文档库 最新最全的文档下载
当前位置:文档库 › 四元数微分方程的推导

四元数微分方程的推导

四元数微分方程的推导
四元数微分方程的推导

四元数微分方程的推导

由于载体的运动,四元数Q 是变量,即0123,,,q q q q 是时间的函数。刚体绕瞬时转轴转过σ角,其角速度为:

.t

tb n ωσ--

=(式1)

设这个运载体坐标系(b 系)和地理坐标系(t 系)之间的变换四元数的三角形式为:

cos

sin

2

2

Q n σ

σ

-

=+(式2)

对式2求导可得:

.

.

11sin cos sin

22222dQ d n

n dt dt

σσσσσ-

-

=-?+?+(式3) 因为:

.0t tb d n n n n dt

ωσ-

----

=?=?=(式4) 1n n --

?=-(式5)

则有:

.

..

.

11sin cos 2222

(cos

sin )

2

22

Q n n

n σσσσ

σ

σ

σ

--

-

=-?+?=?+(式6)

将式1和式2代入式6得:

.

12

t

tb Q Q ω-=(式7)

由于捷联惯性导航系统的惯性器件是直接固联在运载体上的,所以陀螺测量得到的角速度是沿运载体坐标系的绝对角速度,因此应用式7不方便,需要进行进一步变换。

因为:

*t b tb tb Q Q ωω=(式8)

**1Q Q Q Q ?=?=(式9)

式中b tb ω是沿运载体的角速度. 将式8、9代入式7得:

.

1

2b tb Q Q ω-

=?(式10)

将式10写成矩阵形式为:

00123110322230133

2

1

00b x b

y

b z q q q q q q q q q q q q q q q q q q q q ωωω---??????

??????-??????=??????-??????-?

??????????? (式11) 00112233001020b b b x

y

z b b b x

z

y b b b y

z

x b b b z

y

x

q

q q q q q q q ωωωωωωωωωωωω??---????

??????-??????=??????-??????-???

????????? (式12) 式中,,,b b b x y z ωωω分别表示载体坐标系相对于地理坐标系沿各个轴向的角速度分量。

四元数

为什么使用四元数 为了回答这个问题,先来看看一般关于旋转(面向)的描述方法-欧拉描述法。它使用最简单的x,y,z值来分别表示在x,y,z轴上的旋转角度,其取值为0-360(或者0-2pi),一般使用roll,pitch,yaw来表示这些分量的旋转值。需要注意的是,这里的旋转是针对世界坐标系说的,这意味着第一次的旋转不会影响第二、三次的转轴,简单的说,三角度系统无法表现任意轴的旋转,只要一开始旋转,物体本身就失去了任意轴的自主性,这也就导致了万向轴锁(Gimbal Lock)的问题。 还有一种是轴角的描述方法(即我一直以为的四元数的表示法),这种方法比欧拉描述要好,它避免了Gimbal Lock,它使用一个3维向量表示转轴和一个角度分量表示绕此转轴的旋转角度,即(x,y,z,angle),一般表示为(x,y,z,w)或者(v,w)。但这种描述法却不适合插值。 那到底什么是Gimbal Lock呢?正如前面所说,因为欧拉描述中针对x,y,z的旋转描述是世界坐标系下的值,所以当任意一轴旋转90°的时候会导致该轴同其他轴重合,此时旋转被重合的轴可能没有任何效果,这就是Gimbal Lock,这里有个例子演示了Gimbal Lock,点击这里下载。运行这个例子,使用左右箭头改变yaw 为90°,此时不管是使用上下箭头还是Insert、Page Up键都无法改变Pitch,而都是改变了模型的roll。 那么轴、角的描述方法又有什么问题呢?虽然轴、角的描述解决了Gimbal Lock,但这样的描述方法会导致差值不平滑,差值结果可能跳跃,欧拉描述同样有这样的问题。 什么是四元数 四元数一般定义如下: q=w+xi+yj+zk 其中w是实数,x,y,z是虚数,其中: i*i=-1 j*j=-1 k*k=-1 也可以表示为: q=[w,v] 其中v=(x,y,z)是矢量,w是标量,虽然v是矢量,但不能简单的理解为3D空间的矢量,它是4维空间中的的矢量,也是非常不容易想像的。 四元数也是可以归一化的,并且只有单位化的四元数才用来描述旋转(面向),四元数的单位化与Vector

