文档库 最新最全的文档下载
当前位置:文档库 › 1.射频无线 通信系统介绍

1.射频无线 通信系统介绍

1.射频无线 通信系统介绍
1.射频无线 通信系统介绍

1.射频和无线通信系统介绍

概述

This tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series teaches you a specific topic of common measurement applications by explaining the theory and giving practical examples. This tutorial covers an introduction to RF, wireless, and high-frequency signals and systems.

本教程是测量NI基础系列的一部分。本系列教程中的每一个指南结合理论解释和实际的例子教你常用的测量应用。本教程介绍介绍了射频,无线和高频信号与系统。

For the complete list of tutorials, return to the NI Measurement Fundamentals Main page, or for more RF tutorials, refer to the NI RF Fundamentals Main subpage.

对于教程的完整清单,请返回NI Measurement Fundamentals Main page,或更多的射频教程,请参阅NI RF Fundamentals Main subpage.

目录

1.Marconi and the First Wireless Transmissions 马可尼和第一次无线传输

2.What is RF?射频是什么?

3.Why Operate at Higher Frequencies? 为什么工作在更高的频率?

4.Frequency Shifting through Frequency Mixing通过混频移频

5.Looking for more RF Basics? 寻找更多的射频基础知识?

6.Relevant NI Products

7.Conclusions结论

Marconi and the First Wireless Transmissions

Radio Frequency (RF) and wireless have been around for over a century with Alexander Popov and Sir Oliver Lodge laying the groundwork for Guglielmo Marconi’s wireless radio developments in the early 20th century. In December 1901, Marconi performed his most prominent experiment, where he successfully transmitted Morse code from Cornwall, England, to St John’s, Canada.

在亚历山大波波夫爵士和奥利弗洛奇奠定了20世纪初马可尼无线电台的基础时,射频(RF)和无线已经出现了一个世纪。在1901年12月,马可尼进行他最杰出的实验,在那里他成功从英国康沃尔发送莫尔斯码到加拿大圣约翰。

What is RF? 什么是射频?

RF itself has become synonymous with wireless and high-frequency signals, describing anything from AM radio between 535 kHz and 1605 kHz to computer local area networks

(LANs) at 2.4 GHz. However, RF has traditionally defined frequencies from a few kHz to roughly 1 GHz. If one considers microwave frequencies as RF, this range extends to 300 GHz. The following two tables outline the various nomenclatures for the frequency bands. The third table outlines some of the applications at each of the various frequency bands.

RF本身已成为无线和高频信号的代名词,它包括了535kHz~1605kHz的调幅无线电到2.4 GHz的计算机局域网(LAN)之间的任何频率。然而,传统定义的RF从几kHz的频率至大约1GHz。如果把微波频率考虑作为射频,这个范围扩展到300GHz。以下两个表概述了各频段的术语。第三表列出了在不同频段的一些应用。

T able 1: Frequency Band Designations

Table 1 shows a relationship between frequency (f) and wavelength (λ). A wave or sinusoid can be completely described by either its frequency or its wavelength. They are inversely proportional to each other and related to the speed of light through a particular medium. The relationship in a vacuum is shown in the following equation:

where c is the speed of light. As frequency increases, wavelength decreases. For reference, a 1 GHz wave has a wavelength of roughly 1 foot, and a 100 MHz wave has a wavelength of roughly 10 feet.

表1显示了频率(f)和波长(λ)的关系。波或正弦波可以完全由其频率或波长描述。他们成反比关系,并与通过特定媒介的光速有关。在真空的关系如公式如下:。其中c是光速。随着频率的增加,波长减小。作为参考,1 GHz的波具有波长约为1英尺,100 MHz的波有大约10英尺的波长。

T able 2: Microwave Letter Band Designations

T able 3: Frequency Applications and Allocations in the U.S.

RF measurement methodology can generally be divided into three major categories: spectral analysis, vector analysis, and network analysis. Spectrum analyzers, which provide basic measurement capabilities, are the most popular type of RF instrument in many general-purpose applications. Specifically, using a spectrum analyzer you can view power-vs-frequency information, and can sometimes demodulate analog formats, such as amplitude modulation (AM), frequency modulation (FM), and phase modulation

(PM).

Vector instruments include vector or real-time signal analyzers and generators. These instruments analyze and generate broadband waveforms, and capture time, frequency, phase, and power information from signals of interest. These instruments are much more powerful than spectrum analyzers and offer excellent modulation control and

signal analysis.

Network analyzers, on the other hand, are typically used for making S-parameter measurements and other characterization measurements on RF or high-frequency components. Network analyzers are instruments that correlate both the generation and analysis on multiple channels but at a much higher price than spectrum analyzers and

vector signal generators/analyzers.

射频测量方法大致可以分为三大类:频谱分析,矢量分析和网络分析。频谱分析仪,它提供基本的测量功能,在许多通用应用中是最受欢迎的RF仪器类型。具体来说,使用频谱分析仪可以查看功率与频率的信息,有时可以解调模拟格式,如调幅(AM),调频(FM)和相位调制(PM)。

矢量仪器包括矢量或实时信号分析仪和发生器。这些仪器分析和产生宽带波形,并从感兴趣的信号捕获时间,频率,相位,功率信息。这些仪器比频谱分析仪功能强大,提供优良的调制控制和信号分析。

网络分析仪通常用于射频或高频元件的S -参数测量及其他特性的测量。网络分析仪通过多通道融合了信号产生和信号分析,但是它的价格比频谱分析仪和矢量信号发生器/分析仪要高。

Why Operate at Higher Frequencies?

为什么工作在更高的频率?

From Table 3 we notice that the frequency spectrum is quite fragmented and dense. This encompasses one of the reasons that we are constantly pushing applications into higher and higher frequencies. However, some of the other reasons accounting for this push into higher frequencies include efficiency in propagation, immunity to some forms of noise and impairments as well as the size of the antenna required. The antenna size is typically related to the wavelength of the signal and in practice is usually ? wavelength.

