文档库 最新最全的文档下载
当前位置:文档库 › 空间矢量脉宽调制仿真及其谐波分析

空间矢量脉宽调制仿真及其谐波分析

空间矢量脉宽调制仿真及其谐波分析
空间矢量脉宽调制仿真及其谐波分析

文章编号:1005—7277(2005)01—0011—03

V ol.27,N o.12005,27(1):11~13

电气传动自动化

E L ECTRIC D RIVE AUTOMATI O N 2005年第27卷第1期第11页

空间矢量脉宽调制仿真及其谐波分析

康现伟,于克训,刘志华

(华中科技大学电气与电子工程学院,湖北武汉430074)

摘要:在深入分析空间矢量脉宽调制机理的基础上,通过SIMU LINK 给出了其仿真波形,重点对SVPWM 的仿真结果进行了谐波分析,得到了SVPWM 谐波分布的主要特点及影响其谐波分布的几个主要因素,为更有效消除SVPWM 谐波污染提供了理论基础和指导。关键词:空间矢量脉宽调制;谐波;仿真中图分类号:T M921.52

文献标识码:A

Simulation and harmonic anal y sis of SVPWM

K ANG Xian-wei ,Y U K e-xun ,LIU Zhi-hua

(Huazhon g Univ er sit y o f Science and T echnolo gy ,Wuhan 430074,China )

Abstract :Based on the anal y sis of the characteristics of s p ace vector p ulse w idth m odulation (SVPWM ),a series of sim 2ulation w aveforms are illustrated b y the use of S imulink.T he foundational features of the harm onic distributions of SVPWM and the dom inant factors affectin g the distributions are obtained throu g h the anal y sis on the harm onics of the w aveforms ,which p rov ides us theoretical foundation to elim inate the harm onic p ollution.K e y w ords :SVPWM;harm onic ;simulation

1引言

空间矢量脉宽调制(SVPWM )具有线性调制范围宽,直流电压利用率高,易于微处理器实现等优点,它目前被广泛应用于变频器、UPS 、无功补偿器、有源滤波器、储能系统电力变换器等领域。当控制精度要求较高时,必须考虑其谐波问题。

本文首先阐述了空间矢量调制(SVPWM )的基本原理,然后给出了仿真波形,针对空间矢量调制中出现的谐波问题,文章进行了较为详细的分析和论述,得到了影响SVPWM 谐波分布的几个主要因素,从而为其在实际应用中消除谐波污染提供了可靠的理论依据。

2电压空间矢量脉宽调制(SVPWM )原理

对于理想三相正弦系统,电压空间矢量的定义为:

V =2/3(V a +V b e j 2π/3+V c e j 4π/3)

(1)

对于三相电压源型逆变桥的6个开关,如图1

所示。假设“1”代表上桥臂导通,“0”代表下桥臂导

通,则一共有8种开关模式,分别为V

0(000),V 1(100),V 2(110),V 3(010),V 4(011),V 5(001),V 6(101),

V 7(111)。由变换式(1)可得,这8种开关模式在复

平面上分别产生8种电压矢量,其中V

1~V 66个开关模式产生输出电压,而V

0、V 72个开关模式不产生输出电压,称为零矢量。这8个电压矢量将复平

面分为6个区域,如图2所示,按照平行四边形法则,利用这8个空间矢量可以合成在六变形区域内的任何输出电压矢量

电气传动自动化

?12?

2005年第1期

例如,当空间矢量落入扇形区域I 时,

如图3所示,依矢量合成原理可得到:

T 1V 1+T 2V 2+T 0V 0=T S V r e f (2)T 1+T 2+T 0=T S

(3)

式中:T 1,T 2和T 0分别为矢量V

1、V 2和零矢量在一个载波周期T s 内的作用时间,依上式就可求出个开关模式在一个载波周期内的作用时间:

T 1=T S m a sin (-θ+π/3)

(4)T 2=T S m a sin

θ(5)m a =

3V r e f /V d (6)

式中,m a 表示幅度调制比,θ表示合成空间电压矢量与参考矢量之间的夹角。

为了使得波形对称,最大限度的降低开关损耗,把每个矢量的作用时间都一分为二,同时把零

矢量时间等分给两个零矢量V 0和V 7。这样既可以提高直流电压的利用率,又可降低逆变器输出谐波含

量。比如,在第I 扇区内,产生的开关序列为V 0→V 4→V 6→V 7→V 7→V 6→V 4→V 0,如图4所示。

以此类推,根据空间电压矢量合成原理及空间矢量分布图,可以推得各个扇区内的开关序列表,如表1所示。

3空间矢量调制(SVPWM )的仿真

基于上述SVPWM 的作用原理,为了验证该方法的实用性和分析其谐波问题,利用SIMU LINK 仿真工具对此方法进行了仿真研究。

仿真参数设置如下:

额定输出功率:1M VA ;

额定输出电压:4160V;负载功率因数:0.9(滞后);频率:60H z 。

为了便于观察和得到影响谐波分布的几个主要因素,在此仿真中,通过调节幅度调制比m a 和频率调制比m f ,得到了如下的五组仿真波形,如图5~图9所示:

其中:F 1表示基波频率;

m a 表示幅度调制比;m f 表示频率调制比。

表1开关序列表

扇区

S1S2S31

P1P2P32P2P1P33P3P1P24P3P2P15P2P3P16

P1

P3

P2

2005年第1期?13?

康现伟,于克训,刘志华空间矢量脉宽调制仿真及其谐波分析

3仿真结果分析

频率调制比m

f影响合成电压矢量的分布模式。当开关频率为900H z时,频率调制比m

f

=

900/60=15,此时偶数扇区与奇数扇区宽度不同(图5(A)-7(A)),这表明了合成电压矢量在偶数扇区和奇数扇区内的抽样点的分布是不均匀

的,因此,电压波形会失去对称性。而当m

f

=900/ 30=30和m f F1=900/10=90的时候,抽样点平均分布在6个扇区内(图7(A)-9(A))。根据详细

的分析可得到如下规律:当频率调制比m

f

为6的整数倍时,合成电压矢量在各个扇区内抽样点相同,而当其不为6的整数倍时,合成电压矢量在各个扇区内的抽样点则会出现差异,造成输出电

压波形的不对称。抽

样点的不同主要是

来源于计算机在数

字化处理时产生的

误差。为了使得输出

波形对称,可以采用

变步长SVM算法。

谐波主要集中

分布在频率m

f

F1附

近,这是空间矢量调

制谐波分布共同的

特点(图5(B,C)-图

9(B,C));