[J]基于四元数姿态确定的扩展卡尔曼滤波方法

20。4中国控制与决策学术年会论文集 Precedingsof2004a妊,螂fControland£k口n。力Conference 基于四元数姿态确定的扩展卡尔曼滤波方法 李金良,刘向东,张宇河,修春波 (北京理工大学自动控制系,北京]00081) 摘要:针对卫星机尉情况下姿寿碓定闸燕提出了一种扩展卡车曼媳敢方法,栗用陀螺忮、太阳敏麝器和红井地平戗作为测量元件.秉用姿态四元撤设计荽态估计嚣井建立更加准砖有兢的盏性误差方程.仿真结果表明,使用所提出的姿卷确定算法能较好地完威卫星婆奄确定的要采. 关键词:姿态四元敷;姿志.喃定;扩展÷尔曼蘸j置;卫星 AttitudedeterminationofextendedKalmanfilteringbasedonquaternion LIJin—liang,L见TXiang—dang,ZHANGYu—k.盖几.Chun—bo (DepartmentofAutomaticControl,&ij/ngInstituteofTechnology,Beijlng100081,China.Correspondem.LtJ1.一iiang,E—mail:ljliang@bit.edu.cn) Abstract:AnextendedKalmanfihermgtechniqueiorthelargeangularmaneuveringandnormalmodeat:itudedeternainadon。fEsatelliteispresentedbyusinggyrc,sunSexqsorsandinfraredhorizonscalaneTeo.TheattitudequatermonrepresentationisadaptedtOdesNnaDattitudeestimatorandintegrationlinearerrorequationsareeszahlished.Theresultsofchesimulationshowthalatutudedeterminationisaccuratelyachievedbyusmgtheattizudedeterminationalgorithm. r:≈words:attitudequaterinon;attitude deter叫nat】。n:ex『tendedKalma口ii]tering:satellite i引言 卫星姿态确定系统决定了卫星控制和指向精度.而姿态敏感器的测量精度和姿态确定算法直接影响确定系统的精度.在常规的确定系统中,通常采用陀螺作为基准元件测量连续的姿态角速度,使用太阳敏感器、红外地平仪或磁强计=耐量姿态位置.目前,已有很多姿态确定算法,诸如宜适应滤波、预测滤波、卡尔曼滤波、自适应卡尔曼滤渡、扩展卡尔曼滤波等,用于减小敏感器的测量误差和提高确定系统的测量精度.本文使用扩展卡尔曼滤波方法研究了太阳同步轨道卫星的姿态确定,该卫星采用了陀螺、太阳敏感器、红外地平仪构成的测量系统.为各敏感器建立了更加详细的姿态估计器.考虑在大姿态角度下Euler角描述容易引起奇异性,本文采用了四元数描述建立卫星运动学方程.仿真结果表明,该方法有效地提高了卫星的测量精度. 2姿态运动学方程 使用四元数q*=b。目,口:gaj7描述在星体坐标系相对于当地轨道坐标系的卫星姿态,它的矩阵可用四元数表示如下: T。(‰)= r2(酣+爵)一12(吼gl+口。舶)2(口妇1一g。g:)一 l2曲:q2一go吼)2(毹+一)一l2(口2吼+q。q1)| l2(目,目。+goq2)2(口z啦一口。口】)2(矗+一)一1J \▲,相应四元数描述的动力学方程为 1 j-一÷口。@A(nk), ● c‰=Ⅲ-一7乙(‰)吣.(2)式中:o表示四元数乘法,A(‰)一[o‰1]。,% 收稿日期:2003一lo-12. 作者简介:李金良(1§77一),男,北京人,硬±生,从事卫星姿志控制的研究 T = -T转置方向余弦矩阵的四元数表示

考研数学三(常微分方程与差分方程)-试卷4

考研数学三(常微分方程与差分方程)-试卷4 (总分:58.00,做题时间:90分钟) 一、选择题(总题数:3,分数:6.00) 1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数: 2.00) __________________________________________________________________________________________ 解析: 2.设函数y 1 (x),y 2 (x),y 3 (x)线性无关,而且都是非齐次线性方程(6.2)的解,C 1,C 2为任意常数,则该非齐次方程的通解是 (分数:2.00) A.C 1 y 1 +C 2 y 2 +y 3. B.C 1 y 1 +C 2 y 2 -(C 1 +C 2 )y 3. C.C 1 y 1 +C 2 y 2 -(1-C 1 -C 2 )y 3. D.C 1 y 1 +C 2 y 2 +(1-C 1 -C 2 )y 3.√ 解析:解析:对于选项(D)来说,其表达式可改写为 y 3 +C 1 (y 1 -y 3 )+C 2 (y 2 -y 3 ),而且y 3是非齐次方程(6.2)的一个特解,y 1 -y 3与y 2 -y 3是(6.4)的两个线性无关的解,由通解的结构可知它就是(6.2)的通解.故应选(D). 3.已知sin 2 x,cos 2 x是方程y""+P(x)y"+Q(x)y=0的解,C 1,C 2为任意常数,则该方程的通解不是(分数:2.00) A.C 1 sin 2 x+C 2 cos 2 x. B.C 1 +C 2 cos2x. C.C 1 sin 2 2x+C 2 tan 2 x.√ D.C 1 +C 2 cos 2 x. 解析:解析:容易验证sin 2 x与cos 2 x是线性无关的两个函数,从而依题设sin 2 x,cos 2 x为该方程的两个线性无关的解,故C 1 sin 2 x+C 2 cos 2 x为方程的通解.而(B),(D)中的解析式均可由C 1 sin 2 x+C 2 cos 2 x恒等变换得到,因此,由排除法,仅C 1 sin 2 2x+C 2 tan 2 x不能构成该方程的通解.事实上,sin 2 2x,tan 2 x都未必是方程的解,故选(C). 二、填空题(总题数:1,分数:2.00) 4.当y>0时的通解是y= 1. (分数:2.00) 填空项1:__________________ (正确答案:正确答案:[*]) 解析:解析:将原方程改写成,然后令y=ux,则y"=u+xu".代入后将会发现该变形计算量较大.于 是可转换思维方式,将原方程改写成分离变量,然后积分得 三、解答题(总题数:25,分数:50.00) 5.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00) __________________________________________________________________________________________ 解析: 6.求微分方程x(y 2 -1)dx+y(x 2 -1)dy=0的通解. (分数:2.00) __________________________________________________________________________________________ 正确答案:(正确答案:用(x 2 -1)(y 2 -1)除方程的两端,则原方程化为由此可见这是一个变量可