This leads to a very interesting question. Typically, data is structured and easily represented at low frequencies; how can we represent it or physically translate it to these higher RF frequencies? For example, the human audible range is from 20 Hz to 20 kHz. According to the Nyquist theorem, we can completely represent the human audible range by sampling at 40 kHz or, more precisely, at 44.1 kHz (this is where stereo audio is sampled). Cell phones, however, operate at around 850 MHz. How does this happen?

从表3中我们看到,频谱是相当分散,而且密度大。这也是我们之所以不断将应用推向更高的频率原因之一。然而,其他因素造如传播效率,抗噪声干扰以及所需要的天线尺寸也将应用推向更高的频率。天线的

尺寸通常与信号的波长,在实践中通常是四分之一波长有关。

这导致了一个很有趣的问题。通常,数据容易在低频率表示和结构化; 我们如何才能在频率较高的射频表示该信息或按自然规律翻译成较高的射频信息?例如,人类的听觉范围是从20赫兹到20千赫。根据奈奎斯特定理,我们可以完全通过在40千赫或者更准确地为44.1千赫的进行采样来表示音频信息(这就是立体声音频采样)。然而手机工作在850兆赫。这是如何发生的?

Frequency Shifting through Frequency Mixing

通过混频移频

Much of the study of RF and high-frequency measurements occurs in the frequency domain. There is a duality between the time-domain functions and those same functions represented in the frequency-domain. Figure 1 depicts frequency shifting the human audible range to transmit through cellular frequencies. The most common way to frequency shift is called mixing, which is equivalent to multiplying your signal by a sinusoidal signal. The following mathematical trigonometric identity demonstrates this fact.

Therefore, by beating two sine waves against each other, you get both sum and difference frequencies. You can shift an entire signal to a new frequency range

(either up or down in spectrum) by selecting the appropriate value of . In addition,

any signal can be represented as the sum of sinusoidal signals of different frequencies. Thus, shifting a signal simply applies the “multiplication” to all its sinusoidal components.

Figure 1: Frequency Shifting the Human Audible Range to the Cellular Range

NOTE: The process of taking audible sound and transmitting over cellular frequencies (850 MHz) includes more than simply mixing. To make the signal more resistant to noise and other impairments, the process includes encoding and modulating the data as well as perhaps using multiple stages of mixing instead of a single stage.

对射频和高频率测量研究的大部分发生在频域。相同功能的函数在时域和频域的表示有一个对偶关系。图1描述了音频如何移频道手机来发射传输频率。最常见的频移方式被称为混频。这相当于一个正弦信号乘以你的信号。以下数学三角函数等式证明了这一事实。

因此,通过混合两个正弦波,你得到一个和频和差频。你可以通过改变的值将信号调整到一个新的频率

范围(或上或下的频谱)。此外,任何信号都可以表示为不同频率的正弦信号的和。从而,仅仅通过简单的“乘法”就可以进行正弦波信号的变换。

注意:使音频信号通过手机频率发射传输的过程比简单的混频要复杂。为了使信号抗噪声干扰和其他损害信号质量的干扰,这个过程包括编码、调制,或许用多级混频替代一级混频。

Conclusions

This document is meant to provide a brief overview and introduction to RF, wireless, and high-frequency signals.

这个文件的目的是提供一个简要概述,并介绍了射频,无线,和高频信号。

RFID射频技术方案-

RFID在图书管理的设计方案 一、系统概念及介绍 了解RFID:RFID是一种无线射频识别,它常称为感应式电子晶片、感应卡、非接触卡、电子条码等。俗称电子标签或应答器。 RFID的优点:1.除了天线外之所有组件皆己做成芯片,可有效降低成本。 2.使用无线传能,不必使用电池不用担心电池秏尽的问题(Passive Tag)。 3.芯片密码为世界唯一无法复制COPY,安全性高。 4.可制成各种包装类型,以应用在各种不同场合。 5.采近接式读卡,不用和卡片阅读机直接接触、不用刷卡所以不怕接点脏污及磨损,可放于口袋皮包 内,不必取出就能直接辨识 6.卷标数据可重新由卡片阅读机更改,用完可回收再利用。 7.使用寿命长。 RFID的原理:一套完整的RFID系统, 是由卡片阅读机(Reader)与电子卷标(TAG)也就是所谓的应答器(Transponder)及应用程序数据库计算机系统三个部份所组成,其动作原理为由Reader 发射一特定频率之无线电波能量给Transponder,用以驱动Transpond er电路将内部之ID Cod e送出,此时Reader 便依序接收解读此ID Cod e,送给应用程序数据库系统做应用。 RFID在图书管理中的应用:把每本图书都贴上标签这样能使RFID能更好的是图书馆的借书、还书方便。当你借到那把书时候别人也能知道这本书以被借走标签还可以反馈信息给管理员现在那本图书缺货。而且RFID的错误率比较低,RFID还可以及时对图书馆的书进行入库。安全门摆放距离更加宽阔,读者进出更加自如。由于RFID安全门不会产生误报,避免了读者与管理人员之间发生不必要争执,融洽了读者与管理人员之间的关系。 系统的介绍:多年来图书自助借还、快速盘点、查找、乱架图书整理等问题一直困扰着图书馆的管理及工作人员。西安高歌智能依托强大的RFID技术实力,经过多年研发努力,形成了系列图书馆配套设备,大大改进管理方式、提高工作效率、降低了管理人员的劳动强度,为图书馆应用领域提供了完整的解决方案。

最详细解读射频芯片

最详细解读射频芯片 传统来说,一部可支持打电话、发短信、网络服务、APP应用的手机,一般包含五个部分部分:射频部分、基带部分、电源管理、外设、软件。 射频部分:一般是信息发送和接收的部分; 基带部分:一般是信息处理的部分; 电源管理:一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设:一般包括LCD,键盘,机壳等; 软件:一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 1. 射频芯片和基带芯片的关系 先讲一下历史,射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。 所谓调制,就是把需要传输的信号,通过一定的规则调制到载波上面让后通过无线收发器(RF Transceiver)发送出去的工程,解调就是相反的过程。 2.工作原理与电路分析 射频简称RF射频就是射频电流,是一种高频交流变化电磁波,为是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围在300KHz~300GHz之间。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。射频技术在无线通信领域中被广泛使用,有线电视系统就是采用射频传输方式。