由于感性负载

的抑制作用,输出电

流总谐变率远远低

于输出电压总谐变

率(图5(C)-图9

(C));

当幅度调制比

m a降低的时候,输出

电压和电流总谐变

率就会相应的增加

(图5(B)-7(B));

当频率调制比

m f增加的时候,输出

电压和电流总谐变率

就会相应的降低(由

图7(C)-9(C))。

4结论

根据空间矢量调制的三相逆变器的仿真模型及其仿真结果,可以得到如下几点结论:

输出电压的谐波成分主要集中在频率m

f

F1处,这是SVPWM调制的内在特征;

频率调制比m

f对合成电压矢量的分布模式有着很重要的影响,为了获得对称的输出,m

f应当被选择为6的整数倍;

输出电压中含有偶次谐波;

增加幅度调制比m a和频率调制比m

f可以降低输出电压总谐变率。

(下转第22页

)

电气传动自动化

?22?

2005年第1期

(上接第13页)根据该结论可知,通过调节参数幅度调制比

m a 和频率调制比m f ,就可以达到有效的减小和抑制SVPWM 中产生的谐波,为更有效地抑制SVPWM 中产生的谐波、扩大SVPWM 的应用提供了理论基础。

参考文献:

[1]H abctler TG .A s p ace vector -based rectifier re g ulator for ac/dc /ac converters[J ].IEEE T rans.P ow er E lec ,1993,8(1):33-36.[2]Bow es S R ,Lai Y S.T he relationshi p betw een s p ace-vector m o-dulation and re g ular -sam p led PWM[J ].IEEE T rans.on Indust-rial E lectronics ,1997,44(5):670-679.

[3]李红梅,李忠杰,杜世俊.SVPWM 逆变器供电异步电机动

态性能仿真.电机与控制学报[J ].2001(3).

[4]陈坚.电力电子学———电力电子变换和控制技术[M].

北京:高等教育出版社,2002.

[5]熊健.电压空间矢量调制与常规SPWM 比较研究[J ].电

力电子技术,1999(1):25-28.作者简介:

康现伟(1978-),男,硕士研究生,就职于华中科技大学电气与电子工程学院。

于克训(1961-),男,教授,博士,就职于华中科技大学电气与电子工程学院。

收稿日期:2004-05-15

收稿日期:2004-02-27

4仿真结果与分析

基于本文给出的补偿方法,对一台异步电机驱动系统进行了仿真研究,图3为其矢量控制系统结构图。

主要参数为:

直流母线电压V d =300V ,T d =3.6μs 。电机

P N =20kW ,I N =86A ,T N =53.6Nm ,n N =3600r p m ,

逆变器开关频率10K 。

简单起见,设置T on =T off =0。

图4和图5分别给出了在相同工况下,按照本文方法进行补偿前后电机稳态运行时的仿真结果。

其中:n =300r p m ,T e =16Nm 。

可以看出,进行补偿后有效改善了死区效应引起的电流畸变,消除了谐波,同时提升了电流输出能力。

5结论

综上所述,该方法有效改善了死区效应引起的电流波形畸变和由此带来的电机转矩脉动,提高了逆变器低频、轻载时的输出性能,且实现简单,易于模块化。

参考文献:

[1]S eun g -G i Jeon g ,M in -H o Park.T he Anal y sis and C om p ensation

of Dead -T im e E ffects in PWM Inverters.IEEE T rans.on IE ,1991,38(2).

[2]Dav id Le gg ate ,Russel J.K erkm an.Pulse-Based Dead -T im e C om -p ensator for PWM V olta g e Inverters.IEEE T rans.on IE ,1997,44(2).

[3]T akashi Suke g aw a ,K enzo K am i y am a ,K atsuhiro M izuno ,T aka-y uki M atsui ,T

oshiaki Oku y am a ,Full y Di g ital.Vector -C ontrolled PWM VSI -F ed ac Drives w ith an Inverter Dead -T im e C om p ens -ation Strate gy .IEEE T rans.on I A ,1991,27(3).

作者简介:

窦汝振(1976-),男,工学博士,研究方向为电动汽车及其驱动技术。

刘均(1977-

)

,男,工学硕士,研究方向为异步电机控制、计算机测控系统。

GIS矢量数据分析与栅格数据分析实验

G I S矢量数据分析与栅格 数据分析实验 This model paper was revised by the Standardization Office on December 10, 2020

本科学生实验报告姓名尹永义学号 专业地理科学班级 2014B _ 实验课程名称地理信息系统概论(实验) 实验名称矢量数据分析与栅格数据分析 指导教师及职称速绍华(讲师) 开课学期 2014 _至_ 2015_学年_下学期云南师范大学旅游与地理科学学院编印

3、实验理论依据或知识背景: 矢量数据分析矢量数据以点、线和面空间要素为输入数据。 分析结果的准确性取决于空间特征的位置及形状的准确性。 拓扑关系是一些矢量数据分析(如建立缓冲区和叠置分析)的一个因素。 基于邻近(Proximity)概念,建立缓冲区可把地图分为两个区域:一个区域位于所选地图要素的指定距离之内,另一个区域在指定距离之外。 在指定距离之内的区域称为缓冲区。 围绕点建立缓冲区产生圆形缓冲区。围绕线建立缓冲区形成一系列围绕每条线段的长条形缓冲带。围绕多边形建立缓冲区则生成由该多边形边 界向外延伸的缓冲区。 对线要素建立缓冲区未必在线两侧都有缓冲区,可以只在线的左侧或右 侧建立缓冲区。 缓冲距离(又叫缓冲大小)未必为常数,可以根据给定字段取值而变 化。 缓冲区边界也可以被融合掉,使得缓冲区之间没有叠置区。 地图叠置操作是将两个要素图层的几何形状和属性组合在一起,生成新 的输出图层。 输出图层的几何形状代表来自各输入图层的要素的几何交集。 输出图层的每个要素包含所有输入图层的属性组合,而这种组合不同于 其邻域。 所有叠置方法都是基于布尔连接符的运算,即AND、OR 和 XOR。 若使用 AND 连接符,则此叠置操作为求交(Intersect)。 若使用 OR 连接符,则此叠置操作称为联合(Union)。 若使用 XOR 连接符,则此叠置操作称为对称差异(Symmetrical Difference)或差异(Difference)。 若使用以下表达式 [(Input Layer)AND(Identity Layer)] OR (Input Layer),则该叠置操作称为识别(Identity)或减去 (Minus)。 模式分析是关于二维空间点要素空间分配的研究。 在整体水平上,模式分析可以揭示某分布模式是随机、离散还是集聚 的。 在局部水平上,模式分析可以检测出分布模式中是否含有高值或低值的局部集聚。 模式分析包括点模式分析、量测空间自相关的莫兰指数(Moran’s I)和量测高/低聚集度的G 统计量。 栅格数据分析 栅格数据分析是基于栅格像元和栅格的。 栅格数据分析能在独立像元、像元组或整个栅格全部像元的不同层次上进行。 一些栅格数据运算使用单一栅格,而另一些则使用两个或更多栅格数 据。 栅格数据分析也应考虑像元数值类型(数字型数值,类别型数值)。

