文档库 最新最全的文档下载
当前位置:文档库 › 无损检测----涡流阵列检测技术典型应用

无损检测----涡流阵列检测技术典型应用

无损检测----涡流阵列检测技术典型应用
无损检测----涡流阵列检测技术典型应用

目录

一、涡流阵列检测应用研究

二、涡流阵列检测应用案例

三、涡流阵列检测应用注意事项

一、涡流阵列检测应用研究

1.非铁磁性材料、均匀表面 --对比试样

ET∝f(σ,μ≈μ0, LF, 均匀性…)

均匀表面:结构或材质方面的均匀。管件、锻件、铸件等

ECA显示特点:

表面开口缺陷:幅值、相位、C扫显示∝缺陷深度

近表面缺陷:幅值、C扫显示∝埋藏深度

1.非铁磁性材料、均匀表面--工件

对于非铁磁性金属材料的均匀表面,与PT相比,ECA表面条件要求低、检测速度快、缺陷检出率高、绿色环保,

优势较为明显。

1.非铁磁性材料、均匀表面--ECA-C扫成像

绝对桥式阵列、小的线圈尺寸、多的阵列排数更有利于涡流阵列C扫成像。

均匀表面表面开口缺陷ECA-C扫成像可在一定程度上定性

2.非铁磁性材料、非均匀表面--对比试块

ET∝f(σ, LF, μ≈μ0, 均匀性…)

对接接头:局部表面出现结构或材质不均匀。

2.非铁磁性材料、非均匀表面--模拟试块

表面的不均匀性,在一定程度上影响ECA-C成像效果,直观性受到影响。焊纹也会降低检测灵敏度。

2.非铁磁性材料、非均匀平面--工件

3.铁磁性材料、均匀表面--对比试样

ET∝f(σ, LF, μ, 均匀性…)

管件、锻件、铸件等

4.铁磁性材料、非均匀表面--动态提离补偿技术

ECA C-scan Image

对接接头:局部表面出现结构或材质不均匀。

4.铁磁性材料、非均匀表面--对比试样

5.高温

奥氏体不锈钢刻槽试板高温检测实验(300℃)

6.低温

低温情况下,PT无法实施,可考虑ECA。

二、涡流阵列检测典型案例——奥氏体不锈钢对接接头

1.表面开口缺陷

ECA可以比PT更容易发现缺陷。

2.近表面缺陷

ECA可以在一定程度上检出近表面缺陷。

在线不打磨检测--动态提离补偿

动态提离补偿技术,实现了碳钢对接接头的在线不打磨表面缺陷检测。

三、涡流阵列检测注意事项

a)了解检测对象

b)选探头

c)选对比试样

d)确定灵敏度

e)扫查

f)数据判读

g)验证

无损检测----涡流阵列检测技术典型应用

目录 一、涡流阵列检测应用研究 二、涡流阵列检测应用案例 三、涡流阵列检测应用注意事项 一、涡流阵列检测应用研究 1.非铁磁性材料、均匀表面 --对比试样 ET∝f(σ,μ≈μ0, LF, 均匀性…) 均匀表面:结构或材质方面的均匀。管件、锻件、铸件等 ECA显示特点: 表面开口缺陷:幅值、相位、C扫显示∝缺陷深度 近表面缺陷:幅值、C扫显示∝埋藏深度 1.非铁磁性材料、均匀表面--工件 对于非铁磁性金属材料的均匀表面,与PT相比,ECA表面条件要求低、检测速度快、缺陷检出率高、绿色环保, 优势较为明显。 1.非铁磁性材料、均匀表面--ECA-C扫成像

绝对桥式阵列、小的线圈尺寸、多的阵列排数更有利于涡流阵列C扫成像。 均匀表面表面开口缺陷ECA-C扫成像可在一定程度上定性 2.非铁磁性材料、非均匀表面--对比试块 ET∝f(σ, LF, μ≈μ0, 均匀性…) 对接接头:局部表面出现结构或材质不均匀。 2.非铁磁性材料、非均匀表面--模拟试块 表面的不均匀性,在一定程度上影响ECA-C成像效果,直观性受到影响。焊纹也会降低检测灵敏度。 2.非铁磁性材料、非均匀平面--工件 3.铁磁性材料、均匀表面--对比试样 ET∝f(σ, LF, μ, 均匀性…) 管件、锻件、铸件等

4.铁磁性材料、非均匀表面--动态提离补偿技术 ECA C-scan Image 对接接头:局部表面出现结构或材质不均匀。 4.铁磁性材料、非均匀表面--对比试样 5.高温 奥氏体不锈钢刻槽试板高温检测实验(300℃) 6.低温

低温情况下,PT无法实施,可考虑ECA。 二、涡流阵列检测典型案例——奥氏体不锈钢对接接头 1.表面开口缺陷 ECA可以比PT更容易发现缺陷。 2.近表面缺陷 ECA可以在一定程度上检出近表面缺陷。 在线不打磨检测--动态提离补偿 动态提离补偿技术,实现了碳钢对接接头的在线不打磨表面缺陷检测。

五大常规无损检测技术之一:涡流检测(ET)的原理和特点

五大常规无损检测技术之一:涡流检测(ET)的原理和特点 涡流检测(Eddy Current Testing),业内人士简称E T,在工业无损检测(Nondestructive Testing)领域中具有重要的地位,在航空航天、冶金、机械、电力、化工、核能等领域中发挥着越来越重要的作用。 涡流检测主要的应用是检测导电金属材料表面及近表面的宏观几何缺陷和涂层测厚。 涡流检测是五大常规无损检测技术之一,其他四种是:射线检测(Radiographic Testing):射线照相法、超声检测(Ultrasonic Testing):A型显示的超声波脉冲反射法、磁粉检测(Magnetic Particle Testing)、渗透检测(Penetrant Testing)。 按照不同特征,可将涡流检测分为多种不同的方法: (1)按检测线圈的形式分类: a)外穿式:将被检试样放在线圈内进行检测,适用于管、棒、线材的外壁缺陷。b)内穿式:放在管子内部进行检测,专门用来检查厚壁管子内壁或钻孔内壁的缺陷。 c)探头式:放置在试样表面进行检测,不仅适用于形状简单的板材、棒材及大直径管材的表面扫查检测,也适用于形状福州的机械零件的检测。