射频识别技术

射频识别技术 031130217 射频识别,RFID(Radio Frequency Identification)技术,又称无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。 射频的话,一般是微波,1-100GHz,适用于短距离识别通信。 RFID读写器也分移动式的和固定式的,目前RFID技术应用很广,如:图书馆,门禁系统,食品安全溯源等。 一定义 射频识别(RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。 无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之内都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之内,也可以嵌入被追踪物体之内。 许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以进入锁住的建筑部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。 某些射频标签附在衣物、个人财物上,甚至于植入人体之内。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐私忧患。 二概念 从概念上来讲,RFID类似于条码扫描,对于条码技术而言,它是将已编码的条形码附着于目标物并使用专用的扫描读写器利用光信号将信息由条形磁传送到扫描读写器;而RFID则使用专用的RFID读写器及专门的可附着于目标物的RFID标签,利用频率信号将信息由RFID标签传送至RFID读写器。 结构 从结构上讲RFID是一种简单的无线系统,只有两个基本器件,该系统用于控制、检测和

基于射频的无线通信技术方案

基于射频的无线通信技术方案 在很多场合有线通信技术并不能满足实际需要,比如在野外恶劣环境中作业。使用无线射频通信芯片构建的通信模块,用单片机作为控制部件,配合一定的外围电路就能很好地进行两地空间区域信号对接,实现自由数据通信,解决了无线通信的技术难题。并且其具有硬件构造简单、维护方便、通信速率高、性能稳定等优点,能在电子通信业得到广泛应用。 本文的控制部件选用AT89C51型单片机。由于这种芯片只有SPI 通信接口,而目前常用的单片机都没有这种接口,因此需要对该芯片的通信时序进行模拟,所以在控制器里编程时要严格按照芯片工作时序进行。 电路原理 NRF24L01芯片构成的通信模块电路设计 NRF24L01芯片通信模块电路核心器件NRF24L01 配合网络晶振、解耦电容、偏极电阻一起工作构造稳定射频通信模块。该芯片是贴片结构,模块占用空间少,如图1所示。

图1 由NRF24L01 芯片构成的通信模块电路图。 电源电路设计 电源电路如图2所示,B1 是9 V 蓄电池或者锂电池,能够反复充电。C1, C2 , C3 , C4 都是滤波电容,起到一次与二次滤波作用。D1,D2 是稳压二极管,使输出端的电压稳定在理想的水平电压。芯片7805 是三端稳压集成电路芯片,具有正电压输出。其电路内部还有过流、过热及调整管等保护电路,最终目的把9 V 电源转变成稳定5 V 输出,为后续设备供电。

图2电源电路图 系统通信电路设计 系统通信电路如图3所示。本电路中应用单片机AT89C51作为控制芯片,对NRF24L01 主通信模块的接口时序模拟和对数据的发送与接收进行处理。

无线射频技术介绍

无线射频技术介绍

无线射频技术介绍 初识无线射频技术 我们先来看官方的说法。无线射频技术是一种近距离、低复杂度、低功耗、低数据速率、低成本的无线通信技术。这种技术的优点是部分产品无需重新布线,利用点对点的射频技术,实现对家电和灯光的控制,安装设置都比较方便,主要应用于实现对某些特定电器或灯光的控制,成本适中。这类系统功能比较弱,控制方式比较单一,且易受周围无线设备环境特别是同频及阻碍物干扰和屏蔽;较适用于新装修户和已装修户。 这也就是我们家庭网络中所提到的有线网络和无线网络的区别。无线网络技术在没有布线的情况下也可以搭建家庭局域网。而无线射频技术也就是通过高频的无线频率(315或433.92 MHz)点对点传输,实现灯光、窗帘、家电等的遥控功能。这类技术对于已经装修好了的用户非常适用,无须预先布线,不会破坏原有家居的美观。 使用基于无线射频技术的产品,就可以将家里所有的电器串成一个网络,我们这里称它为智能家居无线网络,在这个网络中,我们可以随意遥控,让每个冷冰冰的电器都听命于我们。目前,国内使用无线射频技术的厂家有波创、清华同方、百通以及西格等。 如何让家电听命于我们? 家里的电器设备很多,灯光、冰箱、空调、电脑、家庭影院……有些属于本身就带有遥控能力的,比如空调、电视机……有些是不具备遥控功能的,比如热水器、微波炉、电饭煲、冰箱……而不同的遥控设备又带有不同的遥控器,相互间又不能通用,于是家里光遥控器就有四五个。那么如何遥控不具备遥控功能的设备?以及如何让一个遥控器实现多个遥控器的功能呢?从上面的介绍我们知道,基于无线射频技术的产品是能帮我们解决这些问题的,但他们是如何实现的呢? 智能家居无线网络主要包括了一个家庭网关以及若干个无线通讯子节点。在家庭网关上有一个无线发射模块,每个子节点上都接有一个无线网络接收模块,通过这些无线网络收发模块,数据就在网关和子节点之间进行传送。 1.家庭网关 家庭智能网关就是家庭的一个智能化控制中心,带有嵌入式处理器和Arm linux操作系统;具有可触摸的TFT液晶显示屏(5~10英寸);有14路报警点输入和2路报警控制输出,发生警情时可通过网络或电话报警;通过网关上的无线射频模块与网络中各子节点进行通讯,实现家电控制;内置了Web server,通过Web方式实现家电的远程控制。同时家庭网关还具有留影、留言、MP3\MP4播放功能,可方便主人进行温馨留言等。

