垂直平分线分别交直线l、直线AB于M,N两点,当∠MAN最小时,求直线AB的方程.

高中数学第二章圆锥曲线章末复习课学案北师大版1

第二章 圆锥曲线 [对应学生用书P39] [自主学习] 1.平面截圆锥面 (1)当截面β与圆锥面的轴l 垂直时,所得交线是一个圆. (2)任取一平面β,它与圆锥面的轴l 所成的夹角为θ(β与l 平行时,记θ=0°),当θ>σ(σ为圆锥母线与轴交角)时,平面截圆锥面所得交线为椭圆;当θ=σ时,交线为抛物线;当θ<σ时,交线为双曲线. 2.圆锥曲线的几何性质 抛物线、椭圆、双曲线都是平面上到定点的距离与到定直线的距离之比为常数e (离心率)的动点的轨迹,此时定点称为焦点,定直线称为准线. 当e =1时,轨迹为抛物线; 当01时,轨迹为双曲线. [合作探究] 1.当平面β与圆锥面的轴l 所成的夹角为θ=π 2时,其交线应为什么? 提示:圆 2.由圆锥曲线的统一定义可知,椭圆、双曲线的准线有几条?定义e 时,定点与定直线有怎样的关系? 提示:因为椭圆、双曲线各有两个焦点,故其准线有两条.定义e 时,定点与定直线是对应的.即右焦点应对应右准线、左焦点对应左准线. [对应学生用书P40] 圆锥曲线的探讨 [例1] α,l ′围绕l 旋转得到以O 为顶点,l ′为母线的圆锥面,任取平面γ,若它与轴l 的交角为β(当γ与 l 平行时,记β=0),求证:β=α时,平面γ与圆锥的交线是抛物线. [思路点拨] 本题主要考查平面截圆锥面的曲线的讨论问题.解题时,注意利用条件,结合图形利用抛物线的定义求解.

[精解详析] 如图,设平面γ与圆锥内切球相切于点F ,球与圆锥的交线为S ,过该交线的平面为γ′,γ与γ′相交于直线m . 在平面γ与圆锥的截线上任取一点P ,连接PF .过点P 作PA ⊥m ,交m 于点A ,过点P 作γ′的垂线,垂足为B ,连接AB ,则AB ⊥m ,∴∠PAB 是γ与γ′所成二面角的平面角.连接点P 与圆锥的顶点,与S 相交于点Q ,连接BQ ,则∠BPQ =α,∠APB =β. 在Rt △APB 中,PB =PA cos β. 在Rt △PBQ 中,PB =PQ cos α. ∴PQ PA =cos β cos α . 又∵PQ =PF ,α=β,∴PF PA =1, 即PF =PA ,动点P 到定点F 的距离等于它到定直线m 的距离,故当α=β时,平面与圆锥的交线为抛物线. 已知平面与圆锥面的轴的夹角为β,曲线与轴的夹角为α,当α=β时,平面与圆锥的交线为抛物线.β<α时为双曲线,β>α时为椭圆.讨论曲线类型时注意结合图形. 1.一圆锥面的母线和轴线成30°角,当用一与轴线成60°的不过顶点的平面去截圆锥面时,所截得的截线是( ) A .椭圆 B .双曲线 C .抛物线 D .两条相交直线 解析:选A 如图可知应为椭圆.

人教版数学选修2-1圆锥曲线知识总结

数学选修2-1圆锥曲线知识归纳 一、复习总结: 名称椭圆双曲线图象x O y x O y 定义平面内到两定点 2 1 ,F F的距离的和为 常数(大于 2 1 F F)的动点的轨迹叫椭 圆即a MF MF2 2 1 = + 当2a﹥2c时,轨迹是椭圆 当2a=2c时,轨迹是一条线段 2 1 F F 当2a﹤2c时,轨迹不存在 平面内到两定点2 1 ,F F的距离的 差的绝对值为常数(小于2 1 F F ) 的动点的轨迹叫双曲线即 a MF MF2 2 1 = - 当2a﹤2c时,轨迹是双曲线 当2a=2c时,轨迹是两条射线 当2a﹥2c时,轨迹不存在 标准方程 焦点在x轴上时:1 2 2 2 2 = + b y a x 焦点在y轴上时:1 2 2 2 2 = + b x a y 注:是根据分母的大小来判断焦点 在哪一坐标轴上 焦点在x轴上时: 1 2 2 2 2 = - b y a x 焦点在y轴上时: 1 2 2 2 2 = - b x a y 常数 c b a, ,的关系 2 2 2b c a+ =2 2 2b a c+ =, 渐近线焦点在x轴上时: = - b y a x 焦点在y轴上时: = - b x a y