最新微分方程与差分方程

微分方程与差分方程

第八章微分方程与差分方程 一、作业题 1.?Skip Record If...? ?Skip Record If...? ?Skip Record If...?,?Skip Record If...?为任意常数 (2)?Skip Record If...? 设?Skip Record If...?,?Skip Record If...?,?Skip Record If...? (代入上式) ?Skip Record If...? ?Skip Record If...?,?Skip Record If...? ?Skip Record If...?,?Skip Record If...? (3)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? (4)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? 满足?Skip Record If...?的特解为?Skip Record If...? (5)设?Skip Record If...?代入(1)式中, ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?满足初始条件的特解为?Skip Record If...? (6)特征方程为?Skip Record If...?,解得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢70

习题详解-第10章微分方程与差分方程初步

习题10-1 1. 指出下列方程的阶数: (1)4620x y y x y '''''-+=. (2)2 2 d d 0d d Q Q Q L R t c t ++=. (3)2d cos d ρ ρθθ +=. (4)2()d 2d 0y x y x x y -+=. 解:(1)三阶(2)二阶(3)一阶(4)一阶 2. 验证下列给出的函数是否为相应方程的解: (1)2x y y '=, 2y Cx =. (2)2(+1)d d x y y x =, +1y x =. (3)20y y y '''++=, x y x e -=. (4)22d 0.4d s t =-, 2120.2s t c t c =-++. 解:(1)是,代入即可. (2)是,代入即可; (3)是,因为 ,2x x x x y e xe y e xe ----'''=-=-+,满足20y y y '''++=; (4)是,代入,2 12d d 0.4,0.4d d s s t C t t =-+=-,显然满足. 3. 验证:函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程 222d 0d x k x t += 的通解. 解:221212()sin cos ,()cos sin ,x t C k kt C k kt x t C k kt C k kt '''=-+=--满足2 22 d 0d x k x t +=,所以是解,又因为含有两个任意常数12,C C ,且方程是二阶的,故是通解. 4. 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程222d 0d x k x t +=的通解,求满足初始条件 x | t 2 x | t 的特解. 解:上题可知是微分方程通解,且12()sin cos ,x t C k kt C k kt '=-+代入初值条件0|02,|0t t x x ='===,得122,0C C ==,所以特解为2cos (0).x kt k =≠ 习题10-2 1. 求下列微分方程的通解: (1)()2 310y y x '++=; (2) 2 +'=x y y ; (3) d d sin xcos y y sin y cos x x =; (4) 2 d d d d x xy y y x y y +=+; (5) 22 d d d d y y y x xy x x +=; (6) d d y x y x x y -= +; (7) 22 d d y y x xy x =+; (8) )2(tan 21 2y x y +='. 解:(1)这是可分离变量方程,分离变量得 () 2 31d =d y y x x +- 两端分别积分:

基于四元数方法的姿态解算

基于四元数方法的姿态解算方法分析 摘要:载体的姿态解算算法是实现捷联式惯性导航系统精确导航的核心技术之一。分析了欧拉法、方向余弦法、四元数法求解姿态矩阵的优缺点,采用四元数法与方向余弦法两种解算方法分别计算载体姿态,两种方法的计算结果之差与理论真值比较以得到解算的相对误差,从而验证了四元数法的正确性和有效性。最后,指出提高采样频率和采用高阶计算算法能进一步减小姿态解算误差。数字化仿真与转台试验结果表明,本文提出的载体姿态解算法具有良好的实时性。 1引言 捷联惯导是一种自主式的导航方法。该方法将陀螺仪和加速度计直接安装在载体上,省掉机电式导航平台,利用计算机软件建立一个“数学平台”来代替机电平台实体[1]。由于其结构简单且抗干扰能力强,目前已成为航空航天、航海、机器人、智能交通等领域的研究热点之一。 姿态解算是捷联式惯性导航系统的关键技术,通过姿态矩阵可以得到载体的姿态和导航参数计算需要的数据,是捷联式惯导算法中的重要工作。载体的姿态和航向体现了载体坐标系与导航坐标系之间的方位关系,确定两个坐标系之间的方位关系需要借助矩阵法和力学中的刚体定点运动的位移定理。通过矩阵法推导方向余弦表,而刚体定点运动的位移定理表明,定点运动刚体的任何有限位移都可以绕过定点的某一轴经过一次转动来实现。目前描述动坐标相对参考坐标系方位关系的方法有多种,可简单地将其分为3类,即三参数法、四参数法和九参数法「1-2]。三参数法也叫欧拉角法,四参数法通常指四元数法,九参数法称作方向余弦法。欧拉角法由于不能用于全姿态飞行运载体上而难以广泛用于工程实践,且实时计算困难。方向余弦法避免了欧拉法的“奇点”现象,但方程的计算量大,工作效率低。随着飞行运载体导航控制系统的迅速发展和数字计算机在运动控制中的应用,控制系统要求导航计算环节能更加合理地描述载体的刚体空间运动,四元数法的研究得到了广泛重视。本文全面分析了3种解算方法的特点,通过对比四参法与九参法的计算结果以验证四元数法的正确性和有效性,基于数值仿真和转台实验相结合的分析方法得到进一步减少姿态解算误差的有效途径,为捷联式惯性导航技术的工程实践提供参考。(就是这部分内容需要程序解算,不会搞) 2姿态矩阵的计算方法 由于载体的姿态方位角速率较大,所以针对姿态矩阵的实时计算提出了更高的要求。通常假定捷联系统“数学平台”模拟地理坐标系,即导航坐标系;而确定载体的姿态矩阵即为研究载体坐标系(6)和导航坐标系(E)的空间转动关系,一般用载体坐标系相对导航坐标系的三次转动角确定,习惯上俯仰角和偏航角用B和必表示,滚转角用Y表示。目前主要的研究方法为:欧拉法、方向余弦法与四元数法。图1为捷联式惯性导航原理图。

4.2 理想流体的运动微分方程讲解

4.2 理想流体的运动微分方程 理想流体是指无粘性的且不可压缩流体,是一种假想的,不存在的流体。实际流体有粘性,粘性流体。 1. Enler 运动微分方程 H G 图 4-3 理想流体的作用力 取微六面体如图4-3所示;中心点为),,(z y x M ,M 处的压强为 ),,,(t z y x p 。作用在六面体的力有质量力z y x X d d d ρ,z y x Y d d d ρ,z y x Z d d d ρ;流体运动时的惯性力z y x d d d ρa ;由压强产生的表面力,在x 向分别为z y x x p p d d )d 21(??- 和z y x x p p d d )2 d (??+-。按牛顿第二定律不难列出x 向的力平衡方程如下: z y x a z y x x p p x x p p z y x X d d d d d )]2 d ()2d [(d d d x ρρ=??+-??-+ 列出y 、z 向力平衡方程。整理x 、y 、z 向力平衡方程(同除m z y x d d d d =ρ)如下

??? ? ? ? ???==??-==??-==??-t u a z p Z t u a y p Y t u a x p X d d 1d d 1d d 1z z y y x x ρρρ (4.2-1a) 上式也可简记为 t u a x p X d d 1i i i i ==??- ρ 3,2,1=i (4.2-1b) 式(4.2-1a)也可写成矢量形式 t p d d 1 u a G = =?- ρ (4.2-1c) 式中 Z Y X k j i G ++=为单位质量的体积力。 式(4.2-1a)便是理想流体的运动微分方程,是Euler 1755年推导出来的,故又称Euler 运动微分方程。 4.3 理想的流体运动方程的积分-Bernoulli 方程 Bernoulli 方程在工程流体力学基本理论中占有重要地位,其形式简单、意义明确,在工程中有着广泛应用。Bernoulli 方程是Euler 方程或葛罗米柯方程的积分形式。 一 运动微分方程在流线上的积分形式 在流线上取质点,不论是否定常运动,经过时间t d ,质点沿流线的微位移z y x d d d d k j i s ++=;s d 的分量,d ,d ,d z y x 可表示为 t u z t u y t u x d d ,d d ,d d z y x === (4.3-1) 对式(4.2-1a )的三式依次乘z y x d ,d ,d ,相加则有 )d d d (1d d d z z p y y p x x p z Z y Y x X ??+??+??- ++ρz t u y t u x t u d d d z y x ??+??+??= t u t u t u t u t u t u d d d z z y y x x ??+??+??= z z y y x x d d d u u u u u u ++= (4.3-2)