常用无线射频芯片

常用无线射频芯片 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

常用无线射频芯片目录 CC1000PWR 超低功率射频收发器 CC1010PAGR 射频收发器和微控制器 CC1020RSSR 射频收发器 CC1021RSSR 射频收发器 CC1050PWR 超低功率射频发送器 CC1070RSQR 射频发送器 CC1100RTKR 多通道射频收发器 CC1101RTKR 低于1GHz射频收发器 CC1110F16RSPR 射频收发片上系统 CC1110F32RSPR 射频收发片上系统 CC1110F8RSPR 射频收发片上系统 CC1111F16RSPR 射频收发片上系统 CC1111F32RSPR 射频收发片上系统 CC1111F8RSPR 射频收发片上系统 CC1150RSTR 多通道射频发送器 CC2400RSUR 多通道射频发送器 CC2420RTCR 射频收发器 CC2420ZRTCR 射频收发器 CC2430F128RTCR ZigBee?芯片 CC2430ZF128RTCR ZigBee?芯片 CC2431RTCR 无线传感器网络芯片 CC2431ZRTCR 无线传感器网络芯片 CC2480A1RTCR 处理器 CC2500RTKR 射频收发器 CC2510F16RSPR 无线电收发器 CC2510F32RSPR 无线电收发器 CC2510F8RSPR 无线电收发器 CC2511F16RSPR 无线电收发器 CC2511F32RSPR 无线电收发器 CC2511F8RSPR 无线电收发器 CC2520RHDR 射频收发器 CC2530F128RHAR 射频收发器 CC2530F256RHAR 射频收发器 CC2530F64RHAR 射频收发器 CC2550RSTR 发送器 CC2590RGVR 射频前端芯片 CC2591RGVR 射频前端芯片 CCZACC06A1RTCR ZigBee芯片 TRF7900APWR 27MHz双路接收器 TRF6900APT 射频收发器 TRF6901PTG4 射频收发器

RFID无线射频识别系统

RFID无线射频识别系统无线射频识别技术(Radio Frequency Identification,RFID),或称射频识别技术,是从二十世纪90年代兴起的一项非接触式自动识别技术。它是利用射频方式进行非接触双向通信,以达到自动识别目标对象并获取相关数据,具有精度高、适应环境能力强、抗干扰强、操作快捷等许多优点。例如在汽车发动机装配线上,无线射频识别技术作为一项基础性的技术得到了广泛的应用。在每一块发动机托盘上,都安装有无线射频识别数据码块,而在每一个生产工位上都安装有无线射频处理器和数据传输天线。当发动机缸体在上线工位上线时,上线系统会根据生产计如发动机的型号,序列号,缸体二维条形码等。当操作者确认后,控制系统会将这些数据信息通过RFID系统存入托盘上的数据码块中。而当本发动机运行到某个工位时,本工位的RFID系统首先读取托盘数据码块中的发动机信息,确认发动机的当前状态,从而决定本工位对发动机的操作。当发动机在本工位操作完成后,RFID系统还需要将本工位的相关操作信息存入托盘的数据码块,以便为后续工位及数据采集系统提供必须的信息支持。 Q-DAS系统Q-DAS是一套质量数据统计方面的专业软件,其功能集中体现在对产品及生产过程相关质量信息进行记录,可视化,监控,分析和描

述。其产品具有易用,灵活,分析能力强大等特点,被欧美很多汽车制造业广泛采用,在中国,XX通用,XX大众,一汽大众等整车厂家以及众多的汽车零部件厂家已引进了Q-DAS的概念和技术。 动力总成装配线在很多情况也被要求使用Q-DAS系统来进行产品生产质量的管理和统计分析。装配线的控制系统作为底层设备的主控制器将是一个相对独立的系统,和Q-DAS系统的接口主要为:拧紧枪的拧紧数据,泄漏测试数据,扭矩测试工位测量数据,凸轮轴孔测量数据等。这些数据都要求传送到Q-DAS系统进行存储,统计和分析。大多情况下动力总成装配线采用数据集中采集的方式,在每个工位不配备独立的电脑,全线只配置了一台电脑来采集数据。为了达到Q-DAS系统的要求,要满足三个必要条件:首先必须有一台Q-DAS服务器,服务器上安装有必须的Q-DAS软件及其组件。其次要求需要接入Q-DAS 系统的设备如拧紧枪,泄漏测试等支持Q-DAS功能。最后需要搭建Q-DAS的以太网络,以满足数据传送的需要。 数据采集和生产监控系统 与动力总成装配系统配套的数据采集系统是一套较为独立的信息

无线射频技术的3大应用场景

无线射频技术的3大应用场景 一、什么是无线射频技术 ●RFID是一种无线通讯技术,它使用无线射频在阅读器和射频卡之间进行非接触双向数 据传输。无线信号是由无线射频调谐到的电磁场能够从附着在物品上的标签条发送数据,并且自动识别和跟踪物品。这种通信方式避免了系统与飙之间的机械或者光学接触。 但也能实现目标识别和数据交换目的。 ●与以往的条形查询密码和磁性卡片集成电路卡相比,无线射频技术具有非接触,读取速 度快,无磨损,不受环境影响,寿命长,使用方便,有防碰撞功能等功能。 二、无线射频系统的三大组成部分 ●标签条 (标签条,即无线电卡):由耦合器件和芯片组成。标签包含用于与无线射频天线通讯的内置天线。 ●阅读器 复制读取标签中的信息数据。 ●天线 在标签和阅读器间传送无线射频信号。

三、无线射频的作用 1、不仅像条形码那样查询识别一类物品,还可以识别具体到某一个物品,做到更细化识别。 2、利用无线射频技术可以从用外部材料就能读取数据,而不需要激光读取。 3、不仅可以同时识别多个物体,而且可以存储的数据量很大。 四、无线射频技术的应用 ●物流行业 目前物流业的应用,物流业在国民经济中占有重要地位。电子标签系统核心技术在物流和供应链领域的应用不仅可以突破物流领域基础数据采集的“瓶颈”问题,而且提高了物流活动各个环节的自动化处理水平,提高了物流效率和精准性,降低了物流成本。解决零售市场库存不足、失窃、供应链丢失等问题。物流供应链已成为电子标签系统技术发展的主要应用行业,每年快速增长,推动着电子标签系统行业的发展。 ●自动收费系统 高速公路电子收费系统高速公路电子收费系统是电子标签系统技术最成功的应用之一。高速公路的过路费一直存在一些问题。一个是交通拥挤,很多车辆必须与收费站汽车停车并列,成为交通的瓶颈。另一个是少数非法收费者挪用了过路费,使那个国家失去了大量的财政收入。电子标签系统技术在高速公路自动收费中的应用,不仅体现了非接触身份识别的优点,还可以在自动完成收费后,让车辆能够快速通过收费站,从而减少拥堵。