抛物线: 图 形 x y O F l x y O F l 方 程 )0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准线 2 p x -= 2p x = 2p y -= 2 p y = 二、知识点: 椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质 1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹 2.椭圆的标准方程:12222=+b y a x ,122 22=+b x a y (0>>b a ) 3.椭圆的性质:由椭圆方程122 22=+b y a x (0>>b a ) (1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中. (2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称 中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距. (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点. 椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦)0,(),0,(21c F c F -共 有六个特殊点 21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2.b a ,分别为椭圆 的长半轴长和短半轴长,椭圆的顶点即为椭圆与对称轴的交点. x y O F l x y O F l

(最新)圆锥曲线单元测试题(含答案)

圆锥曲线与方程单元测试(高二高三均适用) 一、选择题 1.方程x = ( ) (A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.椭圆14222=+a y x 与双曲线122 2=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12 (D )1 3.双曲线22 221x y a b -=的两条渐近线互相垂直,那么该双曲线的离心率是 ( ) (A )2 (B )3 (C )2 (D ) 2 3 4、已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为 ( ) A 、1 B 、2 C 、3 D 、4 5、过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A 、有且仅有一条 B 、有且仅有两条 C 、有无穷多条 D 、不存在 6、一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2)是椭圆上一点,且1122|||||| PF F F PF 、、成等差数列,则椭圆方程为 ( ) A 、22186x y += B 、221166x y += C 、22184x y += D 、22 1164 x y += 7.设0<k <a 2, 那么双曲线x 2a 2–k – y 2b 2 + k = 1与双曲线 x 2a 2 – y 2 b 2 = 1有 ( ) (A )相同的虚轴 (B )相同的实轴 (C )相同的渐近线 (D )相同的焦点 8.若抛物线y 2= 2p x (p >0)上一点P 到准线及对称轴的距离分别为10和6, 则p 的值等于 ( ) (A )2或18 (B )4或18 (C )2或16 (D )4或16 9、设12F F 、是双曲线2 214 x y -=的两个焦点,点P 在双曲线上,且120PF PF ?=,则12||||PF PF ?的 值等于 ( ) A 、2 B 、 C 、4 D 、8 10.若点A 的坐标为(3,2),F 是抛物线x y 22 =的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为 ( ) A .()0,0 B .?? ? ??1,21 C .() 2,1 D .()2,2

高中数学《椭圆及其标准方程》公开课优秀教学设计

《椭圆及其标准方程》教学设计说明 一、教学内容解析 本节课是人教A版《普通高中课程标准实验教科书·数学》选修2-1中的第二章第二节第一课时的内容,其主要内容是研究椭圆的定义及其标准方程,属于概念性知识.解析几何是在直角坐标系的基础上,利用代数方法解决几何问题的一门学科. 从知识上讲,本节是在必修课程《数学2》中直线和圆的基础上,对解析法的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上讲,为进一步研究双曲线、抛物线提供了基本模式和理论基础;从教材编排上讲,三种圆锥曲线独编为一章,体现椭圆的重要地位。解析几何的意义主要表现在数形结合的思想上.在研究椭圆定义和方程的过程中,几何直观观察和代数严格推导相互结合,同时要借助圆作类比,用类比的思想为学生的思维搭桥铺路.因此本节课内容起到了承上启下的重要作用,是本章和本节的重点. 教学重点:椭圆的定义及其标准方程。 二、教学目标设置 1.课程目标 (1)了解圆锥曲线与二次方程的关系; (2)掌握圆锥曲线的基本几何性质; (3)感受圆锥曲线在刻画现实世界和解决实际问题中的作用; (4)结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想. 2.单元目标 (1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;(2)经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质; (3)了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质; (4)能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题; (5)通过圆锥曲线的学习,进一步体会数形结合的思想. 3.本节课教学目标 (1)通过用细绳画椭圆的实验,能用自己的语言叙述椭圆的定义,会用定义判定点的轨