矢量数据空间分析

一、实验内容 利用实验数据进行缓冲区分析及叠加分析。 二、实验过程 4.1、缓冲区分析。 (1)打开数据。打开SuperMap iDesktop 8C,打开数据源,加载实验数据中的“叠加分析.udb和陕西.udb”,并将陕西数据源下的银行、市界_R和省界_R数据集依次添加到同一图层上,并依据“点线面,由小及大”的原则叠放,如下图所示; (2)建立缓冲区-单重缓冲区-多重缓冲区。 1)单重缓冲区-点数据。选择分析->矢量分析->缓冲区->缓冲区,如下图所 示;

在弹出的面板中选择缓冲数据“陕西数据源-银行数据集”,缓冲半径设置为字段型,设置为缓冲区距离,设置一下结果数据,具体如下图所示,点击确定; 得到结果,如下图所示,生成的缓冲区半径都是不一样的;

2)线数据。将陕西数据源中的水系数据集加载到同一个图层中,点击分析-> 矢量分析->缓冲区->缓冲区,在弹出的面板中,数据类型变为线数据,缓冲类型设置为圆头缓冲,数值型半径设置为5000,将结果数据设置一下,具体如下图所示,点击确定; 调整一下图层顺序,可以看到其结果,如下图所示;

在进行一下分析,将缓冲类型改为平头缓冲,将数值型中的左半径设置为10000,右半径设置为5000,设置一下结果数据,如下图所示,点击确定; 其结果如下图所示,可以看到其缓冲类型与上一个结果的明显不同,左半径明显大于右半径;

3)多重缓冲区。选择分析->矢量分析->缓冲区->多重缓冲区,在弹出的面板 中,数据集选择之前以水系数据集生成的结果数据,在缓冲半径列表部分 选择->批量添加,在弹出的面板中 设置其起始值为500,结束值为5000,步长为500,如下图所示,点击确定;

空间分析实验

空间分析实例 实验一、山顶点的提取 应用栅格数据空间分析模块中的等高线提取功能,分别提取等高距为 15 米和75 米的等高线图,并按标准地形图绘制等高线方法绘制等高线,作为山顶点提取的地形背景通过邻域分析和栅格计算器提取山顶点(实验数据:“F:\2012_work\国家海洋监测中心\国家海洋监测中心培训\空间分析\表面分析”) 操作步骤: 1、加载Spatial Analyst 模块和DEM 数据 2、单击ArcToobox,弹出ArcTooblox窗口,点击Spatical Analyst->表面分析->等值线,提取等高距为 15 米的等高线数据,输出图层为Contour_dem15:

3、同上,修改Contour interval 为75 米,提取等高距为75 米的等高线,输出文件名为Contour_dem75。

修改图例颜色以区别等高线显示效果,单击contour15 数据层线状图例,弹出symbol selector 对话框,选择显示颜色为灰度60%(可任意选择),并点击ok。

4、点击Spatical Analyst->表面分析->山体阴影,设置输出文件名为Hillshade,其他参数取默认值,提取该地区光照晕渲图,作为等高线三维背景。

5、点击Spatical Analyst->地图代数->栅格计算器,输入计算公式:DEM>=0,输出栅格为back,单击ok。提取有效数据区域,作为等高线三维背景掩膜。

双击 back 数据层,在弹出的属性对话框的“显示”属性页设置透明度为60%,在“符号化”属性框中设置其显示颜色为Gray50%,单击ok

新型无扇区空间矢量脉宽调制算法的研究概要

新型无扇区空间矢量脉宽调制算法的研究 李丹 周波 黄佳佳 方斯琛 (南京航空航天大学航空电源航空科技重点实验室, 南京, 210016) 摘要:传统的空间矢量脉宽调制(SVPWM )算法需要进行扇区判断,编程实现复杂。本文提出了一种基于新坐标系下的电压空间矢量脉宽调制的新算法。该算法无需扇区判断即可直接求解三相桥臂开关的占空比;实现了对开关信号的直接求解。与传统调制方法相比,大大简化了数字实现,提高了实时性。仿真及实验结果表明了该方法的正确性和可行性。 关键词:空间矢量脉宽调制;三相逆变器;坐标系;新型调制算法; 1 引 言 在控制电机的三相逆变器中,空间矢量脉宽调制(SVPWM )和正弦脉宽调制(SPWM )为两种常用调制方式。与SPWM 近似正弦的输出电压不同,SVPWM 的调制方法将逆变器和电机视为一个整体,着眼于使电机实现幅值恒定的旋转磁场。与SPWM 相比,功率器件的开关次数可以减少1/3,直流电压利用率可提高15%,能获得较好的谐波抑制效果,具有快速的响应等特点;并且,SVPWM 调制方式更适合数字实现。 SVPWM 的一系列优点使其得到了广泛应用,但缺点是数字控制复杂,因此许多文献致力于寻找SVPWM 的简化算法[1]~[3]。文献[1] 改变了扇区划分方式,减少了一定的运算步骤;文献[2]使用新的扇区标号判别方法减少了三角运算,提高了运算速度。 以上这些改进一定程度上简化了SVPWM 的数字实现,但由于简化都是针对传统调制算法的具体运算步骤进行的,因此改进有限。本文通过对SVPWM 的本质分析,提出了一种无扇区的全新实现方法。该方法改变了SVPWM 调制算法的实现思想,将整个向量空间视为整体,省略扇区的概念来达到算法的简化,与传统调制方法相比减小了编程难度,提高了运算实时性,有利于数字实现。 2 传统电压空间矢量脉宽调制方法 三相全桥逆变器共八种开关模式,分别对应八个基本电压空间矢量U 0~U 7,如图1所示。两个零矢量U 0、U 7幅值为0,位于原点。其余六个非零矢量幅值相同,相邻矢量间隔60o 。根据非零矢量所在位置将空间划分为六个扇区。空间矢量脉宽调制就是利用U 0~U 7的不同组合,组成幅值相同、相位不同的参考电压矢量U ref ,从而使矢量轨迹尽可能逼进基准圆, U 456Ⅴ T 1/T pwm *U 1 U 1O