PL1167中文资料-2.4GHz无线射频收发芯片资料

PL1167 单片低功耗高性能 2.4GHz 无线射频收发芯片 芯片概述: 主要特点: PL1167是一款工作在 2.4~2.5GHz 世界通用 ISM频 段的单片低功耗高性能 2.4GHz无线射频收发芯片。 ψ 低功耗高性能2.4GHz无线射频收 发芯片 ψ 无线速率:1Mbps 该单芯片无线收发器集成包括:频率综合器、功率放 大器、晶体振荡器、调制解调器等模块。ψ 内置硬件链路层 ψ 内置接收强度检测电路输出功率、信道选择与协议等可以通过 SPI或 I2C接 ψ 支持自动应答及自动重发功能 ψ 内置地址及FEC、CRC校验功能 ψ 极短的信道切换时间,可用于跳频 ψ 使用微带线电感和双层PCB板 ψ 低工作电压:1.9~3.6V 口进行灵活配置。 支持跳频以及接收强度检测等功能,抗干扰性能强, 可以适应各种复杂的环境并达到优异的性能。 内置地址及 FEC、CRC校验功能。 ψ 封装形式:QFN16/TSSOP16 内置自动应答及自动重发功能。 ψ ψ QFN16仅支持SPI接口芯片发射功率最大可以达到 5.5dBm,接收灵敏度可 以达到-88dBm。TSSOP16可支持SPI与I2C接口内置电源管理功能,掉电模式和待机模式下待机电流 可以减小到接近 1uA。 应用: ψ 无线鼠标,键盘,游戏机操纵杆 ψ 无线数据通讯 ψ 无线门禁 管脚分布图: ψ 无线组网 ψ 安防系统 ψ 遥控装置 ψ 遥感勘测 ψ 智能运动设备 ψ 智能家居 ψ 工业传感器 ψ 工业和商用近距离通信 ψ IP电话,无绳电话 ψ 玩具

1概要 性能强,可以适应各种复杂的环境并达到优异的 性能。 PL1167 是一款工作在 2.4~2.5GHz 世界通 用 ISM 频段的单片低功耗高性能 2.4GHz 无线射 频收发芯片。 内置地址及 FEC 、CRC 校验功能。 该单芯片无线收发器集成包括:频率综合器、 功率放大器、晶体振荡器、调制解调器等模块。 内置自动应答及自动重发功能。 芯片发射功率最大可以达到 5.5dBm ,接收 灵敏度可以达到-88dBm 。 输出功率、信道选择与协议等可以通过 SPI 或 I2C 接口进行灵活配置。 内置电源管理功能,掉电模式和待机模式下 待机电流可以减小到接近 1uA 。 支持跳频以及接收强度检测等功能,抗干扰 2特性 ζ 低功耗高性能2.4GHz 无线射频收发芯片 ζ 无线速率:1Mbps ζ 极短的信道切换时间,可用于跳频 ζ 使用微带线电感和双层PCB 板 ζ 低工作电压:1.9~3.6V ζ 内置硬件链路层 ζ 内置接收强度检测电路 ζ 封装形式:QFN16/TSSOP16 ζ 支持自动应答及自动重发功能 ζ 内置地址及FEC 、CRC 校验功能 ζ ζ QFN16仅支持SPI 接口 TSSOP16可支持SPI 与I2C 接口 3快速参考数据 参数 数值 单位 最低工作电压 最大发射功率 数据传输速率 发射模式功耗@0dBm 接收模式功耗 工作温度范围 接收灵敏度 1.9 V dBm Mbps mA 5.5 1 16 17 -40 to +85 -88 mA ℃ dBm uA 掉电模式功耗 1

无线射频识别技术(RFID)基础知识

无线射频识别技术(RFID)基础知识 无线射频识别技术的基本原理是利用空间电磁感应(Inductive Coupling)或者电磁传播(Propagation Coupling)来进行通信,以达到自动识别被标识物体的目的。基本工作方法是将无线射频识别标签(Tags)安装在被识别物体上(粘贴、插放、挂佩、植入等),当被标识物体进入无线射频识别系统阅读器(Readers)的阅读范围时,标签和阅读器之间进行非接触式信息通讯,标签向阅读器发送自身信息如ID号等,阅读器接收这些信息并进行解码,传输给后台处理计算机,完成整个信息处理过程。 无线射频识别技术是一本多门学科多种技术综合利用的应用技术。所涉及的关键技术大致包括:芯片技术、天线技术、无线通信技术、数据变换与编码技术、电磁场与微波技术等。 一、基本概念 无线射频识别技术(Radio Frequency Identification,RFID)是一种非接触的自动识别技术,其基本原理是利用射频信号的空间耦合(电磁感应或者电磁传播)传输特性,实现对被识别物体的自动识别。图1所示为RFID系统配置示意图。 图1 RFID系统配置示意图 电磁感应,即所谓的变压器模型,通过空间高频交变磁场实现耦合,依据的是电

磁感应定律,如图2所示。电磁感应方式一般适合于中、低频工作的近距离射频识别系统。典型的工作频率有:125KHz、225KHz和13.56MHz。识别作用距离小于1m,典型作用距离为10~20cm。 图2 电感耦合 电磁传播或者电磁反向散射(Back Scatter)耦合,即所谓的雷达原理模型,发射出去的电磁波,碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律,如图3所示。电磁反向散射耦合方式一般适合于超高频、微波工作的远距离射频识别系统。典型的工作频率有:433MHz、915MHz、2.45GHz、5.8GHz。识别作用距离大于1m,典型作用距离为3~l0m。 图3 电磁耦合 射频识别系统一般由两个部分组成,即电子标签和阅读器。在RFID的实际应用中,电子标签附着在被识别的物体上(表面或者内部),当带有电子标签的被识别物品通过阅读器的可识读区域时,阅读器自动以无接触的方式将电子标签中的约定识别信息取出,从而实现自动识别物品或自动收集物品标识信息的功能。阅读器系统又包括阅读器和天线,有的阅读器是将天线和阅读器模块集成在一个设备单元中的,成为集成式阅读器(Integrated Reader)。 由上可见,为了完成RFID系统的主要功能,RFID系统具有两个基本的构成部