(2)按检测线圈的结构分类: a)绝对方式:线圈由一只线圈组成。 b)差动方式:由两只反相连接的线圈组成。 c)自比较方式:多个线圈绕在一个骨架上。 d)标准比较方式:绕在两个骨架上,其中一个线圈中放入已经样品,另一个用来进行实际检测。 (3)按检测线圈的电气连接分类: a)自感方式:检测线圈使用一个绕组,既起激励作用又起检测作用。 b)互感方式:激励绕组和检测绕组分开。 c)参数型式:线圈本身是电路的一个组成部分。 涡流检测原理 涡流检测,本质上是利用电磁感应原理。 无论什么原因,只要穿过闭合回路所包围曲面的磁通量发生变化,回路中就会有电流产生,这种由于回路磁通量变化而激发电流的现象叫做电磁感应现象,回路中所产生的电流叫做感应电流。 电路中含有两个相互耦合的线圈,若在原边线圈通以交流电1,在电磁感应的作用下,在副边线圈中产生感应电流2;反过来,感应电流又会影响原边线圈中的电流和电压的关系。如下图所示:

涡流无损检测实验报告

江苏科技大学数理学院开放性选修 实验训练 涡流无损检测实验报告 指导老师:魏勤 组员:彭加福(0640502112)胡进军(0640502107)徐大程(0640502115) 江苏科技大学数理学院06级应用物理学 2009年12月15日

涡流无损检测实验报告 彭加福 (江苏科技大学数理学院应用物理 0640502112) 涡流检测是建立在电磁感应原理基础之上的一种无损检测方法,它仅适用于导电材料,如果我们把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流。由于导体自身各种因素(如电导率、磁导率、形状、尺寸和缺陷等)的变化会导致感应电流的变化,利用这种现象而判知导体性质、状态的检测方法,叫做涡流检测方法。在涡流探伤中,是靠检测线圈来建立交变磁场,把能量传递给被检导体,同时又通过涡流所建立的交变磁场来获得被检测导体中的质量信息。作为无损检测的一种重要手段,涡流检测在现代工业无损检测中得到了深入而广泛的应用和推广。 实验训练期间,我们采用SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪和7504塗层测厚仪等涡流仪器完成了定标、探伤、电导率测定和膜厚测量等实验,掌握了涡流的产生机理及涡流探伤原理,熟练掌握了各种涡流探伤仪、测量仪的基本操作。 1 实验目的 1.1 熟悉各种涡流探伤仪、测量仪的基本操作,简单了解各实验仪器的工作原理及性能,并通过系列实验了解涡流无损检测在现代工业中的应用; 1.2 学习掌握涡流检测的基本方法及相关理论知识,了解涡流检测仪、测量仪及涡流探头的内部结构和工作原理; 1.3 分别使用SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪和7504塗层测厚仪进行探伤、测电导率和薄膜厚度。 2 实验仪器 SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪、7504塗层测厚仪、各种涡流探头及数据传输线、SMART-2097智能便携式多频涡流仪标准试块(含有深为0.1mm, 0.5mm, 1.0mm的划痕)、D60K数字金属电导率测量仪高值-低值定标试块、7504塗层测厚仪标准膜。 3 实验原理 3.1 螺线管磁场 如果将长直导线绕成螺线管,磁力线分布类似于条形磁铁,磁场方向取决于电流方向,同样可以用右手定则表示,其磁场强度取决于两个因素:线圈的圈数和电流的大小,圈数越多或电流越大,则磁场越强。 对一个螺线管来说,它所形成的磁场是数个线圈磁场的叠加,所以当交流电通过螺线管时,可形成既强又集中的交变磁场,如图1所示。

涡流检测技术概述

涡流检测技术概述 涡流技术由于具有的很多优点而被广泛应用。首先,它是非接触检测,而且能穿透非导体的覆盖层,这就使得在检测时不需要做特殊的表面处理,因此缩短了检测周期,降低了成本。同时,涡流检测的灵敏度非常高。涡流检测按激励方式和检测原理的不同可以分为单频涡流、多频涡流、脉冲涡流、远场涡流等,下面对这些技术的发展简要的加以介绍。 传统的涡流采用单频激励的方式,主要来对表面及近表面的缺陷进行检测,根据被测材料及缺陷深度的不同,激励频率的范围从几赫兹到几兆赫兹不等,为 了得到良好的检测信号,激励线圈必须在缺陷的附近感应出最大的涡流,感应电 流的大小和激励频率、电导率、磁导率、激励线圈的尺寸和形状以及激励电流的 大小有关,通过测量阻抗或电压的变化来实现对缺陷的检测。然而,由于其它参数也很敏感,这就影响了对缺陷的检测。 为了克服单频涡流的缺点,1970 年美国人 Libby 提出了多频涡流的技术(Multi-frequency Eddy Current, MFEC),多频涡流是同时用几个频率信号激励探头,较单频激励法可获取更多的信号,这样就可以抑制实际检测中的许多干扰因素,如热交换管管道中的支撑板、管板、凹痕、沉积物、表面锈斑和管子冷加工产生的干扰噪声,汽轮机大轴中心孔、叶片表面腐蚀坑、氧化层等引起的电磁噪声,以及探头晃动提离噪声等。理论与实践表明,被测工件的缺陷和上述干扰因素对不同频率的激励信号各有不同的反应,可反应出不同的涡流阻抗平面。利用这一原理,用两个(或多个)不同频率的正弦波同时激励探头,然后由两个(或多个)通道分别进行检波、放大和旋转等处理,此后,通过多个混合单元的综合运算,就可以有效的去除信号干扰,准确的获取缺陷信号。但是,多频涡流只能提供有限的检测数据,很难以可视化的方式实现对缺陷的成像检测。 70 年代中后期,脉冲涡流技术(Pulsed Eddy Current, PEC)在世界范围内得到广泛的研究,PEC最早由密苏里大学的Waidelich在20世纪50年代初进行研究,脉冲涡流的激励电流为一个脉冲,通常为具有一定占空比的方波,施加在探头上的激励方波会感应出脉冲涡流在被测试件中传播,根据电磁感应原理,此脉冲涡流又会感应出一个快速衰减的磁场,随着感生磁场的衰减,检测线圈上