变频器电压空间矢量脉宽调制

变频器电压空间矢量脉宽调制(SVPWM)控制时间:2011-10-07 来源:未知编辑:电气自动化技术网点击:1071次字体设置: 大中小 经典的正弦脉宽调制(spwm)控制着眼于使变压变频器的输出电压尽量接近正弦波,并未顾及输出电流的波形如何,更未考虑电动机中产生的旋转磁场。然而交流电动机需要输入三相正弦波的最终目的是在电动机气隙形成圆形的旋转磁场,从而产生恒定的电磁转矩。如果对准这一目标,把逆变器和交流电动机视为一体,按照跟踪圆形旋转磁场来控制逆变器的工作,其效果应该更好。这种控制方法称作“磁链跟踪控制”,下面的讨论将表明,磁链轨迹是交替使用不同的电压空间矢量得到的,所以又称“电压空间矢量pwm(space vector pwm,简称svpwm)控制”。 4.1 电压空间矢量 随时间按正弦规律变化的物理量可在复平面上用时间相量表示,而在空间呈正弦分布的物理量也可在复平面上表示为一个空间矢量。图4-1a)绘出了异步电动机定子三相绕组接线图,图中箭头所指为相应物理量的给定正方向。在空间呈正弦分布的三相定子绕组磁动势可用空间矢量f a、f b、f c表示,见图4-1b),它们分别座落在代表三相定子绕组轴线空间位置的a、b、c轴上,而三相绕组合成磁动势的空间矢量为图中的f s。 f s=f a+f b+f c(4-1) 式中,f a、f b、f c的模均在各自的绕组轴线上按正弦规律作脉动变化,时间相位分别差2π/3。它们的合成磁动势空间矢量f s则绕定子参考坐标系的原点o以同步角频率旋转。当三相定子绕组电流为对称的三相正弦电流时,fs的幅值为常数,是各相磁动势幅值的3/2倍,矢量顶端的运动轨迹是一个圆,即通称的圆形旋转磁场。

空间矢量脉宽调制仿真及其谐波分析

文章编号:1005—7277(2005)01—0011—03 V ol.27,N o.12005,27(1):11~13 电气传动自动化 E L ECTRIC D RIVE AUTOMATI O N 2005年第27卷第1期第11页 空间矢量脉宽调制仿真及其谐波分析 康现伟,于克训,刘志华 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:在深入分析空间矢量脉宽调制机理的基础上,通过SIMU LINK 给出了其仿真波形,重点对SVPWM 的仿真结果进行了谐波分析,得到了SVPWM 谐波分布的主要特点及影响其谐波分布的几个主要因素,为更有效消除SVPWM 谐波污染提供了理论基础和指导。关键词:空间矢量脉宽调制;谐波;仿真中图分类号:T M921.52 文献标识码:A Simulation and harmonic anal y sis of SVPWM K ANG Xian-wei ,Y U K e-xun ,LIU Zhi-hua (Huazhon g Univ er sit y o f Science and T echnolo gy ,Wuhan 430074,China ) Abstract :Based on the anal y sis of the characteristics of s p ace vector p ulse w idth m odulation (SVPWM ),a series of sim 2ulation w aveforms are illustrated b y the use of S imulink.T he foundational features of the harm onic distributions of SVPWM and the dom inant factors affectin g the distributions are obtained throu g h the anal y sis on the harm onics of the w aveforms ,which p rov ides us theoretical foundation to elim inate the harm onic p ollution.K e y w ords :SVPWM;harm onic ;simulation 1引言 空间矢量脉宽调制(SVPWM )具有线性调制范围宽,直流电压利用率高,易于微处理器实现等优点,它目前被广泛应用于变频器、UPS 、无功补偿器、有源滤波器、储能系统电力变换器等领域。当控制精度要求较高时,必须考虑其谐波问题。 本文首先阐述了空间矢量调制(SVPWM )的基本原理,然后给出了仿真波形,针对空间矢量调制中出现的谐波问题,文章进行了较为详细的分析和论述,得到了影响SVPWM 谐波分布的几个主要因素,从而为其在实际应用中消除谐波污染提供了可靠的理论依据。 2电压空间矢量脉宽调制(SVPWM )原理 对于理想三相正弦系统,电压空间矢量的定义为: V =2/3(V a +V b e j 2π/3+V c e j 4π/3) (1) 对于三相电压源型逆变桥的6个开关,如图1 所示。假设“1”代表上桥臂导通,“0”代表下桥臂导 通,则一共有8种开关模式,分别为V 0(000),V 1(100),V 2(110),V 3(010),V 4(011),V 5(001),V 6(101), V 7(111)。由变换式(1)可得,这8种开关模式在复 平面上分别产生8种电压矢量,其中V 1~V 66个开关模式产生输出电压,而V 0、V 72个开关模式不产生输出电压,称为零矢量。这8个电压矢量将复平 面分为6个区域,如图2所示,按照平行四边形法则,利用这8个空间矢量可以合成在六变形区域内的任何输出电压矢量 。

电压空间矢量脉宽调制

电压空间矢量脉宽调制技术的原理与特征分 析 收藏此信息打印该信息添加:袁登科陶生桂龚熙国来源:未知 1 引言 自从1964年德国a.schonung等学者率先提出了脉宽调制变频的思想—把通信系统的脉宽调制(pwm)技术应用于交流电气传动以来,至今已经出现了几十种不同的脉宽调制技术[1] [2]。脉宽调制技术控制的逆变器可以输出比传统方波逆变器性能好得多的电压波形,但它们各自的着眼点不同、各次谐波分量不同、引起电机的谐波损耗不同、对中间回路电压的利用率不同。其中电压空间矢量pwm技术中间直流回路电压的利用率较高、输出波形含有较少的谐波分量、引起的电流、转矩的脉动也较小,同时也非常有利于数字化实现,因此是非常有前途并且应用也非常广泛的一种pwm技术。本文对该脉宽调制技术的数学基础、原理、几何特征以及不同的调制区域进行了详细的分析,有助于加深对该技术的理解和对该技术的改进。 2 电压空间矢量的概念 电压空间矢量的定义式为: 由于公式中出现了虚数单位j,所以上式电压矢量是用复数表示的。可以求得其实部与虚部分别为:

根据其对应关系可以求出,采用电压矢量实部与虚部表示的三相电压为: 上面两式(2)与(3)也是在坐标变换中经常见到的3/2与2/3变换。当使用电压矢量来表示三相电压时,则有: 式中的re{z}表示取复数z的实部。 一般情况下,三相电压均是时间的变量。首先考虑某一时刻t=t0,那么此时电压矢量在空间内就是具有某一确定方向和长度的有向线段。在不同时刻,它就对应着不同方向或长度的有向线段。假定三相电压为正弦交流电,即 此时的电压空间矢量为: 可见此时的电压矢量的幅值是恒定的,与相电压峰值相等,而其幅角随时间线性增长,且速度为相电压电角频率。这即是说电压矢量端点的轨迹在空间内是一个圆。

《ArcGIS地理信息系统空间分析实验教程》重点(自制)

第一章 1.地理信息系统:是在计算机软硬件支持下,对整个或者部分地球表层空间中的有关地理分布数据进行采集、存储、管理、运算、分析、显示和描述的技术系统。 2.地理信息系统的主要组成部分:硬件系统、软件系统、地理空间数据和系统管理操作人员。 3.GIS功能分为以下五个方面: ①数据采集与输入;②数据编辑与更新; ③数据存储与管理;④空间数据分析与处理; ⑤数据与图形的交互显示。 4.21世纪GIS应用新的发展趋势:网络GIS、组件式GIS、虚拟现实GIS、时态GIS、互操作GIS、3S集成。 5.对基于GIS的空间分析的理解不同的角度和层次: ①按空间数据结构类型;②按分析对象的维数; ③按分析的复杂性程度。 第二章 1.ArcGIS的基础模块:ArcMap、ArcCatalog、Geoprocessing。 2.Geoprocessing地理处理框架:具有强大的空间数据处理和分析工具,包括地理处理工具的集合和模型构建器。 第三章 1.空间数据采集:是指将现有的地图、外业观测成果、航空相片、遥感图像、文本资料等转成计算机可以识别处理的数字形式。 2.数据组织:就是按照一定的方式和规则对数据进行归并、存储、处理的过程, 3.ArcGIS中主要有Shapefile、Coverage和Geodatabase三种数据组织方式。 4.地理数据库:是按照层次型的数据对象来组织地理数据。 5.要素类:是具有相同几何类型和属性的要素的集合,即同类空间要素的集合。 6.地理数据库建立的一般过程: ①地理数据库设计;②地理数据库建立; ③建立地理数据库的基本组成项;④向地理数据库各项加载数据; ⑤进一步定义地理数据库。 7.地理数据库的基本组成项:对象类、要素类和要素数据集 8.要素类的分类:简单要素类和独立要素类。 9.创建拓扑的优势:

空间矢量脉宽调制(SVPWM)的开环

采用空间矢量脉宽调制(SVPWM )的开环 VVVF 调速系统的综合实训 一、实验目的 1、理解电压空间矢量脉宽调制(SVPWM )控制的基本原理。 2、熟悉MCKV 电机控制系统的CPU 模块、IPM 模块和机组各部分硬件模块,并确认工作正常。 3、了解SVPWM 变频器运行参数和特性。 二、实验内容: 1、熟悉CCS 编程环境,并在CCS 下编译、下载、运行DSP 软件工程。 2、观察并记录定子磁链周期和频率,并分析他们之间的关系。 3、观测并记录启动时电机定子电流和电机速度波形)(t f i v =与)(t f n =; 三、实验预习要求 1、阅读并掌握三相交流异步电机VVVF 调速系统工作原理。 2、了解电压空间矢量脉宽调制(SVPWM )控制的基本原理。 3、阅读本次实验指导书和实验程序,写好实验预习报告。 4、在MATLAB/Simulinlk 环境中搭好仿真模型,结合本程序LEVEL1功能框图,完成电流速度双闭环系统交流异步电机矢量控制仿真。 四、实验原理 当用三相平衡的正弦电压向交流电动机供电时,电动机的定子磁链空间矢量幅值恒定,并以恒速旋转,磁链矢量的运动轨迹形成圆形的空间旋转矢量(磁链圆)。SVPWM 就是着眼于使形成的磁链轨迹跟踪由理想三相平衡正弦波电压源供电时所形成的基准磁链圆,使逆变电路能向交流电动机提供可变频电源,实现交流电动机的变频调速。 现在以实验系统中用的电压源型逆变器为例说明SVPWM 的工作原理。三相逆变器由直流电源和6个开关元件( MOSFET) 组成。图1是电压源型逆变器的示意图。 图1 电压源型逆变器示意图

对于每个桥臂而言,它的上下开关元件不能同时打开,否则会因短路而烧毁元器件。其中A 、B 、C 代表3 个桥臂的开关状态,当上桥臂开关元件为开而下桥臂开关元件为关时定义其状态为1 ,当下桥臂开关元件为开而上桥臂开关元件为关时定义其状态为0。这样A 、 B 、 C 有000 、001 、010 、011 、100 、101 、110 、111共 8种状态。逆变器每种开关状态对应不同的电压矢量,根据相位角不同分别命名为U 0(000)、U 1(100)、U 2(110)、U 3(010)、U 4(011)、U 5(001)、U 6(101)、U 7(111)如图2所示。 图2 基本电压空间矢量 其中U 0(000)和U 7(111)称为零矢量,位于坐标的原点,其他的称为非零矢量,它们幅值相等,相邻的矢量之间相隔60°。如果按照一定顺序选择这六个非零矢量的电压空间矢量进行输出,会形成正六边形的定子磁链,距离要求的圆形磁链还有很大差距,只有选择更多的非零矢量才会使磁链更接近圆形。 SVPWM 的关键在于用8个基本电压空间矢量的不同时间组合来逼近所给定的参考空间电压矢量。在图3中对于给定的输出电压U ,用它所在扇区的一对相邻基本电压x U 和60 x U 来等效。此外当逆变器单独输出零矢量时,电动机的定子磁链矢量是不动的。根据这个特点,可以在载波周期内插入零矢量,调整角频率,从而达到变频目的。 图3 电压空间的线性组合