运动微分方程推导

以应力表示的黏性流体运动微分方程的推导 1. 黏性流体的内应力 黏性流体在运动时,表面力不仅有法向应力,还有切向应力,因此黏性流体的表面力不垂直于作用面。 如在任一点取一微小的正六面体,如图所示,作用在平面ABCD 上的力 有法向应力 xx p ,与切向应力xy τ和xz τ。应力符号的第一个字母表示作 用面的外法线方向,第二个脚标表示应力方向。 流体场内任一点的应力状况,即该点流体微团在任一方向的作用面上的应力,都可以用通过该点的三个相互垂直的作用面上的九个应力分量来表示。 2. 以应力表示的运动微分方程 在黏性流体中取一边长为dx,dy,dz 的长方体。各表面应力的方向如图所示。为清晰起见,其中两个面上的应力符号未标。各应力的值均为代数值,正直表示应力沿相应坐标系的正向,反之亦然。由于流体不能承受拉力,因此,

xx p yy p ,zz p 必为负值。 由牛顿第二定律,x 方向的运动微分方程为: Xdxdydz ρ+xx p dydz +[-(xx p - xx p x ??dy )dydz ]+ yx τdxdz +[-(yx τ- yx y τ??dy )dxdz ]+ zx τdxdy +[-(zx τ- zx z τ??dz )]x du dxdy dxdydz dt ρ= 等式两边分别除以 ρ,然后分别对x,y,z 求偏导,得到: 1 1 ( )zx x XX du P yx X X y z dt τρρ τ??+ + +=???? (1) 同理,在y 方向,由牛顿第三定律得:

[()][)][()] yy yy yy xy xy xy zy zy zy y Ydxdydz dxdz dy dxdz y dydz dx dydz x dxdy dz dxdy z dxdydz dt p p p du ρρττ τ ττ τ + +-- + ?+-- + ?+ +-- ?=??? 等式两边同时除以 ρ,然后分别对x,y,z 求偏导得: 1 1 ( )yy zy xy y Y y z x dt p du ρρ ττ+ ++ = ?????? (2)

微积分(B)常微分方程与差分方程 练习题

For personal use only in study and research; not for commercial use 2013-2014(2) 大学数学(B) 练习题 第六章 For personal use only in study and research; not for commercial use 一、选择题 1. 微分方程xy y 2='的通解为 ( ) A. C e y x +=2 ; B. 2 x Ce y =; For personal use only in study and research; not for commercial use C. 2 C x y e =; D. x Ce y =. 2. 函数221x c y c e +=是微分方程20y y y '''--=的 ( ) A. 通解; B. 特解; C. 不是解; D. 是解, 但既不是通解, 也不是特解. 3. 设线性无关的函数321,,y y y 都是二阶非齐次线性微分方程)()()(x f y x q y x p y =+'+''的解, 21,C C 是任意常数,则该方程的通解是 ( ) A. 32211y y C y C ++; B. 3212211)(y C C y C y C +-+; C. 3212211)1(y C C y C y C ---+; D. 3212211)1(y C C y C y C --++. 4. 微分方程22y x y y x += +'是 ( ) A. 可分离变量的微分方程; B. 齐次微分方程; C. 一阶线性齐次微分方程; D. 一阶线性非齐次微分方程. 二、填空题 1. 微分方程y y y x ln ='的通解是 . 2. 方程x y y sin 2='的奇解为_______________.