无损检测---涡流阵列检测技术基本原理

目录 一、什么是涡流阵列检测技术? 二、涡流检测基础知识 三、涡流阵列检测技术工作原理 四、涡流阵列检测技术特点 五、涡流阵列检测技术的国内外现状 一、什么是涡流阵列检测技术? “涡流阵列”,又叫”阵列涡流”,英文名称“Eddy Current Array(简称ECA)”。 JB/T 11780-2014 无损检测仪器涡流阵列检测仪性能和检验 阵列涡流检测 具有按一定方式排布、且独立工作的多个检测线圈,能够一次性完成大面积扫查及成像的涡流检测技术。 C扫相关显示与缺陷形状像不像? 并能形成直观性C扫图 二、涡流检测基础知识 1. ET工作原理—电磁感应 ①激励,悬空(电0→磁0 ) 空载阻抗 Z=Z0 M—互感系数~提离 R2—电涡流短路环负载~路径几何尺寸,σ2 L2—电涡流短路环自感系数~路径几何尺寸,μ2

2.影响放置式线圈阻抗的因素 a)提离 b)边缘效应 c)电导率 d)磁导率 e)工件几何尺寸 f)缺陷 g)表面状况 h)检测频率 影响阻抗变化的因素太多,限制了涡流探伤的应用! 3.放置式涡流探头的分类 4. 绝对式探头和差分式探头的对比 绝对式 信号来自1个感应线圈; 每个缺陷产生1个闭路(半8字); 对于小缺陷、长缺陷和渐变缺陷敏感; 可用于测量材料性能差异. 可能需要参考线圈执行系统平衡; 对提离非常敏感。 差分式 信号来自2个感应线圈的减法。. 每个缺陷产生2个闭路(8字) 对小缺陷特别敏感,但渐变缺陷不敏感; 对于小缺陷具有更好的信噪比; 对于提离不太敏感。 检测前,应该根据用途、被检工件状况等确定探头的工作模式和信号响应模式!

5. 常规涡流检测技术的特点 优点 ■适用于各种导电材质的试件探伤; ■可以检出表面和近表面缺陷; ■检测结果以电信号输出,容易实现自动化; ■由于采用非接触式检测,所以检测速度快; ■无需耦合剂,环保。 缺点 ■不能检测非导电材料; ■形状复杂的工件很难检测; ■各种干扰检测的因素较多,容易引起杂乱信号; ■无法检出埋藏较深的缺陷; ■一次覆盖范围小,检测效率低; ■检测结果不直观,不能显示缺陷图形,无法缺陷定性。 ECA 三、涡流阵列技术工作原理 1.涡流阵列工作原理 多个涡流线圈按照一定的物理构造方式排布组成阵列,按照特定的工作模式、信号响应方式组成若干个阵列元;阵列元是代表涡流检测工作模式、信号响应方式且能独立工作的最小单元(可视为“放置式涡流探头”),每个阵列元都含有发射线圈和接收线圈(包括自发自收线圈);为避免阵列元之间的相互串扰,通常会采用多路切换技术分时、分批激活阵列元;编码器触发仪器将阵列元的涡流检测数据及其位置数据保存;这些数据经过软 件处理,形成直观的C扫图。 1.多路切换技术 目的:避免串扰; 特点:切换速度非常快,不会影响检测。

交通大学_无损检测_涡流检测实例

涡流检测 测控技术与仪器(1)班魏永徵 一、涡流检测的原理 将通有交流电的线圈置于待测的金属板上或套在待测的金属管外,这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。 二、涡流检测仪器及设备 涡流检测仪器是涡流检测装置最核心的组成部分,根据应用目的不同,涡流检测仪器可分为涡流探伤仪、涡流电导仪和涡流测厚仪等三种类型,它们的电路型式也各不相同。但在检测时他们需要完成一些相同任务:①产生激励信号;②检测我留信息;③鉴别影响因素;④指示检测结果。 涡流检测的电子电路主要分为基本电路和信号处理电路两大部分。基本电路包括振荡器、信号检出电路、放大器、显示器和电源。,这些几乎是所有涡流检测仪都具有的;信号处理电路是鉴别影响因素和抑制干扰的电路,随检测目的不同而不同。 针对不同检测对象的应用,不仅各类涡流检测设备在构成完整的检测系统上有所不同,而且同类检测设备也会因检测对象不同有所差异,特别是涡流探伤系统表现得尤为明显。一般而言,涡流检测装置包括检测线圈、检测仪器、辅助装置。 1.涡流检测线圈 涡流检测线圈通常又称探头。从制作方式和检测信号产生原理两方面考虑,“检测线圈”这一名称比“探头”要更准确、合理。“探头”是各种小尺寸探测器的俗称,在电磁检测中,有几种原理不同的“探头”,如霍尔元件、磁敏二极管及电磁线圈等。涡流检测中通常所称的“探头”即其中的“电磁线圈”,它是