空间矢量PWM算法的理解_Revise

空间矢量PWM算法的理解 姜淑忠 上海交通大学电气工程系(上海200030) 摘要:继正弦波PWM(SPWM)开关算法之后,空间矢量(Space Vector)PWM (SVPWM)已成为三相或多相逆变器的开关算法。本文以SVPWM的基本原理为基础,计算开关时间,讨论开关向量的选择原则,并用数字信号处理器(DSP)实现SVPWM算法。最后根据电压综合向量,推导相电压有效值与交流输入电压有效值的关系。 关键词:SVPWM,开关向量,开关时间,相电压有效值 Understanding of Space Vector PWM Algorithm S.Z. Jiang Department of Electrical Engineering, Shanghai Jiao Tong University (Shanghai 200030) Abstract: Following the SPWM algorithm, SVPWM algorithm has been adopted in three-phase and multi-phase inverters. Based on the principle of SVPWM, the calculation of switch time, the selection of switch vector and the realization on DSP are presented in this paper. Finally the relation between the rms of phase voltage and the rms of ac source is derived from the complex voltage vector. Keywords: SVPWM, Switch vector, Switch time, RMS of phase voltage 1、前言 无论是一般的变频调速,还是磁场定向控制,当计算出静止直角坐标系中的电压综合向量后,都要采用SVPWM算法获得三相逆变器六个开关器件的开关信号。早期

SVPWM算法程序

第6章空间矢量脉宽调制技术 例1、CLARK变换的DSP实现 图CLARK变换实现波形图 /*---------------------------------------------------------------------------------------------------------------------------------------- CLARKE变换相关变量定义 ----------------------------------------------------------------------------------------------------------------------------------------*/ typedef struct { float32 As; // 输入:A相定子电流 float32 Bs; // 输入:B相定子电流 float32 Alpha; // 输出:静止坐标系d轴定子电流 float32 Beta; // 输出:静止坐标系q轴定子电流 void (*calc)(); // 计算函数指针 } CLARKE; typedef CLARKE *CLARKE_handle; /*---------------------------------------------------------------------------------------------------------------------------------------- 定义CLARKE变换初始化参数 ----------------------------------------------------------------------------------------------------------------------------------------*/ #define CLARKE_DEFAULTS { 0, \ 0, \ 0, \ 0, \ (void (*)(Uint32))clarke_calc } /*---------------------------------------------------------------------------------------------------------------------------------------- CLARKE变换函数原型CLARKE.C ----------------------------------------------------------------------------------------------------------------------------------------*/ void clarke_calc(CLARKE_handle); #include "dmctype.h"

GIS矢量数据分析与栅格数据分析实验完整版

G I S矢量数据分析与栅 格数据分析实验 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本科学生实验报告 姓名尹永义学号 专业地理科学班级 2014B _ 实验课程名称地理信息系统概论(实验) 实验名称矢量数据分析与栅格数据分析 指导教师及职称速绍华(讲师) 开课学期 2014 _至_ 2015_学年_下学期云南师范大学旅游与地理科学学院编印

3、实验理论依据或知识背景: 矢量数据分析矢量数据以点、线和面空间要素为输入数据。 分析结果的准确性取决于空间特征的位置及形状的准确性。 拓扑关系是一些矢量数据分析(如建立缓冲区和叠置分析)的一个因素。 基于邻近(Proximity)概念,建立缓冲区可把地图分为两个区域:一个区域位于所选地图要素的指定距离之内,另一个区域在指定距离之外。 在指定距离之内的区域称为缓冲区。 围绕点建立缓冲区产生圆形缓冲区。围绕线建立缓冲区形成一系列围绕每条线段的长条形缓冲带。围绕多边形建立缓冲区则生成由该多边形边 界向外延伸的缓冲区。 对线要素建立缓冲区未必在线两侧都有缓冲区,可以只在线的左侧或右 侧建立缓冲区。 缓冲距离(又叫缓冲大小)未必为常数,可以根据给定字段取值而变 化。 缓冲区边界也可以被融合掉,使得缓冲区之间没有叠置区。 地图叠置操作是将两个要素图层的几何形状和属性组合在一起,生成新 的输出图层。 输出图层的几何形状代表来自各输入图层的要素的几何交集。 输出图层的每个要素包含所有输入图层的属性组合,而这种组合不同于 其邻域。 所有叠置方法都是基于布尔连接符的运算,即AND、OR 和 XOR。 若使用 AND 连接符,则此叠置操作为求交(Intersect)。 若使用 OR 连接符,则此叠置操作称为联合(Union)。 若使用 XOR 连接符,则此叠置操作称为对称差异(Symmetrical Difference)或差异(Difference)。 若使用以下表达式 [(Input Layer)AND(Identity Layer)] OR (Input Layer),则该叠置操作称为识别(Identity)或减去 (Minus)。 模式分析是关于二维空间点要素空间分配的研究。 在整体水平上,模式分析可以揭示某分布模式是随机、离散还是集聚 的。 在局部水平上,模式分析可以检测出分布模式中是否含有高值或低值的局部集聚。 模式分析包括点模式分析、量测空间自相关的莫兰指数(Moran’s I)和量测高/低聚集度的G 统计量。 栅格数据分析 栅格数据分析是基于栅格像元和栅格的。 栅格数据分析能在独立像元、像元组或整个栅格全部像元的不同层次上进行。 一些栅格数据运算使用单一栅格,而另一些则使用两个或更多栅格数 据。