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

人教A版高中数学选修11学案:第二章圆锥曲线与方程章末检测b含答案

第二章章末检测(B ) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1. 中心在原点,焦点在 椭圆的方程是( ) 2 2 A 』+ y- = 1 代81十72 2 2 宀L= 1 81 45 x 轴上,若长轴长为18, 且两个焦点恰好将长轴三等分,则此 2 2 f x y / B.茁+9 =1 2 2 D& + 出=1 81 36 2. 平面内有定点 A 、B 及动点P ,设命题甲是“ 的轨迹是以A 、B 为焦点的椭圆”,那么甲是 乙的 ( A .充分不必要条件 B .必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 3. 设0, a € R ,则抛物线y = ax 2的焦点坐标为( ) (0, 右 (0 ,右 为斜边的直角三角形的直角顶点 P 的轨迹方程是 |PA|+ |PB|是定值”,命题乙是“点 P ) a c 、 A. (^,0) c.( a ,0) 4. 已知 M ( — 2,0), N (2,0),则 以 MN ) A . x 2+ y 2 = 2 c . x 2+ y 2= 2(X M ±2) 2 2 B . D . B . D . x 2 + y 2= 4 2 2 x + y = 4(x M ±2) 5. 已知椭圆予+泊=1 (a>b>0)有两个顶点在直线 x + 2y = 2上,则此椭圆的焦点坐标是 ) A . ( ± 3, 0) C . ( 土. 5, 0) x 6.设椭圆£2 + 则椭圆的离心率为( 2 A. 2 2 2 1 = 1 m — 1 ) 1 巧 B . (0, 土. 3) (0, ±. 5) P 到其左焦点的距离为 3,至U 右焦点的距离为 1 , (m>1)上一点 2 x_ a 2— 1 c.p 2 b 2= 1,点 A , 7.已知双曲线的方程为 的右焦点F 2, |AB|= m , F 1为另一焦点,则△ ABF 1的周长为( ) A . 2a + 2m C . a + m &已知抛物线y 2= 4x 上的点 距离为d 2,贝U d 1 + d 2的最小值是( 12 6 A ?T B.6 9.设点A 为抛物线 A . — 2 C .— 2 或 0 B 在双曲线的右支上,线段 AB 经过双曲线 B . 4a + 2m D . 2a + 4m P 到抛物线的准线的距离为 d 1,到直线3x — 4y + 9= 0的 ) C . y 2= 4x 上一点, B . D . .5 D W B (1,0),且|AB|= 1,则A 的横坐标的值为( ) 占 八、、 0 —2或2

圆锥曲线章节复习与小结

学习目标: 1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质; 自主学习: 复习2: ① 若椭圆221x my +=,则它的长半轴长为__________; ②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程 为 ; ③以椭圆2212516 x y +=的右焦点为焦点的抛物线方程为 .

合作交流: 1. 当α从0 到180 变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 2.若曲线22 11x y k k +=+表示椭圆,则k 的取值范围是 . 基础达标: 1.曲线221259x y +=与曲线221259x y k k +=--(9)k <的( ). A .长轴长相等 B .短轴长相等 C .离心率相等 D .焦距相等 2.与圆221x y +=及圆228120x y x +-+=都外切的圆的圆心在( ) . A .一个椭圆上 B .双曲线的一支上 C .一条抛物线上 D .一个圆上 3.过点P(-2, -4)的抛物线的标准方程为 4.直线1y kx =-与双曲线224x y -=没有公共点,则k 的取值范围 . 5.到直线3y x =+的距离最短的抛物线24y x =上的点的坐标是 . 能力提升: 1.3k >是方程22 131 x y k k +=--表示双曲线的( )条件。 A .充分但不必要 B .充要 C .必要但不充分 D .既不充分也不必要 2.在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )

相关文档
相关文档 最新文档