钢棒阵列涡流探伤技术

钢棒阵列涡流探伤技术 阵列涡流技术是近十多年出现的一项新的涡流检测技术,它是通过涡流检测线圈结构的特殊设计,并借助于计算化的涡流仪强大的控制和处理功能,实现对金属材料的快速、有效地检测。阵列涡流用于钢铁企业生产检验的主要优点表现在:① 一个完整的探头由多个独立的线圈排列而成,对于不同方向的线性缺陷具有一致的检测灵敏度;② 探头覆盖区域较大,检测效率比常规涡流点探头大很多倍;③ 具有点探头的高灵敏性,但在检测钢棒时不需要探头旋转,省却了复杂的旋转头装置。 1 阵列涡流探伤技术原理 阵列涡流技术与传统的涡流检测技术相比,主要不同点在于阵列涡流探头是由多个独立工作的线圈构成,这些线圈按照特殊的方式排布,且激励线圈与接收线圈之间形成两种方向相互垂直的电磁场传递方式。工作时不需使用机械式探头扫描,只需按照设定的逻辑程序,对阵列线圈进行分时切换,并将各线圈获取的涡流响应信号通过多路复用器接入仪器的信号处理系统中去,即可完成一个阵列的巡回检测。为提高检测效率,阵列涡流探头中包含有几个或十几个甚至几十个线圈,不论是激励线圈,还是接收线圈,相互之间距离都非常近。采用多路复用技术可以有效避免不同线圈间的相互干扰。 如图1所示是一个检测圆钢的阵列涡流探头的原理示意图,它由一个与圆钢截面为同心圆的骨架以及在骨架上安装的两排阵列线圈组成。 这些阵列线圈在局部会产生许多的小涡流场,使得局部 涡流场强度大大增加,从而提高了检测灵敏度。圆钢从 探头内部穿过时,是如何完成对圆钢的检测呢?为便于 叙述和理解,将这二排线圈分为A 组(A 1,A 2,A 3,……) 和B 组(B 1,B 2,B 3,……),如图2所示。相对于A 组线圈而言,B 组线圈为激励线圈,如图中,B 1线圈产生的磁场在圆钢表面激励产生涡流,该涡流在再生磁场被A 1和A 2线圈所感应接收;以这种方式电磁耦合形成的涡流适于发现圆钢表面上轴线方向的缺陷。同理,B 2线圈作用于A 2和A 3线圈,B 3线圈作用于 图1 圆钢阵列涡流探头 图2 阵列线圈的电磁耦合方式

涡流无损检测中的定量分析

第匏卷第5期2000年s胃 无损检测 NDT V01.22NO.5 May2000涡流无损检测中的定量分析’ 孙晓云路妯袁斌盛剑嚣 (西安交通大学,曲安710049) 摘要提出满流光损检测中定量分析髓需考虑的问题,介绍鹕漶定量捡测砖方法,龟括tl-波分辨技书、人工神经鼹络、百褪纯技书麓数嚣霹艘术等。 主麓诵涡流检验信昔处理定量分析 QUAN零l零A譬lV嚣ANALYSlSFoR嚣DDYCURREN簟NoNDESTRUCTIVETESTlNG SunXiaoyunlmCanYuan蟊jnShengJiannJ (XihnJiaotongUniversity) AbstractTheproblemsshouldbeconsideredinthequamltatlvearmlysisforeMycurren*nondestruetivetes{.ingareputforVvardQuantitativeanalysismethodsareintroduced.includingwaveletanalysis.neuralnetwork。vi—sualizationandda*abasemethods KeywordsEddycurrenttestingSignsIprocessingQuantitativeanalysis 无损评估楚铼诳工监安全生产而建立的一项练台性的高科技方法,它以无损检测为基础。评健巾缺陷可分为廷险牲驰无戴睑性群大粪。前者是在运行中产生豹.如表面裂纹,逐步向内发袋,导致设备破裂“1:对这种裂纹必须严密监视,用涡流检测法捡测巽寿独特赫挠点, 嚣翦涡流无援硷测处予定性分橱蹬段,要向定肇努辑发展,需要考虑的阁题毒①提离捡溅终空溺分辨力和掰鬣仪器的灵敏瀵。②缺陷检测不是一次检测的直接结果,而蔼根据一次检测结果进行缺赡识S《:缺路识别属于电磁场闯题的逆闻鼷,~般来浇无唯一解;需冀有先验知识加以约束才能获得实际缺陷的形状刹尺寸。③通过{义器获得的信息难免混育多种干扰信号,必籁将干扰去除到允许范醋内,才髓避行识别:①识别商离线识别捌在线识别,后者可甥快识别遮襞,实现实对检测。⑤侵于测试A员瑟时了解梭蒯情况或进行必要的人工干预、原始数据的铰对及缺赂的昆示等。 1激韵线湖酾探测线疆分蔫,以提塞窑瓣努辨力 在融抗变化的满流检测中,一般都将激勋线霹 *国家教帮部媾士盎蕊垒拦助壤舄和探测线圈台二为一。探头两端的感应电盛表镬了线圈艇在范鼹幽磁运量的时闫变化率,斟此空闺分辨力随探测线圈横截面积增大而减小。本课题组提出将探测栖激励线圈分离,且增大激励线圈的体穰郄缩小探测线圈豹体积;显然,老将搽测线黉缩小到某~程度可分辨出空间磁场的分布,这样投大疆离了磁场的空闽分辨力,可方便地反映缺照的位鼍爱大,』、,我孵髂之为基于场量分析的涡流无损检测敖术,详缅分析方法见文献i2]。模拟计算表骢,在这种方法巾.疆把探测缝匿魄体积擞得足够小,才能提囊空闰分辨力。另补,搽测线圈两端的感应电压约在徼侠数麓级。因此必须提高测擐仪器的灵敏度,否则难以达到孝藿辘捡测的g的。 2搦强横拟计葬,为缺陷识剐提鬣先骏知识 前蕊已指出,缺掐识别属于电磁场的逆问题,需要事窝的先验知识加以约束,才蘸获碍噍一解。先验知识的虢取,可用实验测定或模献计算,丽置看者与蓊着褶比可节省大量的入力和幸势力,还可获得一堕前蠢无法羲褥的知识。龙损检测系统中瓣涡漉场~般为三缎开域场。用常甄豹毒隈元法戢边拜元法嚣翥饕禳天的计算量,用三维青隈元法计算时,特剐楚当敬璐很小时,所嚣的计箕量更加盛犬。濯她本澡溪缢掇出r微撬场的观点,鄄将由缺陷Sf超的场定义 ?195?  万方数据

远场涡流无损检测技术的发展历史及特点.