基于空间矢量PWM算法的全数字化调速系统_詹长江

基于空间矢量PWM算法的全数字化调速系统 A Fully Digitalized AC Speed Regulation System Based on Space Vector PWM Control Algorithem 华中理工大学 詹长江 陈 坚 康 勇 段善旭 (武汉 430074) 摘要:提出一种基于空间矢量PWM算法的全数字化交流调速系统。该系统采用双80C196K C单片机控制结构,双机之间数据并行通讯由双口RAM来完成。此外,还提出了一种新颖的定子电流检测方法,该方法基于空间矢量P WM算法,在逆变器零开关矢量作用时间内进行电流采样,采样值波动性小。实验结果表明该系统具有优良的性能。 Abstract:A fully dig italized A C speed regulation system based on space vector PWM control algorit hm is descr ibed in detail.T he control structure composed by double80C196K C chips is adopted.T he par allel commu-nicatio n can be fulfilled with the dua-l po rt-RAM.F uthermore,a new method for testing the stator current based on space vector PWM algor ithm i s proposed.T he good performance of the system is verified by ex per-i mental r esults. 叙词:调速系统 脉宽调制 数字化/空间矢量 Keywords:speed regulation system;PWM;digitalization/space vector 1 引 言 近年来,采用PWM技术的交流变频调速系统逐渐应用于工业领域中[1]。就PWM而言,本质在于优化开关函数,使得逆变器按一定规律输出电压或电流。德国学者H.W.Vander Broek等提出的基于电压空间矢量控制,不仅使得电机转矩脉动降低、电流波形畸变减小,而且与常规SPWM技术相比直流电压利用率亦有很大提高[3]。 由于交流电机本身具有非线性和强耦合性,故其控制方式复杂,用常规的模拟和数字电路难以完成复杂的控制功能,而且系统实时性的要求往往使得用一个单片机很难达到较好的控制效果[5]。而采用双单片机控制结构,既兼顾了成本方面的要求,又得以实现如矢量控制一类复杂的控制方式[6、7、8]。 交流调速系统数字化控制的另一个关键是定子电流的有效、快速、可靠的检测。通常的采样办法的最大缺点在于易受逆变器开关噪声的影响,这样采样值易受干扰而偏离原值,且波动性很大。 本文提出的基于电压空间矢量PWM算法的双80C196KC单片机控制的交流调速系统,双机之间的通讯由双口RAM芯片IDT7130硬件实现,既加快了数据传送率,又提高了系统的可靠性。另外,文中介绍的基于电压空间矢量PWM算法的定子电流检测方式可在逆变器零开关矢量作用时间内完成定子电流的检测和采样,理论上避免了开关器件开通和关断引起的开关噪声,这样采样值波动性小,增加了系统动态响应性能。 2 电压空间矢量PWM算法 图1所示主电路中,忽略电机定子绕组电阻R s,当定子绕组施加三相理想正弦电压时,由于电压合成空间矢量为等幅旋转矢量,故气隙磁通以恒定角速度旋转,轨迹为园形。实际运行中,逆变器只有六个有效开关矢量V 1~V 6和两个零开关矢量V 和V 7 ,其输出电压只可能有八种状态,因此,只能用V 0~V 7八个矢量的线性组合去近似模拟等幅旋转矢量,这时实际的电机气隙磁通轨迹近似圆形。 由文献[2、3、4]可知,逆变器输出参考电压合成空间矢量落在第I扇区时,有效开关矢量工 /3- )/2 sin /2 (1)

矢量数据与栅格数据

矢量数据与栅格数据 1.矢量数据 矢量数据主要是指城市大比例尺地形图。此系统中图层主要分为底图层、道路层、单位 层,合理的分层便于进行叠加分析、图形的无逢拼接以实现系统图形的大范围漫游。矢量数据一般通过记录坐标的方式来尽可能将地理实体的空间位置表现的准确无误,显示的图形一般分为矢量图和位图。 矢量数据是计算机中以矢量结构存贮的内部数据。是跟踪式数字化仪的直接产物。在矢量数据结构中,点数据可直接用坐标值描述;线数据可用均匀或不均匀间隔的顺序坐标链来描述;面状数据(或多边形数据)可用边界线来描述。矢量数据的组织形式较为复杂,以弧段为基本逻辑单元,而每一弧段以两个或两个以上相交结点所限制,并为两个相邻多边形属性所描述。在计算机中,使用矢量数据具有存储量小,数据项之间拓扑关系可从点坐标链中提取某些特征而获得的优点。主要缺点是数据编辑、更新和处理软件较复杂。 2..栅格数据 栅格数据是按网格单元的行与列排列、具有不同灰度或颜色的阵列数据。每一个单元(象素)的位置由它的行列号定义,所表示的实体位置隐含在栅格行列位置中,数据组织中的每个数据表示地物或现象的非几何属性或指向其属性的指针。一个优秀的压缩数据编码方案 是:在最大限度减少计算机运算时间的基点上进行最大幅度的压缩。 栅格数据是按网格单元的行与列排列、具有不同灰度或颜色的阵列数据。栅格结构是大小相等分布均匀、紧密相连的像元(网格单元)阵列来表示空间地物或现象分布的数据组织。是最简单、最直观的空间数据结构,它将地球表面划分为大小、均匀、紧密相邻的网格阵列。每一个单元(象素)的位置由它的行列号定义,所表示的实体位置隐含在栅格行列位置中,数据组织中的每个数据表示地物或现象的非几何属性或指向其属性的指针。对于栅格结构:点实体由一个栅格像元来表示;线实体由一定方向上连接成串的相邻栅格像元表示;面实体(区域)由具有相同属性的相邻栅格像元的块集合来表示。

SVPWM空间矢量脉宽调制

SVPWM 空间矢量脉宽调制(Space Vector Pulse Width Modulation) SVPWM的主要思想是:以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。 普通的三相全桥是由六个开关器件构成的三个半桥。这六个开关器件组合起来(同一个桥臂的上下半桥的信号相反)共有8种安全的开关状态. 其中000、111(这里是表示三个上桥臂的开关状态)这两种开关状态在电机驱动中都不会产生有效的电流。因此称其为零矢量。另外6种开关状态分别是六个有效矢量。它们将360度的电压空间分为60度一个扇区,共六个扇区,利用这六个基本有效矢量和两个零量,可以合成360度内的任何矢量。 当要合成某一矢量时先将这一矢量分解到离它最近的两个基本矢量,而后用这两个基本矢量矢量去表示,而每个基本矢量的作用大小就利用作用时间长短去代表。用电压矢量按照不同的时间比例去合成所需要的电压矢量。从而保证生成电压波形近似于正弦波。 在变频电机驱动时,矢量方向是连续变化的,因此我们需要不断的计算矢量作用时间。为了计算机处理的方便,在合成时一般是定时去计算(如每0.1ms计算一次)。这样我们只要算出在0.1ms内两个基本矢量作用的时间就可以了。由于计算出的两个时间的总合可能并不是0.1ms(比这小),而那剩下的时间就按情况插入合适零矢量。由于在这样的处量时,合成的驱动波形和PWM很类似。因此我们还叫它PWM,又因这种PWM是基于电压空间矢量去合成的,所以就叫它SVPWM了。 需要明白的是,SVPWM本身的产生原理与PWM没有任何关系,只是像罢了。SVPWM的合成原理是个很重要的东东,它并不只用在SVPWM,在其它一些应用中也很有用的。当你见到时就明白了。具体可以参看IEEE的很多论文。 当然,SVPWM与SPWM的原理和来源有很大不同,但是他们确实殊途同归的。SPWM由三角波与正弦波调制而成,而SVPWM却可以看作由三角波与有一定三次谐波含量的正弦基波调制而成,这点可以从数学上证明。 SVPWM特点: 1.在每个小区间虽有多次开关切换,但每次开关切换只涉及一个器件,所以开关损耗小。 2.利用电压空间矢量直接生成三相PWM波,计算简单。 3.逆变器输出线电压基波最大值为直流侧电压,比一般的SPWM逆变器输出电压高15%