无线射频技术介绍

无线射频技术介绍 初识无线射频技术 我们先来看官方的说法。无线射频技术是一种近距离、低复杂度、低功耗、低数据速率、低成本的无线通信技术。这种技术的优点是部分产品无需重新布线,利用点对点的射频技术,实现对家电和灯光的控制,安装设置都比较方便,主要应用于实现对某些特定电器或灯光的控制,成本适中。这类系统功能比较弱,控制方式比较单一,且易受周围无线设备环境特别是同频及阻碍物干扰和屏蔽;较适用于新装修户和已装修户。 这也就是我们家庭网络中所提到的有线网络和无线网络的区别。无线网络技术在没有布线的情况下也可以搭建家庭局域网。而无线射频技术也就是通过高频的无线频率(315或433.92 MHz)点对点传输,实现灯光、窗帘、家电等的遥控功能。这类技术对于已经装修好了的用户非常适用,无须预先布线,不会破坏原有家居的美观。 使用基于无线射频技术的产品,就可以将家里所有的电器串成一个网络,我们这里称它为智能家居无线网络,在这个网络中,我们可以随意遥控,让每个冷冰冰的电器都听命于我们。目前,国内使用无线射频技术的厂家有波创、清华同方、百通以及西格等。 如何让家电听命于我们? 家里的电器设备很多,灯光、冰箱、空调、电脑、家庭影院……有些属于本身就带有遥控能力的,比如空调、电视机……有些是不具备遥控功能的,比如热水器、微波炉、电饭煲、冰箱……而不同的遥控设备又带有不同的遥控器,相互间又不能通用,于是家里光遥控器就有四五个。那么如何遥控不具备遥控功能的设备?以及如何让一个遥控器实现多个遥控器的功能呢?从上面的介绍我们知道,基于无线射频技术的产品是能帮我们解决这些问题的,但他们是如何实现的呢? 智能家居无线网络主要包括了一个家庭网关以及若干个无线通讯子节点。在家庭网关上有一个无线发射模块,每个子节点上都接有一个无线网络接收模块,通过这些无线网络收发模块,数据就在网关和子节点之间进行传送。 1.家庭网关 家庭智能网关就是家庭的一个智能化控制中心,带有嵌入式处理器和Arm linux操作系统;具有可触摸的TFT液晶显示屏(5~10英寸);有14路报警点输入和2路报警控制输出,发生警情时可通过网络或电话报警;通过网关上的无线射频模块与网络中各子节点进行通讯,实现家电控制;内置了Web server,通过Web方式实现家电的远程控制。同时家庭网关还具有留影、留言、MP3\MP4播放功能,可方便主人进行温馨留言等。 2.无线射频无线通讯子节点

常用无线射频芯片

常用无线射频芯片集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

常用无线射频芯片目录 CC1000PWR 超低功率射频收发器 CC1010PAGR 射频收发器和微控制器 CC1020RSSR 射频收发器 CC1021RSSR 射频收发器 CC1050PWR 超低功率射频发送器 CC1070RSQR 射频发送器 CC1100RTKR 多通道射频收发器 CC1101RTKR 低于1GHz射频收发器 CC1110F16RSPR 射频收发片上系统 CC1110F32RSPR 射频收发片上系统 CC1110F8RSPR 射频收发片上系统 CC1111F16RSPR 射频收发片上系统 CC1111F32RSPR 射频收发片上系统 CC1111F8RSPR 射频收发片上系统 CC1150RSTR 多通道射频发送器 CC2400RSUR 多通道射频发送器 CC2420RTCR 射频收发器 CC2420ZRTCR 射频收发器 CC2430F128RTCR ZigBee芯片 CC2430ZF128RTCR ZigBee芯片 CC2431RTCR 无线传感器网络芯片 CC2431ZRTCR 无线传感器网络芯片 CC2480A1RTCR 处理器 CC2500RTKR 射频收发器 CC2510F16RSPR 无线电收发器 CC2510F32RSPR 无线电收发器 CC2510F8RSPR 无线电收发器 CC2511F16RSPR 无线电收发器 CC2511F32RSPR 无线电收发器 CC2511F8RSPR 无线电收发器 CC2520RHDR 射频收发器 CC2530F128RHAR 射频收发器 CC2530F256RHAR 射频收发器 CC2530F64RHAR 射频收发器 CC2550RSTR 发送器 CC2590RGVR 射频前端芯片 CC2591RGVR 射频前端芯片 CCZACC06A1RTCR ZigBee芯片 TRF7900APWR 27MHz双路接收器 TRF6900APT 射频收发器 TRF6901PTG4 射频收发器 TRF6901PTRG4 射频收发器

常用无线射频芯片[优质文档]