四元数的初步总结

四元数的初步总结 (一) 前一阵子,以前公司的一位同事向我请教一段计算机图形程序中的算法,其中涉及齐次坐标和四元数。齐次坐标问题到好讲解,但四元数方面以前所知几乎为零。正好我看到齐民友在《复分析,可视化方法》译后记中提到的一本书:《高观点下的初等数学》([德]克莱因著,以下简称《初等数学》)当中有一段讲到四元数,于是就细读了一遍,把这个专题的整理笔记写下来。 但是那本书里有很多结果依靠繁杂的机械运算,让人看了不知道这样的结果是怎么得出来的。因此我们这里用向量代数的观点重新审视四元数的一些结果,让四元数的特性看起来更直观,更自然。另外还有一些我认为重要的有关四元数引入的背景知识,例如数域的扩充问题的证明,那本书里只有一部分提示,这里也试着补全一些。 一、四元数引入的理论背景 将实数域扩充到复数域,并用复数来表示平面向量,用复数的加、乘运算表示平面向量的合成、伸缩和旋转变换,这些观念已经在中学课程中学过了。那么,很自然的问题就是,在三维,或更高维空间中是否也有复数的类似物?也就是说,像扩充实数那样,在复数域的基础上添加一个或几个新的元素,并且让它们跟原来的复数做加减乘除,是否就可以得到一个新的数集,并且其中的元素还可以像复数域那样做加、减、乘、除运算,并满足通常复数的那些运算律,包括加法和乘法的交换律与结合律、乘法对加法的分配律等待?更进一步,我们是否可以期望用这样的数来表示三维或更高维空间中的伸缩和旋转,就像用复数表示平面向量的伸缩旋转那样方便? 把问题说得明确一些,即是说,我们是否可以像得到复数域那样,在复数域中再添加一个新的元素(因 此也是在实数基础上添加两个元素和),得到一个类似于复数集合 ,这个集合中的元素当时就是普通的复数,当时就是普通的实数,并且通常数的加减乘除运算及其性质都可以在这个集合上保持,即满足: 1、对于任意两个数,它们的和是唯一确定的。 2、对于任意两个数,它们的积是唯一确定的。 3、存在一个数0,它具有性质:对于任意a,均有a+0=a。 4、对于每一个数a,均存在数x,适合等式a+x=0。 5、加法适合交换律:a+b=b+a。 6、加法适合结合律:(a+b)+c=a+(b+c)。 7、乘法适合交换律:a·b=b·a。 8、乘法适合结合律:(a·b)·c=a·(b·c)。 9、乘法对加法适合分配律:a (b+c)=ab+ac 和(a+b)c=ac+bc。 10、1 是乘法单位元,即仍然满足1·a=a·1=a 11、乘法有逆元,即对每个非零数a,存在唯一的数x,满足等式xa=ax=1。 历史上有很多数学家试图寻找过三维的复数,但后来证明这样的三维复数是不存在的。有关这个结论的证明,我没有查到更明确的版本,据《古今数学思想》中的一个理由,三维空间中的伸缩旋转变换需要四个变量来决定:两个变量决定轴的方向,一个变量决定旋转角度,一个变量决定伸缩比例。这样,只有三个变量的三维复数无法满足这样的要求。

常微分方程和差分方程解法归纳

常微分方程解法归纳 1. 一阶微分方程部分 ① 可分离变量方程(分离变量法) 如果一阶微分方程),(y x f dx dy =中的二元函数),(y x f 可表示为) ()(),(y h x g y x f =的形式,我们称)()(y h x g dx dy =为可分离变量的方程。 对于这类方程的求解我们首先将其分离变量为 dx x g y h dy )() (=的形式,再对此式两边积分得到 C dx x g y h dy +=??)()(从而解出)()(y h x g dx dy =的解,其中C 为任意常数。 具体例子可参考书本P10—P11的例题。 ②一阶线性齐次、非齐次方程(常数变易法) 如果一阶微分方程),(y x f dx dy =中的二元函数),(y x f 可表示为 y x P x Q y x f )()(),(-=的形式,我们称由此形成的微分方程)()(x Q y x P dx dy =+为一阶线 性微分方程,特别地,当0)(≡x Q 时我们称其为一阶线性齐次微分方程,否则为一阶线性非齐次微分方程。 对于这类方程的解法,我们首先考虑一阶线性齐次微分方程 0)(=+y x P dx dy ,这是可分离变量的方程,两边积分即可得到?=-dx x P Ce y )(,其中C 为任意常数。这也是一阶线性 非齐次微分方程的特殊情况,两者的解存在着对应关系,设)(x C 来替换C ,于是一阶线性 非齐次微分方程存在着形如?=-dx x P e x C y )()(的解。将其代入)()(x Q y x P dx dy =+我们就可 得到)()()()()()()()()(x Q e x C x P e x C x P e x C dx x P dx x P dx x P =?+?-?'---这其实也就是 ? ='dx x P e x Q x C )()()(,再对其两边积分得C dx e x Q x C dx x P +? =? )()()(,于是将其回代入 ? =-dx x P e x C y )()(即得一阶线性微分方程)()(x Q y x P dx dy =+的通解? ? ? ??+??=?-C dx e x Q e y dx x P dx x P )()()(。 具体例子可参照书本P16—P17的例题。

第10章 微分方程与差分方程

第十章 微分方程与差分方程 A 级自测题 一、选择题(每小题5分,共20分) 1.下列方程中为可分离变量方程的是( ). A .xy y e '=. B .x xy y e '+=. C .22()()0x xy dx y x y dy +++=. D .0yy y x '+-=. 2.下列方程中为可降阶的方程是( ). A .1y xy y '''++=. B .2()5yy y '''+=. C .x y xe y ''=+. D .2(1)(1)x y x y ''-=+. 3.若连续函数()f x 满足关系式30()()ln 33 x t f x f dt =+?,则()f x 等于( ). A .ln 3x e . B .3ln 3x e . C .ln 3x e +. D .3ln 3x e +. 4.函数28x x y A =?+是差分方程( )的通解. A .21320x x x y y y ++-+=. B .12320x x x y y y ---+=. C .128x x y y +-=-. D .128x x y y +-=. 二、填空题(每小题5分,共20分) 1.微分方程2sin d d ρρθθ +=的阶数为 . 2.一阶线性微分方程()()y g x y f x '+=的通解为_________. 3.微分方程0y y e '+=满足初始条件(1)0y =的特解为_________. 4.差分方程12x x y y +-=的通解为 . 三、求下列微分方程的通解(每小题5分,共40分) 1.240ydx x dy dy +-=; 2.()220x y dx xydy +-=;

