文档库 最新最全的文档下载
当前位置:文档库 › 耦合、旁路、滤波电容作用

耦合、旁路、滤波电容作用

耦合、旁路、滤波电容作用
耦合、旁路、滤波电容作用

电容耦合的作用是将交流信号从前一级传到下一级。当然,耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级的工作点的调整复杂,相互牵连。为了不使后一级的工作点不受前一级的影响,就必须在直流方面把前一级和后一级分开。同时,又能使交流信号顺利的从前一级传给后一级,同时能完成这一任务的方法就是采用电容传输或变压器传输来实现。它们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成份要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或强信号的传输,常用变压器作耦合元件。

滤波电容、去耦电容、旁路电容作用

滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.关于去耦电容蓄能作用的理解

1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。

而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,

这时候,水不是直接来自于水库,那样距离太远了,

等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,

而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,

阻抗Z=i*wL+R,线路的电感影响也会非常大,

会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一

(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。)

2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地

2.旁路电容和去耦电容的区别

去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。

旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。

我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。

在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象

交叉耦合带通滤波器

交叉耦合带通滤波器集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

大学 课程设计任务书 注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。

指导教师签名:日期:

9 0 2 3 4 5 5 7

前言 微波滤波器是微波系统中重要元件之一,它用来分离或者组合各种不同频率信号的重要元件。在微波中继通信、卫信通信、雷达技术、电子对抗及微波测量中,具有广泛的应用。? 众所周知,滤波器的设计在低频电路中是用集总参数元件(电感L 和电容C)构成的谐振回路来实现。但当频率高达300Mhz以上时,低频下的集总参数的LC谐振回路已不再适用了。这一方面由于当回路的线性尺寸和电磁波的波长可以比拟时,辐射相当显着,谐振回路的品质因数大大下降,因而必须采用分布参数的微波滤波器。?任何一个微波系统都是由各种各样的微波器件、有源电路和传输线等组成的。微波元件种类很多。按传输线类型可分为波导式、同轴式和微带式等;按功能可分为连接元件、终端元件、匹配元件、衰减元件、相移元件、分路元件、波型变换元件、滤波元件等;按变换性质可分为互易元件、非互易元件和非线性元件等。 本文正是根据微波滤波器的特性设计一种微带交叉耦合带通滤波器,要求其小型化、频段规则性高、边缘陡峭,可用于小型化天线系统。 摘要: 交叉耦合滤波器具有高选择性、低插入损耗、宽阻带、高的带外截止特性等,已被广泛应用于现代微波通信系统中,本文拟采用高品质谐振腔交叉耦合的形式实现该带通滤波器,结构简单紧凑,通带陡度较

实验一交叉耦合滤波器设计与仿真

实验一交叉耦合滤波器设计与仿真 、实验目的 1?设计一个交叉耦合滤波器 2?查看并分析该交叉耦合滤波器的S参数 、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点 是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与 负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,el表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik(k=1,2,3,, ,N) 表示各谐振腔的回路电流,Mj表示第i个谐振腔与第k个谐振腔之间的互耦合系数 (i,j=1,2, , ,N,且片j)。在这里取3 0=1,即各谐振回路的电感L和电容C均取单位值。Mkk (k=1,2,3,, ,N )表示各谐振腔的自耦合系数。 n腔交叉耦合带通滤波器等效电路如下图所示: l i 1H 丄F J 1F L丨「IVI N4r 1F y1 ---- 广、'、、L f A 1 1M1k t 1M kN *'i M2N人 M 1,N _ej■'s jM 12jM 13 0jM12s jM23 0=jM13a jM23s9 0jM1,N 一jM2,N U jM3,N — ■0 一1 1jM 1 N jM 2 N jM 3N jM 1, N J jM 1 N jM 2,N -1 jM 2 N jM 3,N -4jM 3n jM N —, N i N -1 jM N -1, N s R2 JL|N M R i e i k,N 1 1/2H 'N1/2H 1H 1/2H i21/2H ■■-R2 这个电路的回路方程可以写为 〕「h 1 I i2 i3