常用无线射频芯片目录 CC1000PWR 超低功率射频收发器 CC1010PAGR 射频收发器和微控制器 CC1020RSSR 射频收发器 CC1021RSSR 射频收发器 CC1050PWR 超低功率射频发送器 CC1070RSQR 射频发送器 CC1100RTKR 多通道射频收发器 CC1101RTKR 低于1GHz射频收发器 CC1110F16RSPR 射频收发片上系统 CC1110F32RSPR 射频收发片上系统 CC1110F8RSPR 射频收发片上系统 CC1111F16RSPR 射频收发片上系统 CC1111F32RSPR 射频收发片上系统 CC1111F8RSPR 射频收发片上系统 CC1150RSTR 多通道射频发送器 CC2400RSUR 多通道射频发送器 CC2420RTCR 2.4GHz射频收发器 CC2420ZRTCR 2.4GHz射频收发器 CC2430F128RTCR ZigBee?芯片 CC2430ZF128RTCR ZigBee?芯片 CC2431RTCR 无线传感器网络芯片 CC2431ZRTCR 无线传感器网络芯片 CC2480A1RTCR 2.4GHzZigBee处理器 CC2500RTKR 2.4GHz射频收发器? CC2510F16RSPR 2.4GHz无线电收发器 CC2510F32RSPR 2.4GHz无线电收发器 CC2510F8RSPR 2.4GHz无线电收发器 CC2511F16RSPR 2.4GHz无线电收发器 CC2511F32RSPR 2.4GHz无线电收发器 CC2511F8RSPR 2.4GHz无线电收发器 CC2520RHDR 射频收发器 CC2530F128RHAR 射频收发器 CC2530F256RHAR 射频收发器 CC2530F64RHAR 射频收发器 CC2550RSTR 2.4GHz发送器 CC2590RGVR 2.4GHz射频前端芯片 CC2591RGVR 2.4GHz射频前端芯片 CCZACC06A1RTCR 2.4GHZ ZigBee芯片 TRF7900APWR 27MHz双路接收器 TRF6900APT 射频收发器 TRF6901PTG4 射频收发器 TRF6901PTRG4 射频收发器

RFID无线射频识别系统

RFID无线射频识别系统 无线射频识别技术(Radio Frequency Identification,RFID),或称射频识别技术,是从二十世纪90年代兴起的一项非接触式自动识别技术。它是利用射频方式进行非接触双向通信,以达到自动识别目标对象并获取相关数据,具有精度高、适应环境能力强、抗干扰强、操作快捷等许多优点。例如在汽车发动机装配线上,无线射频识别技术作为一项基础性的技术得到了广泛的应用。在每一块发动机托盘上,都安装有无线射频识别数据码块,而在每一个生产工位上都安装有无线射频处理器和数据传输天线。当发动机缸体在上线工位上线时,上线系统会根据生产计如发动机的型号,序列号,缸体二维条形码等。当操作者确认后,控制系统会将这些数据信息通过RFID系统存入托盘上的数据码块中。而当本发动机运行到某个工位时,本工位的RFID系统首先读取托盘数据码块中的发动机信息,确认发动机的当前状态,从而决定本工位对发动机的操作。当发动机在本工位操作完成后,RFID系统还需要将本工位的相关操作信息存入托盘的数据码块,以便为后续工位及数据采集系统提供必须的信息支持。 Q-DAS系统 Q-DAS是一套质量数据统计方面的专业软件,其功能集中体现在对产品及生产过程相关质量信息进行记录,可视化,监控,分析和描述。其产品具有易用,灵活,分析能力强大等特点,被欧美很多汽车制造业广泛采用,在中国,上海通用,上海大众,一汽大众等整车厂家以及众多的汽车零部件厂家已引进了 Q-DAS的概念和技术。 动力总成装配线在很多情况也被要求使用Q-DAS系统来进行产品生产质量的管理和统计分析。装配线的控制系统作为底层设备的主控制器将是一个相对独立的系统,和Q-DAS系统的接口主要为:拧紧枪的拧紧数据,泄漏测试数据,扭矩测试工位测量数据,凸轮轴孔测量数据等。这些数据都要求传送到Q-DAS 系统进行存储,统计和分析。大多情况下动力总成装配线采用数据集中采集的方式,在每个工位不配备独立的电脑,全线只配置了一台电脑来采集数据。为了达到Q-DAS系统的要求,要满足三个必要条件:首先必须有一台Q-DAS服务器,服务器上安装有必须的Q-DAS软件及其组件。其次要求需要接入Q-DAS系统的设备如拧紧枪,泄漏测试等支持Q-DAS功能。最后需要搭建Q-DAS的以太网络,以满足数据传送的需要。

常用无线射频芯片

常用无线射频芯片集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

常用无线射频芯片目录CC1000PWR 超低功率射频收发器 CC1010PAGR 射频收发器和微控制器 CC1020RSSR 射频收发器 CC1021RSSR 射频收发器 CC1050PWR 超低功率射频发送器 CC1070RSQR 射频发送器 CC1100RTKR 多通道射频收发器 CC1101RTKR 低于1GHz射频收发器 CC1110F16RSPR 射频收发片上系统 CC1110F32RSPR 射频收发片上系统 CC1110F8RSPR 射频收发片上系统 CC1111F16RSPR 射频收发片上系统 CC1111F32RSPR 射频收发片上系统 CC1111F8RSPR 射频收发片上系统 CC1150RSTR 多通道射频发送器 CC2400RSUR 多通道射频发送器 CC2420RTCR 射频收发器 CC2420ZRTCR 射频收发器 CC2430F128RTCR ZigBee芯片 CC2430ZF128RTCR ZigBee芯片 CC2431RTCR 无线传感器网络芯片

CC2431ZRTCR 无线传感器网络芯片CC2480A1RTCR 处理器 CC2500RTKR 射频收发器 CC2510F16RSPR 无线电收发器 CC2510F32RSPR 无线电收发器 CC2510F8RSPR 无线电收发器 CC2511F16RSPR 无线电收发器 CC2511F32RSPR 无线电收发器 CC2511F8RSPR 无线电收发器 CC2520RHDR 射频收发器 CC2530F128RHAR 射频收发器 CC2530F256RHAR 射频收发器 CC2530F64RHAR 射频收发器 CC2550RSTR 发送器 CC2590RGVR 射频前端芯片 CC2591RGVR 射频前端芯片CCZACC06A1RTCR ZigBee芯片TRF7900APWR 27MHz双路接收器TRF6900APT 射频收发器 TRF6901PTG4 射频收发器 TRF6901PTRG4 射频收发器 TRF6903PTG4 射频收发器

无线、射频收发模块大全

无线收发模块大全 本文中着重通过几种实用的无线收发模块的剖析为你逐步揭开无线收发的原理,应用和结构,希望对你有所裨益! 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232 数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图 主要技术指标: 1。通讯方式:调幅AM 2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明) 3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA 6。发射电流:3~50MA 7。工作电压:DC 3~12V DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频