四元数与欧拉角之间的转换

四元数与欧拉角之间的转换 在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点。本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系: 图1 3D Cartesian coordinate System (from wikipedia) 定义分别为绕Z轴、Y轴、X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw、Pitch、Roll。 图2 Tait-Bryan angles (from wikipedia) 一、四元数的定义 通过旋转轴和绕该轴旋转的角度可以构造一个四元数:

其中是绕旋转轴旋转的角度,为旋转轴在x,y,z方向的分量(由此确定了旋转轴)。 二、欧拉角到四元数的转换 三、四元数到欧拉角的转换 arctan和arcsin的结果是,这并不能覆盖所有朝向(对于角的取值范围已经满足),因此需要用atan2来代替arctan。 四、在其他坐标系下使用 在其他坐标系下,需根据坐标轴的定义,调整一下以上公式。如在Direct3D中,笛卡尔坐标系的X轴变为Z轴,Y轴变为X轴,Z轴变为Y轴(无需考虑方向)。

五、示例代码 https://www.wendangku.net/doc/2d18406887.html,/Files/heath/Euler2Quaternion.rar Demo渲染两个模型,左边使用欧拉角,右边使用四元数,方向键Up、Left、Right旋转模型。 参考文献: [1] https://www.wendangku.net/doc/2d18406887.html,/wiki/Conversion_between_quaternions_and _Euler_angles [2] Ken Shoemake, Animating Rotation with Quaternion Curves, 1985

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

四元数法

四元数是哈密顿于1843年建立的数学概念,但只有在近四十年中才在刚体运动学中得到实际应用。四元数是由1个实数单位1和3 个虚数单位i ,j ,k 组 成的包含4个实元的超复数。若将i ,j ,k 视为基矢量,则可以把四元数分为标量和矢量两部分组成。其形式为: 01230Q q q i q j q k q q =+++=+ (2-22) 且22 2 2 01231q q q q +++=,其中0 q 为标量,q 为矢量。 引入四元数后,则方向余弦矩阵可由四元数表示为 ()() ()()()() 2222 1032120313022 2 2 2 1203012323012222130223010123222222e i q q q q q q q q q q q q C q q q q q q q q q q q q q q q q q q q q q q q q ?? +--+-? ? =--+-+???? +---+? ? (2-23) 由(2-12),我们可得 ????? ????????????? ????????------= ? ??? ?? ??????3 2 1 3210000021q q q q q q q q x y z x z y y z x z y x ω ω ωωω ωωω ωωω ω (2-24) 利用毕卡逼近法求解可得: ()() ()* 1 2 0M d t q t e q t ω?= (2-25) 令: []() *0 000x y z x z y y z x z y x M d t θθθθθθθωθθθθθ θ -?-?-???? ???-?? ??==?? ?-??? ???-??? ? ? ? (2-26) (2-25)可简写为: ()[] ()1 20q t e q θ?= (2-27) 将[] 1 2 e θ?展开可得: ()[][][][]() 2 3 1111022!23!2!2n q t I q n θθθθ???????? ?????=+?+++++ ? ? ??????????? (2-28) 由于:

质点运动微分方程

第3篇 动力学 第10章 质点运动微分方程 一、目的要求 1.对质点动力学的基本概念(如惯性、质量等)和动力学基本定律要在物理课程的基础上进一步理解其实质。 2.深刻理解力和加速度的关系,能正确地建立质点的运动微分方程,掌握质点动力学第一类基本问题的解法。 3.掌握质点动力学第二类基本问题的解法,特别是当作用力分别为常力、时间函数、位置函数和速度函数时,质点直线运动微分方程的积分求解方法。对运动的初始条件的力学意义及其在确定质点运动中的作用有清晰的认识,并会根据题目的已知条件正确提出运动的初始条件。 二、基本内容 1.基本概念: 动力学的基本定律,质点的运动微分方程;质点动力学的两类基本问题。 2.主要公式: (1)牛顿第二定律:a m F =(式中,质点的质量为m ,所受合力为F ,其加速度为a 。) (2)质点运动微分方程 1)矢径形式:22dt r d m F =或F r m =,∑=i F F 2)直角坐标形式:∑=x F dt x d m 22,∑=y F dt y d m 22,∑=z F dt z d m 22 3)自然坐标形式:2n m F υρ=∑,d m F dt τυ =∑,∑ = b F 0 强调:动力学基本定律仅在惯性参考系中成立,因此,公式中的速度、加速度指的是绝对速度和绝对加速度。 三、重点和难点 1.重点: (1)建立质点运动微分方程。 (2)求解质点动力学的两类基本问题。 2.难点: 在质点动力学第二类问题中,根据题目所要求的问题对质点运动微分方程进行变量交换后再积分的方法。 四、教学提示 1.建议 (1)在复习物理课程有关内容的基础上,进一步理解动力学各定律的实质,了解古典力学的适用范围。 (2)复习和运用静力学中的合力投影定理与点的运动学知识,学习如何建立不同形式的质点运动微分方程。 (3)注意区分质点动力学的两类基本问题及其解题特点,归纳动力学问题的解题步骤。 2.建议学时 课内(2学时)课外(3学时) 3.作业 10-5,10-12,10-14