远场涡流无损检测技术的发展历史及特点远场效应是20世纪40年代发现的。1951年Maclean W.R.获得了此项技术的美国专利[1](见图1)。50年代壳牌公司的Schmidt T.R.独立地再发现了远场涡流无损检测技术,在世界上首次研制成功检测井下套管的探头(见图2),并用来检测井下套管的腐蚀情况[2],1961年他将此项技术命名为“远场涡流检测”,以区别于普通涡流检测。壳牌公司开发部向Maclean购买了该专利权,在探头的研制中获得了很大的成功,并用来检测井下套管。20世纪60年代初期,壳牌公司应用远场涡流检测技术来检测管线,检测设备包括信号功率源、信号测量、信号记录和处理,做成管内能通过的形式,像活塞一样,加动力之后即可在管线内运动,取名“智能猪”(见图3)。此装置于1961年5月9日第一次试用,一次可以检测80公里或更长的管线。[3] 壳牌公司在80年代促进了此项技术的商业化。一些制造商立刻认可了此项技术的价值,开始生产远场涡流检测设备。[4] 图1世界上第一个远场涡流检测的专利

图2世界上第一个远场涡流井下套管检测探头(Schmidt,1961) 图3用“智能猪”来检测管线 (壳牌公司,1961) 在过去的20多年中,远场涡流检测技术引起了全世界有关研究人员的兴趣,Schmidt T.R.作出了杰出的贡献,Lordo w,Atherton D.L.等[5][6][7]对远场涡流现象进行了有限元模型的理论模拟,开发了计算机模拟程序,为远场涡流检测奠定了坚实的理论基础。 在80年代后期和90年代初期,远场涡流检测技术得到了很大发展,开发了

检测系统,利用内置式探头来检测输气管线、井下套管、地埋管线、热交换器和锅炉[8][9],利用外置式探头来检测平板和钢管。现代的检测设备利用计算机来显示和储存数据,还有自动信号分析程序。 从20世纪80年代开始,加拿大路赛尔技术有限公司(RUSSELL NDE SYSTEMS INC简称路赛尔公司)与加拿大女王大学(Queen’s University,世界应用电磁研究中心)合作,致力于远场涡流技术在管道检测方面的研究,特别是井下套管和地埋油气水输送管线的检测。路赛尔公司1988年研制成功第一代远场涡流检测系统(108型),1992年研制成功第二代检测系统(204型),2000年研制成功第三代检测系统(308型,见图8)。目前路赛尔公司生产的远场涡流无损检测系统的技术居世界领先水平。 图8路赛尔公司研制的三代远场涡流无损检测系统2000年美国材料试验学会制定了ASTM E2096-00《热交换器管远场涡流检测》标准,此标准由路赛尔公司撰写。美国无损探伤试验学会ASNT于2004年出版的电磁无损检测手册[10],其中第八章远场涡流检测由路赛尔公司和加拿大女王大学撰写。 2000年以来我国电力、石化、化工行业向路赛尔公司购买了数套204型和308型远场涡流检测系统,用于检测锅炉和热交换器,应用效果很好。我国2004年制定了国家电力行业标准DL/T 883-2004《电站在役给水加热器铁磁性钢管远场涡流检验技术导则》。近二年来我国油田开始对路赛尔公司生产的远场涡流井下套管无损检测系统感兴趣。

涡流检测基本原理

涡流检测基本原理 发布者::IDEA 发布时间::2009-10-23 10:50浏览次数::76 涡流检测是许多NDT(无损检测)方法之一,它应用―电磁学‖基本理论作为导体检测的基础。涡流的产生源于一种叫做电磁感应的现象。当将交流电施加到导体,例如铜导线上时,磁场将在导体内和环绕导体的空间内产生磁场。涡流就是感应产生的电流,它在一个环路中流动。之所以叫做―涡流‖,是因为它与液体或气体环绕障碍物在环路中流动的形式是一样的。如果将一个导体放入该变化的磁场中,涡流将在那个导体中产生,而涡流也会产生自己的磁场,该磁场随着交流电流上升而扩张,随着交流电流减小而消隐。因此当导体表面或近表面出现缺陷或测量金属材料的一些性质发生变化时,将影响到涡流的强度和分布,从而我们就可以通过一起来检测涡流的变化情况,进而可以间接的知道道题内部缺陷的存在及金属性能是否发生了变化。 涡流作为一种NDT工具的一大优点是它能够做多种多样的检查和测量。在适当的环境下,涡流可以用于: 1、裂缝、缺陷检查 2、材料厚度测量 3、涂层厚度测量 4、材料的传导性测量 涡流检测的优越性主要包括: 1、对小裂纹和其它缺陷的敏感性 2、检测表面和近表面缺陷速度快,灵敏度高 3、检验结果是即时性的

4、设备接口性好 5、仅需要作很少的准备工作 6、测试探头不需要接触被测物 7、可检查形状尺寸复杂的导体 无损检测-声脉冲 发布者::IDEA 发布时间::2009-11-20 09:48浏览次数::19 1.什么叫声脉冲? 由一串声波所形成的脉冲。 2.简述声脉冲检测的原理。 当一串声波沿管子传播时,如果遇到管子存在开口、孔洞、鼓胀、凹陷、裂缝、内部腐蚀和沉积 等,就会有反射波返回发射端,由于声波的传播速度是固定的,通过计算机系统的处理,便可以准确地 得到管子发生异常的具体位置。 3.简述声脉冲检测的应用范围。 声脉冲快速检漏仪适用于有色金属、黑色金属和非金属管道的快速检漏。如电站高、低加,冷凝器 管,锅炉四管;化工厂的热交换管;酒楼大厦中央空调器管的在役检漏等,4.声脉冲检测的特性是什么? ①在役管道高速检漏,可达每小时500~1000根管子; ②管子材质不限,铁磁非铁磁性或非金属管均宜; ③直管、弯管、缠绕管均宜; ④可快速发现存在于管子上的穿透性缺陷等; ⑤实时记录检测波形,便于下次检测时回放比较。 5.声脉冲检测仪器的技术特性有哪些? □增益范围0 ~ 48dB , 步长0.5 dB □观察长度(2~50M)及管径(10 ~ 100MM)