点不会发生偏移。 DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262等编码集成电路配接时,直接将它们的数据输出端第17脚接至DF数据模块的输入端即可。 DF数据模块具有较宽的工作电压范围3~12V,当电压变化时发射频率基本不变,和发射模块配套的接收模块无需任何调整就能稳定地接收。当发射电压为3V时,空旷地传输距离约20~50米,发射功率较小,当电压5V时约100~200米,当电压9V时约300~500米,当发射电压为12V时,为最佳工作电压,具有较好的发射效果,发射电流约60毫安,空旷地传输距离700~800米,发射功率约500毫瓦。当电压大于l2V时功耗增大,有效发射功率不再明显提高。这套模块的特点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。天线最好选用25厘米长的导线,远距离传输时最好能够竖立起来,因为无线电信号传输时收很多因素的影响,所以一般实用距离只有标称距离的20%甚至更少,这点需要在开发时注意考虑。 DF数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与DF发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则DF发射模块将不能正常工作。数据电平

你是否真的了解射频芯片

你是否真的了解射频芯片 一部可支持打电话、发短信、网络服务、APP应用的手机,通常包含五个部分:射频、基带、电源管理、外设、软件。 射频:一般是信息发送和接收的部分; 基带:一般是信息处理的部分; 电源管理:一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要;外设:一般包括LCD,键盘,机壳等; 软件:一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系?射频芯片和基带芯片的关系 射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。 所谓调制,就是把需要传输的信号,通过一定的规则调制到载波上面让后通过无线收发器(RF Transceiver)发送出去的工程,解调就是相反的过程。 工作原理与电路分析

无线射频识别(RFID)技术简介

无线射频识别(RFID)技术简介 本文介绍了无线射频识别(RFID)技术的工作原理、系统组成、发展史,给出了RFID自动识别术语解释以及RFID技术应用于各个领域所对应的频段及产品特点。 一、概述 RFID是射频识别技术的英文(Radio Frequency Identification)的缩写,射频识别技术是20世纪90年代开始兴起的一种自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。 无线射频识别技术(RFID)已经成为一个很热门的话题。据业内人士预测,RFID技术市场将在未来五年内在新的产品与服务上带来30至100亿美金的商机,随之而来的还有服务器、资料储存系统、资料库程序、商业管理软件、顾问服务,以及其他电脑基础建设的庞大需求。或许这些预测过于乐观,但RFID将会成为未来的一个巨大市场是毫无疑问的。许多高科技公司正在加紧开发RFID专用的软件和硬件,这些公司包括英特尔、微软、甲骨文、SAP和SUN,而最近全球最大的零售商沃尔玛的一项"要求其前100家供应商在2005年1月之前向其配送中心发送货盘和包装箱时使用RFID技术,2006年1月前在单件商品中使用这项技术"的决议,把RFID再次推到了聚光灯下。因此可以说无线射频识别技术(RFID)正在成为全球热门新科技。 二、射频识别技术发展历史 从信息传递的基本原理来说,射频识别技术在低频段基于变压器耦合模型(初级与次级之间的能量传递及信号传递),在高频段基于雷达探测目标的空间耦合模型(雷达发射电磁波信号碰到目标后携带目标信息返回雷达接收机)。1948年哈里斯托克曼发表的"利用反射功率的通信"奠定了射频识别射频识别技术的理论基础。 射频识别技术的发展可按十年期划分如下: 1940-1950年:雷达的改进和应用催生了射频识别技术,1948年奠定了射频识别技术的理论基础。 1950-1960年:早期射频识别技术的探索阶段,主要处于实验室实验研究。 1960-1970年:射频识别技术的理论得到了发展,开始了一些应用尝试。 1970-1980年:射频识别技术与产品研发处于一个大发展时期,各种射频识别技术测试得到加速。出现了一些最早的射频识别应用。 1980-1990年:射频识别技术及产品进入商业应用阶段,各种规模应用开始出现。 1990-2000年:射频识别技术标准化问题日趋得到重视,射频识别产品得到广泛采用,射频识别产品逐渐成为人们生活中的一部分。

容错控制系统

容错控制系统培训 2011年8月

3.1 容错控制系统 3.1.1 容错控制概述 容错原是计算机系统设计技术中的一个概念,指当系统在遭受到内部环节的局部故障或失效后,仍然可以继续正常运行的特性。将此概念引入到控制系统中,产生了容错控制的概念。 容错技术是指系统对故障的容忍技术,也就是指处于工作状态的系统中一个或多个关键部分发生故障时,能自动检测与诊断,并能采取相应措施保证系统维持其规定功能或保持其功能在可接受的范围内的技术。如果在执行器、传感器、元部件或分系统发生故障时,闭环控制系统仍然是稳定的,仍具有完成基本功能的能力,并仍然具有较理想的动态特性,就称此闭环控制系统为容错控制系统。 3.1.2 容错控制分类 根据不同的产品和客户需求,容错控制系统分类方式有多种,重点介绍两种: ?按设计分类:被动容错控制、主动容错控制; ?按实现分类:硬件容错、功能容错和软件容错。 3.1.2.1按设计分类的容错控制 1 被动容错控制介绍 被动容错控制是设计适当固定结构的控制器,该控制器除了考虑正常工作状态的参数值以外,还要考虑在故障情况下的参数值。被动容错控制是在故障发生前和发生后使用同样的控制策略,不进行调节。被动容错控制包括:同时镇定,完整性控制,鲁棒性容错控制,即可靠控制等几种类型。 2 主动容错控制介绍 主动容错控制是在故障发生后需要重新调整控制器参数,也可能改变控制器结构。主动容错控制包括:控制器重构,基于自适应控制的主动容错控制,智能容错控制器设计的方法。 3.1.2.2按实现分类的容错控制 1 硬件容错技术 容错控制系统中通常采用的余度技术,主要涉及硬件方面,是指对计算机、传感器和执行机构进行硬件备份,如图3所示。在系统的一个或多个关键部件失效时,通过监控系统检测及监控隔离故障元件,并采用完全相同的备用元件来替代它们以维持系统的性能不变或略有降级(但在允许范

相关文档