空间矢量脉宽调制SVPWM控制法

第三节空间矢量脉宽调制SVPWM控制法 1.3.1 电压空间矢量SVPWM技术背景 我们先来回顾一下交流异步电机的工作机理:三相平衡的交流电压在电机定子绕组上产生三相平衡的交流电流;三相平衡的交流电流在定子内腔产生一个幅值恒定的磁链,该磁链在定子内腔旋转,旋转的角速度与电源(电流)的角速度相同;旋转的轨迹形成一个圆形的空间旋转磁场;旋转磁场通过电磁力矩带动转子旋转,在电动机状态下,转子旋转的角速度低于旋转磁场的角速度:转差,转差提交流异步电机产生力矩的根本原因。 前面所讨论的SPWM技术是从电源的角度出发,来合成电机的激励源。由交流异步电机的工作机理我们想到:可不可以直接从动力源出发,来直接合成一个圆形的旋转磁场呢?如果可以,这样的控制方法显然更直接,效果应更好。 如何直接合成一个圆形的旋转磁场呢? 对于交流电机,我们注意到以下的事实: 电机定子是固定的,不旋转的; 施加在定子上的电压是三相平衡的交流电:幅度相同,相位上彼此偏差120o; 自然地,我们想到:定义异步电机的三相定子绕组上的电压为平面上的一静止坐标系的三个轴,电机的相电压在各自的轴向上依正弦规律变化。见图2-1-10。 图2-1-10:相电压空间矢量图 由图2-1-10知,三个电压轴向量不同线性组合可以合成该平面上的任一个电压矢量u,即:

ππ34332201***j j j e A e A e A ++= 当三个电压轴向量对应于三相平衡交流电时,即:t U A m ωsin 1=, )32sin(2πω+=t U A m ,)3 4sin(3πω+=t U A m ,不难得到,所合成的电压矢量为: )sin (cos 2 3t j t U m ωω+= jwt m e U 2 3= 式(2-3-1) 由式(2-3-2)知,所合成的电压空间矢量具有以下特征: 电压矢量模(幅值)恒定; 电压矢量绕中性点旋转,旋转的轨迹是一个圆; 电压矢量绕中性点匀速旋转,旋转的角速度为ω; 电压矢量旋转的角速度与交流电源(电流)的角速度相同。 我们来看看电压空间矢量与空间旋转磁链之间的关系。 根据电机学理论,空间电流矢量,空间磁通矢量,电压空间矢量之间的关系为: dt d r i u ψ+=* 其中r *是电机绕组上的阻抗压降,在电机转速不是很低的情况下,通常可以忽略。于是上式可以写成: dt d ≈ 我们知道是一个空间旋转磁场:jwt m e ψ=, 于是=ψ=ψ≈+ππωωωω21)21(***)(j t j m t j m e e dt e d 式(2-3-2) 很明显,电压空间矢量,空间磁通矢量存在一维的线性关系,电压空间矢量的幅值(模)只与电机的角速度ω(转速)有关;相位上超前 π2 1。不难理解,这是由电机的电感属性引起的。 于是空间旋转磁场的特性可以用空间电压矢量的特性来等效。

第四章 矢量数据的空间分析

第四章矢量数据的空间分析 在ArcGIS中,矢量数据的空间分析主要有缓冲区分析、叠置分析和网络分析等。 缓冲区分析(Buffer)是对一组或一类地图要素(点、线或面)按设定的距离条件,围绕这组要素而形成具有一定范围的多边形实体,从而实现数据在二维空间扩展的信息分析方法。 叠置分析是地理信息系统中用来提取空间隐含信息的方法之一。叠置分析是将代表不同主题的各个数据层面进行叠置产生一个新的数据层面,叠置结果综合了原来两个或多个层面要素所具有的属性。叠置分析不仅产生了新的空间关系,而且还将输入的多个数据层的属性联系起来产生新的属性关系。叠置分析要求被叠加的要素层面必须是基于相同坐标系统的相同区域,同时还必须查验叠加层面之间的基准面是否相同。 根据操作要素的不同,叠置分析可以分成点与多边形叠加、线与多边形叠加、多边形与多边形叠加;根据操作形式的不同,叠置分析可以分为图层擦除、识别叠加、交集操作、对称区别、图层合并和修正更新。 网络分析是对地理网络(如交通网络)、城市基础设施网络(如各种网线、电缆线、电力线、电话线等)进行地理分析和模型化过程,通过研究网络的状态以及模拟和分析资源在网络上的流动和分配情况,实现对网络结构及其资源等的优化问题。 4.1 市区择房分析 下面通过市区择房分析实例来掌握缓冲区分析和叠置分析操作。 数据: a.城市市区交通网络图(network.shp) b.商业中心分布图(Marketplace.shp) c.名牌高中分布图(school.shp) d.名胜古迹分布图(famous plac e.shp) 要求: 1.所求区域满足条件: .离主要交通要道200m之外,以减少噪音污染(ST为道路数据中类型为交通要道的要素)。.在商业中心的服务范围之内,服务范围以商业中心规模的大小(属性字段YUZHI)来确定。 .距名牌高中在750m之内,以便小孩上学方便。 .距名胜古迹500m之内,环境优雅。 2.对每个条件进行缓冲区分析,将符合条件的区域取值为1,不符合条件的取值为0, 得到各自的分值图。 3.运用空间叠置分析对上述4个图层叠加求和,并分等定级,确定合适的区域。 操作步骤: 双击E:\Chp7\Ex1\city.mxd文件,打开ArcMap,以上4个要素数据被加载进来。

相关文档
相关文档 最新文档