涡流无损检测

1 无损检测(Nondestructive Testing, NDT)是一门涉及多学科的综合性应用技术, 它以不损害被检对象的内部结构和使用性能为前提,应用多种物理原理和化学现象,对各种工程材料、零部件、结构件进行有效地检验和测试,检测被检对象中 是否存在缺陷或不均匀性,进而评价它们的连续性、完整性、安全可靠性及某些 物理性能【1-6]。无损检测技术是现代工业发展必不可少的有效工具,在一定程度上反应了一个国家的工业发展水平,其重要性己得到世界范围内广泛公认。无损检 测技术的应用范围十分广泛,遍布工业发展的各个领域,在机械、建筑、冶金、 电力、石油、造船、汽车、宇航、核能、铁路等行业中被普遍采用,成为不可或 缺的质量保证手段,其在产品设计、生产和使用的各个环节中己被卓有成效的运 用[4,7-16]。 2 以德国科学家伦琴1895年发现X射线为标志,无损检测作为应用型技术学科 己有一百多年的历史[l7]0 1900年,法国海关开始应用X射线检验物品;1922年,美国建立了世界第一个工业射线实验室,用X射线检查铸件质量,以后在军事工

业和机械制造业等领域得到了广泛应用,射线检测技术至今仍然是许多工业产品质量控制的重要手段。1912年,超声波检测技术最早在航海中用于探查海面上的冰山;1929年,将其应用于产品缺陷的检测,目前仍是锅炉压力容器、铁轨等重要机械产品的主要检测手段。1930年后,开始采用磁粉检测方法来检测车辆的曲柄等关键部件,以后在钢结构上广泛应用磁粉探伤方法,使磁粉检测得以普及到各种铁磁性材料的表面检测。毛细管现象是土壤水分蒸发的一种常见现象,随着工业化大生产的出现,将“毛细管现象”成功地应用于金属和非金属材料开口缺陷的检测,其灵敏度与磁粉检测相当,它的最大好处是可以检测非铁磁性物质。经典的电磁感应定律和涡流趋肤效应的发现,促进了现代导电材料涡流检测方法的产生。1935年,第一台涡流探测仪器研究成功。到了二十世纪中期,建立了以射线检测(Radiographic Testing, RT、超声检测(Ultrasonic Testing, UT、磁粉 检测(Magnetic Testing, MT、渗透检测(Penetrant Testing, PT)和涡流检测(Eddy Current Test, ECT五大常规检测技术为代表的无损检测体系【‘“]。 作为五大常规无损检测方法之一的涡流检测技术,是建立在电磁感应原理基础上的一种无损检测方法,主要适用于导电材料(如金属材料、可感生涡流的非金属材料等)近表面缺陷的检测,其具有以下特点[y,2,i9,2o}. 1.非接触检测,能穿透非导体涂镀层,可以在不清除零件表面油脂、积碳和保护层的情况下进行检测。 2.检测无需祸合介质,可以在高温状态下进行检测。探头可伸入到远处作业,故可对工件的狭窄区域、深孔壁等进行检测。 3.对工件表面或近表面的缺陷,有很高的检出灵敏度,且在一定的范围内具有良好的线性指示,可对大小不同的缺陷进行评价。 4.可以对工件表面涂层厚度进行测量,如测量导电覆盖层或非导电涂层的厚度;可以对导体的电导率进行测量,进行材料的分类。

国内外无损检测技术的现状与发展 夏纪真

国内外无损检测技术的现状与发展 夏纪真 (2011年7月) 无损检测资讯网 https://www.wendangku.net/doc/2f2655032.html, 一.概述(一)世界无损检测技术的起源与发展 无损检测技术是以物理现象为基础的,回顾一下世界无损检测技术的起源,都是一种物理现象被发现后,随之进行深入研究并投入应用,一般的规律往往首先是在医学领域、军工领域应用,然后推广到工业领域应用。 下面我们来回顾一下部分无损检测技术的起源。 射线检测 1895年11月德国渥茨堡大学教授伦琴发现X射线(伦琴射线),随后在医学领域得到应用; 1896年法国贝克勒尔发现γ射线; 1898年居里夫妇从铀矿中分离出镭 1900年法国海关首次应用X射线检查物品; 1919年英国卢瑟福用α粒子轰击氮原子打出质子,进而建立起第一个核反应装置; 1920年前后X射线开始在工业领域应用; 1939年发现铀裂变现象,此后人工制造的放射性同位素逐渐进入γ射线检验领域; 1946年携带式X射线机诞生 超声检测 1830年已经有利用机械装置人工产生超声波的实验(达到24000Hz) 1914-1918年已经开始利用声波反射的性质探测水下舰艇的研究 1943年出现商品化脉冲回波式超声波探伤仪 涡流检测 1824年加贝(Gambey)用实验发现金属中有涡电流存在,几年后佛科(Foucauit)确认了涡电流的存在; 1831年法拉第(Faradey)发现电磁感应现象; 1865年麦克斯韦完成法拉第概念的完整数学表达式,建立电磁场理论; 1879年休斯(D.E.Hughes)首先将涡流用于实际金属材料分选; 1921~1935年涡流探伤仪和涡流测厚仪先后问世; 1930年实现用涡流法检验钢管焊接质量; 50年代初期德国福斯特(Forster)开创现代涡流检测理论和设备研究新阶段,涡流检测技术开 始正式进入实用阶段 磁粉检测 1868年英国应用漏磁通探测枪管上的不连续性; 1876年应用漏磁通探测钢轨的不连续性; 1918年美国开创磁粉检测首例; 1930年德国福斯特(Forster)将磁粉检测正式引入工业领域; 1933年提出漏磁检测设想; 1947年第一套漏磁检测系统研制成功 渗透检测 1930-1940年代:煤油、“油-白法”、有色染料作为渗透剂的渗透检测方法出现 1941荧光染料的发现与应用,采用紫外线辐照显示,吸收剂-显像剂应用 1950出现以煤油与滑油混合物作为荧光液的荧光渗透检测 1960后出现自动流水线,水基渗透液和水洗法技术,开始关注对氟、氯、硫的控制 微波检测 1948年微波被首次用于工业材料测试 世界无损检测技术的发展历史可以大致上以二次世界大战为重要的转折点:二战前已经起步并开始得到少量的初步应用,在二战期间由于医学和军事的需要得到迅速发展,在二战后随着工业生产技术的迅猛发展,特别是近代和现代机械制造、电子技术、计算机技术的迅猛发展,现代无损检测技术已经发展到了很高的水平。(二)我国的无损检测技术发展历史 我国的无损检测技术实际上从20世纪40年代起就已开始在一些机械工业领域中得到少量应用,但是由于历史的原因,并没有发展起来。新中国成立后,在20世纪50年代初,首先在军工领域(特别是航空工业)以及和军工相关的重工业领域和科研机构开始注重X射线、磁粉、渗透、超声等无损检测技术的应用,其中不少工作是在苏联专家指导下进行,当年一批年轻人加入到了无损检测技术行业,成为今天被我们尊称为我国无损检测