微分方程与差分方程 详解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点内容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+? ? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

偏振光学的四元数方法_丁光涛

第33卷 第7期光 学 学 报 Vol.33,No.7 2013年7月 ACTA OPTICA  SINICA July ,2013偏振光学的四元数方法 丁光涛 (安徽师范大学物理与电子信息学院,安徽芜湖241000 )摘要 在偏振光学中系统地引入四元数方法。分别给出了在Poincare球和斯托克斯参数基础上建立的偏振光四元数表示,并证明这两种表示是等价的。讨论了偏振光四元数表示的多样性。导出了偏振器件和系统的四元数表示。利用四元数表示证明了偏振系统的等效定理, 导出了等价简化系统的组成和四元数表示。提出了偏振系统的四元数矩阵计算方法,得到了四元数表示和Mueller矩阵之间的变换关系。讨论了根据四元数矩阵乘法有条件的交换性优化偏振系统的四元数矩阵算法的途径,并指出了这种算法的应用前景。关键词 物理光学;四元数;偏振光;偏振器件;斯托克斯参数 中图分类号 O436.3 文献标识码 A doi:10.3788/AOS201333.0726001 Q uaternion Method in Polarization OpticsDing  Guangtao(College of Physics and Electronic Information,Anhui Normal University,Wuhu,Anhui 241000,China)Abstract The quaternion method is introduced into the polarization optics systematically.Two quaternionrepresentations of polarized light are presented which are based on the Poincare sphere rep resentation and theStokes parameters,respectively,and their equivalence relation is proved.The diversity of the quaternionrepresentations of the polarized light is discussed.The quaternion representations of polarizing  devices andsystems are obtained.By using the quaternion representation,the equivalent theorem of polarizing system isp roved,and the composition and the quaternion representations of the reduced equivalent system are deduced.The quaternion matrix calculation method for polarizing systems is presented,and the transform relations betweenthe quaternion rep resentations and the Mueller matrixes are obtained.Based on the conditional commutative lowof the quaternion matrix multiplication,the optimization way of the quaternion matrix calculation method arediscussed,and the application prospects of the algorithm are p ointed.Key words physical optics;quaternion;polarized light;polarizing devices;Stokes parametersOCIS codes 2 60.0260;260.5430;000.3860 收稿日期:2013-01-05;收到修改稿日期:2013-03- 08作者简介:丁光涛(1941—),男,教授,主要从事经典力学、理论物理方面的研究。E-mail:dg t695@sina.com1 引 言 1843年哈密顿提出了四元数概念, 以推广平面问题中的复数方法来解决三维空间中的问题。早期在刚体运动学、结晶学中四元数得到简单应用,也曾应用于初期电磁理论。近几十年来, 在现代物理学的许多学科,如经典力学、相对论、量子理论、电磁理论和引力理论等,四元数形式的理论一直在发展中。由于同一个物理理论可以有多种表述形式,不同的表述可能具有不同的优点和特点,这些四元数物理理论在传统领域中与其他数学形式的理论是等价的。但是,有些四元数理论在突破传统领域后却能 够得到不同的结果[ 1-7 ],因此,研究四元数物理理论是有一定理论意义的。另一方面,由于20世纪中叶以来现代科学技术,如现代控制理论、计算机科学、高速交通工具、复杂机械制造等工业技术的发展,使得四元数在许多领域,特别是航天技术和机器人制 造等领域中应用越来越广[ 7-8 ]。但是在光学学科以及相关的技术中,四元数并没有得到重视和应用。以偏振光学为例,光的偏振态的表示,偏振器件功能的描述, 偏振系统参数的计算,有多种不同的方法[9] ,曾经有人利用四元数作为分析和计算偏振光的辅助方法[ 10-11 ]。在试图将四元数引入到光学领域0726001- 1

相关文档
相关文档 最新文档