涡流无损探伤检测

同济大学涡流无损探伤检测仪 操作说明 同 济 大 学 城市轨道与铁道工程系 2014年7月

目 录 1 概述 (1) 1.1 设备开发背景 (1) 1.2 应用领域与适用对象 (1) 2 设备综述 (1) 2.1 设备结构 (1) 2.2 设备原理及功能简介 (2) 2.3 版权声明 (2) 3 系统操作说明 (2) 3.1 系统初始化 (3) 3.2 系统工作 (4) 3.2.1 损伤扫描 (4) 3.2.2 结果存储 (5) 3.2.3 读取检测结果 (6) 3.3 关闭设备 (7) 4 使用注意事项与说明 (8)

1 概述 1.1 设备开发背景 随着我国铁路的发展,列车载重日益增加,钢轨损伤严重。然而在钢轨损伤初期,如产生钢轨表面、亚表面裂纹,不易被发觉,但却是引发断轨等事故的主要原因之一。人工破坏性钢轨检测虽然能够发现钢轨裂纹,但操作繁琐,被检测钢轨不可再利用,造价高,耗费大量人力、物力。同济大学涡流无损探伤检测仪利用涡流检测原理,可以实现钢轨等部件无损探测,操作简便高效,实现钢轨在线检测。 1.2 应用领域与适用对象 应用领域:同济大学涡流无损探伤检测仪适用于重载铁路、客运线、城市轨道交通线上钢轨等金属部件伤损检测,便于及时发现裂缝、断轨等伤损。 适用对象:轨道工务检测部门、高校研究机构。 2设备综述 2.1 设备结构 同济大学涡流无损探伤检测仪主要由仪器保护箱、电源、信号扫描设备、用户界面、存储设备组成,为方便操作与携带,将输入输出设备集成一体,如图1所示。图中1为输入电源充电接口,2为仪器启动开关,3为存储设备及USB接口,4为用户操作界面(触摸操作显示屏),5为电源充电器,6为涡流扫描设备,7为仪器保护箱。检测仪使用电源为AC 220V-250V,输出接口为USB通用数据接口,数据存储设备可替换常规移动硬盘。

各常用电磁无损检测方法原理,应用,优缺点比较

一普通涡流检测 1原理 涡流检测是以电磁感应为基础,通过测定被检工件内感生涡流的变化来无损地评定导电材料及其工件的某些性能,或发现其缺陷的无损检测方法。当载有交变电流的试验线圈靠近导体试件时,由于线圈产生的交变磁场的作用感应出涡流,涡流的大小,相位及流动形式受到试件性能和有无缺陷的影响,而涡流产生的反作用又使线圈阻抗发生变化,因此,通过测定线圈阻抗的变化,就可以推断被检试件性能的变化及有无缺陷的结论。 2发展 1涡流现象的发现己经有近二百年的历史。奥斯特(Oersted、安培(Ampere ) , 法拉弟(Faraday、麦克斯韦(Maxwell)等世界著名科学家通过研究电磁作用实 验,发现了电磁感应原理,建立了系统严密的电磁场理论,为涡流无损检测奠定 了理论基础[l]。1879年,体斯(Hughes)首先将涡流检测应用于实际一一判断不 同的金属和合金,进行材质分选。自1925年起,在美国有不少电磁感应和涡流检测仪获得专利权,其中,Karnz直接用涡流检测技术来测量管壁厚度;Farraw首次 设计成功用于钢管探伤的涡流检测仪器。但这些仪器都比较简单,通常采用60Hz , 110V的交流电路,使用常规仪表(如电压计、安培计、瓦特计等),所以其工作 灵敏度较低、重复性较差。二战期间,多个工业部门的快速发展促进了涡流检测 仪器的进步。涡流检测仪器的信号发生器、放大器、显示和电源装置等部件的性 能得到了很大改进,问世了一大批各种形式的涡流探伤仪器和钢铁材料分选装置,较多地应用于航空及军工企业部门。当时尚未从理论和设备研制中找到抑制干扰 因素的有效方法,所以,在以后很长一段时间内涡流检测技术发展缓慢。 直到1950年以后,以德国科学家福斯特(Foster)博士为代表提出了利用阻

无损检测 非铁磁性金属电磁(涡流)分选方法(标准状态:现行)

I C S19.100 J04 中华人民共和国国家标准 G B/T35393 2017 无损检测 非铁磁性金属电磁(涡流)分选方法 N o n-d e s t r u c t i v e t e s t i n g P r a c t i c e f o r e l e c t r o m a g n e t i c (e d d y-c u r r e n t)s o r t i n g o f n o n f e r r o u sm e t a l s 2017-12-29发布2018-04-01实施中华人民共和国国家质量监督检验检疫总局

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准由全国无损检测标准化技术委员会(S A C/T C56)提出并归口三 本标准起草单位:爱德森(厦门)电子有限公司二国核电站运行服务技术有限公司二厦门大学二武汉华宇一目检测装备有限公司二电子科技大学二中国科学院金属研究所二国电科学技术研究院二北京航空材料研究院三 本标准主要起草人:林俊明二张俊林二曾志伟二康宜华二田贵云二蔡桂喜二胡先龙二徐可北二林发炳三

无损检测 非铁磁性金属电磁(涡流)分选方法 1范围 本标准规定了应用电磁(涡流)检测技术对非铁磁性金属进行分选的方法三 本标准适用于非铁磁性金属的分选三 2规范性引用文件 下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三 G B/T9445无损检测人员资格鉴定与认证 G B/T12604.6无损检测术语涡流检测 3术语和定义 G B/T12604.6界定的术语和定义适用于本文件三 4方法概要 4.1总则 电磁分选主要采用绝对式(单)线圈法和比较式(双)线圈法,通常根据经验选择检测方法三在绝对式线圈法中(穿过式或放置式),通过检测电特性已知的对比试块来进行仪器校准三检测到的与合金二热处理或硬度相关的电信号参数值会在仪器上显示三在比较式线圈法中(穿过式或放置式),使用两个线圈来比较被检工件和对比试块,从而判定被检工件是否合格三 4.2分选方法 4.2.1绝对式线圈法 4.2.1.1穿过式线圈法 将不同对比试块依次放入检测线圈中,调整仪器获取适当信号三通常使用3个分别代表上档二中档和下档级别的对比试块进行校准三然后将被检工件放入检测线圈中,观察信号,进行分选三 4.2.1.2放置式线圈法 将放置式线圈依次放置在对比试块上,调整仪器获取适当信号(见4.2.1.1)三然后将线圈放置在被检工件上,观察信号,进行分选三

涡流工艺规程

1. 目的 保证本公司涡流检测工作的规范化和科学化,确保检测结果的正确性。 2. 适用范围 本规程适用于承压设备用导电性金属材料和焊接接头表面及近表面缺陷检测。 3. 编制依据 GB/T 5126 铝及铝合金冷拉薄壁管材涡流探伤方法 GB/T 5248 铜及铜合金无缝管涡流探伤方法 GB/T 7735 钢管涡流探伤检验方法 GB/T 12604.6 无损检测术语涡流检测 GB/T 12969.2 钛及钛合金管材涡流检验方法 GB/T 14480 涡流探伤系统性能测试方法 JB 4730.1 承压设备无损检测第1部分:通用要求 4.检测原理 涡流检测是以电磁感应原理为基础的一种检测方法。当试件经过通过交流点的线圈时,试件表面或近表面有缺陷部位的涡流就会发生变化,导致线圈的阻抗或感应电压产生变化,从而得到关于缺陷的信号,从信号的幅值及相位等,可以对缺陷进行判断。 5. 检测控制要求 5.1. 检测人员资格及要求 5.1.1 从事射线检测的人员,应按照《特种设备无损检测人员考核与监督管理规则》的要求取得相应无损检测资格。 5.1.2 无损检测人员资格级别分为Ⅲ(高)级、Ⅱ(中)级和Ⅰ(初)级。取得不同无损检测方法各资格级别的人员,只能从事与该方法和该资格级别相应的无损检测工作,并负相应的技术责任。 5.1.3 检测人员应依据被委托的要求,按有关规程、规定、标准进行准备工作。 5.2检测前的准备 5.2.1 检测系统 5.2.1.1 涡流检测系统一般包括涡流检测仪、检测线圈及辅助装置(如磁饱和装置、机械传动装置、记录装置、退磁装置等)。 5.2.1.2 涡流检测系统应能以适当频率的交变信号激励检测线圈,并能够感应和处理检测线圈对被检测对象电磁特性变化所产生的响应。

远场涡流无损检测技术的发展历史及特点

远场涡流无损检测技术的发展历史及特点 远场效应是20世纪40年代发现的。1951年Maclean W.R.获得了此项技术的美国专利[1](见图1)。50年代壳牌公司的Schmidt T.R.独立地再发现了远场涡流无损检测技术,在世界上首次研制成功检测井下套管的探头(见图2),并用来检测井下套管的腐蚀情况[2],1961年他将此项技术命名为“远场涡流检测”,以区别于普通涡流检测。壳牌公司开发部向Maclean购买了该专利权,在探头的研制中获得了很大的成功,并用来检测井下套管。20世纪60年代初期,壳牌公司应用远场涡流检测技术来检测管线,检测设备包括信号功率源、信号测量、信号记录和处理,做成管内能通过的形式,像活塞一样,加动力之后即可在管线内运动,取名“智能猪”(见图3)。此装置于1961年5月9日第一次试用,一次可以检测80公里或更长的管线。[3] 壳牌公司在80年代促进了此项技术的商业化。一些制造商立刻认可了此项技术的价值,开始生产远场涡流检测设备。[4]

在过去的20多年中,远场涡流检测技术引起了全世界有关研究人员的兴趣,Schmidt T.R.作出了杰出的贡献,Lordo w,Atherton D.L.等[5][6][7]对远场涡流现象进行了有限元模型的理论模拟,开发了计算机模拟程序,为远场涡流检测奠定了坚实的理论基础。 在80年代后期和90年代初期,远场涡流检测技术得到了很大发展,开发了检测系统,利用内置式探头来检测输气管线、井下套管、地埋管线、热交换器和锅炉[8][9],利用外置式探头来检测平板和钢管。现代的检测设备利用计算机来显示和储存数据,还有自动信号分析程序。 从20世纪80年代开始,加拿大路赛尔技术有限公司(RUSSELL NDE SYSTEMS INC简称路赛尔公司)与加拿大女王大学(Queen’s University,世界应用电磁研究中心)合作,致力于远场涡流技术在管道检测方面的研究,特别是井下套管和地埋油气水输送管线的检测。路赛尔公司1988年研制成功第一代远场涡流检测系统(108型),1992年研制成功第二代检测系统(204型),2000年研制成功第三代检测系统(308型,见图8)。目前路赛尔公司生产的远场涡流无损检测系统的技术居世界领先水平。

相关文档
相关文档 最新文档