实验二 源-负载耦合的交叉耦合滤波器设计与仿真

实验二源-负载耦合的交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个源-负载耦合的交叉耦合滤波器 2.查看并分析该源-负载耦合的交叉耦合滤波器的S 参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 交叉耦合滤波器在非相邻谐振腔之间引入了交叉耦合,以得到有限频率传输零点,从而提高了滤波器的选择特性。一般来讲,一个N 腔交叉耦合滤波器最多能实现N-2个传输零点。对于给定的一种含有N 个谐振器的滤波器,如果在源与负载之间也引入耦合,则可实现N 个传输零点。源-负载耦合的交叉耦合滤波器等效电路模型如图所示。 e R 2 在上图所示的等效电路模型中,ij M 表示各个谐振腔之间的耦合系数,Si M 、L i M 分别表示源、负载与第i 个腔之间的耦合系数。SL M 则表示源与负载之间的耦合系数。整个电路由N 个谐振腔构成,各个谐振腔之间是电感耦合。对于窄带滤波器,做如下规一化: 110=?=ωω, 这里0ω为中心频率,ω?为相对带宽。 回路矩阵方程为: R)I M (sU I Z E 0++=?=j 其中,0U 是将(N+2)×(N+2)阶单位矩阵中第一个元素和最后一个元素令为0,其它元素都保持不变所得的矩阵。M 是耦合矩阵,是一个(N+2)×(N+2)阶方阵,其中对角线上的元素代表每一个谐振腔的自耦合,它表示每一个谐振腔的谐振频率i f 与滤波器的中心频率 o f 之间的偏差。(在同步调谐滤波器中,我们认为每个谐振腔的自耦合系数的值都取零)。 矩阵中非对角线上的元素表示各个谐振腔之间的耦合系数。 R 矩阵是(N+2)×(N+2)阶方阵,除21)2,2(,)1,1(R N N R =++=R R 非零以外,其它

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为

实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真 一、 实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S 参数 二、 实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、 实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示: ...1F 1/2H 1/2H 1/2H 1/2H 1/2H 1/2H 1H 1F 1F 1F ...i 1 i 2 i k i N i N M N ,1M k 1M kN M N 1 ,2-M 12 M k 2M N k 1 ,-M N N ,1-e 1 R 1 R 2 1F 1H 这个电路的回路方程可以写为 ?? ? ??? ? ?? ? ???????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j

上下拉电阻耦合电容注意点

上拉电阻,下拉电阻,耦合电容,退耦电容的总结(ZT) 上拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,才能使用。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。功耗??? 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑 以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理 对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素: 1.驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,???

但功耗越大,设计是应注意两者之间的均衡。 2.下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。 3.高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。 4.频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。 下拉电阻的设定的原则和上拉电阻是一样的。 OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。 选上拉电阻时: 500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。当输出高电平时,忽略管子的漏电流,两输入口需200uA 200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。选10K可用。COMS门的可参考74HC系列 设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)

甚么是耦合耦合电容

耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。 退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的 影响。耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。 退耦有三个目的:1.将电源中的高频纹波去除,将多级放大器的高频信号通过 电源相互串扰的通路切断;2.大信号工作时,电路对电源需求加大,引起电源 波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响;3.形成 悬浮地或是悬浮电源,在复杂的系统中完成各部分地线或是电源的协调匹配。 1,耦合,有联系的意思。 2,耦合元件,尤其是指使输入输出产生联系的元件。 3,去耦合元件,指消除信号联系的元件。 4,去耦合电容简称去耦电容。 5,例如,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降 反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如 果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻 抗(这需要计算)这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。 有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功 能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和 将噪声引导到地。 摘引自伦德全《电路板级的电磁兼容设计》一文,该论文对噪声耦和路径、去 耦电容和旁路电容的使用都讲得不错。请参阅。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

实验一 交叉耦合滤波器设计与仿真

实验一交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S 参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示: e R 2 这个电路的回路方程可以写为 ?? ? ??? ? ??? ????????? ??????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,323 1321,22312 11,11312110000 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j

交叉耦合带通滤波器

大学 课程设计任务书 序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 指导教师签名:日期:

前言 (1) 一、背景知识 (2) 1、滤波器的发展 (2) 2、微波滤波器的应用 (2) 3、交叉耦合滤波器提出与发展 (3) 二、交叉耦合带通滤波器设计原理 (4) 1、交叉耦合滤波器的设计思路 (4) 2、新型耦合开环结构 (5) 3、交叉耦合滤波器的设计 (6) 三、仿真步骤 (9) 1、建立新工程 (9) 2、设置求解类型 (9) 3. 设置模型单位 (10) 4、建立滤波器模型 (10) 5、创建端口 (19) 6、创建Air (20) 7、设置边界条件 (20) 8、为该问题设置求解频率及扫频范围 (22) 9、优化仿真 (23) 10、保存工程 (24) 11、后处理操作 (25) 四、设计总结 (25) 参考文献 (27)

前言 微波滤波器是微波系统中重要元件之一,它用来分离或者组合各种不同频率信号的重要元件。在微波中继通信、卫信通信、雷达技术、电子对抗及微波测量中,具有广泛的应用。? 众所周知,滤波器的设计在低频电路中是用集总参数元件(电感L和电容C)构成的谐振回路来实现。但当频率高达300Mhz以上时,低频下的集总参数的LC谐振回路已不再适用了。这一方面由于当回路的线性尺寸和电磁波的波长可以比拟时,辐射相当显着,谐振回路的品质因数大大下降,因而必须采用分布参数的微波滤波器。?任何一个微波系统都是由各种各样的微波器件、有源电路和传输线等组成的。微波元件种类很多。按传输线类型可分为波导式、同轴式和微带式等;按功能可分为连接元件、终端元件、匹配元件、衰减元件、相移元件、分路元件、波型变换元件、滤波元件等;按变换性质可分为互易元件、非互易元件和非线性元件等。 本文正是根据微波滤波器的特性设计一种微带交叉耦合带通滤波器,要求其小型化、频段规则性高、边缘陡峭,可用于小型化天线系统。 摘要: 交叉耦合滤波器具有高选择性、低插入损耗、宽阻带、高的带外截止特性等,已被广泛应用于现代微波通信系统中,本文拟采用高品质谐振腔交叉耦合的形式实现该带通滤波器,结构简单紧凑,通带陡度较高,适合小型化设计,性能较高的天线或雷达双工器等电路使用。 关键词: 交叉耦合滤波器、微带线、设计、HFSS 一、背景知识 1、滤波器的发展 凡是有能力进行信号处理的装置都可以称为滤波器。在近代电信设备和各

耦合电容作用

请注意在开关电源的设计中,输入电容和输出电容常常包括两类电容,分别起不同的作用。一类起减小输入输出纹波的作用,一般容值较大,容值的选取与纹波的要求以及电源的开关频率和设计有关。另一类电容是高频耦和电容,一般容值较小,要求尽可能靠近芯片。其容值的选取与要滤除的可能干扰信号的频率和幅度有关。 去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容值是0.1μF。这个电容的分布电感的典型值是5μH。0.1μF的去耦电容有5μH 的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0 .1μF,100MHz取0.01μF。 去耦和旁路都可以看作滤波。正如ppxp所说,去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。去耦电容一般都很大,对更高频率的噪声,基本无效。旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。电容一般都可以看成一个RLC串联模型。在某个频率,会发生谐振,此时电容的阻抗就等于其ESR。如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线。具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容。 从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容" style="color: blue; text-decoration: underline" href="https://www.wendangku.net/doc/2a18414047.html,/word/112155.aspx">耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

同轴腔结构交叉耦合滤波器的设计

同轴腔结构交叉耦合滤波器的设计 摘要:现代微波通讯的迅速发展,对通道的选择性要求越来越高,不仅需要滤波器的过渡带尽可能窄,还可能需要产生非对称的频率响应,这就需要高性能的选频器件。传统滤波器如Butterworth和Chebyshev滤波器只有依靠增加滤波器的阶数才能满足要求,加工出来的滤波器重量和体积都非常大,不适合现代通讯的需求。椭圆函数滤波器虽然具有很好的选择性,但不能产生非对称的频率响应。广义Chebyshev函数滤波器能通过引入交叉耦合在有限频率处产生传输零点而不用增加滤波器阶数来提高通道的选择性,并且它的任意零点特性能产生非对称的频率响应,相当于把滤波器的阻带抑制能力都集中在所需要的一侧,从而可以用较少阶数的滤波器来实现很高的选择性,因此与传统滤波器相比,体积小、成本低且通道选择性更好,从而可以减小系统的体积和重量,满足现代通信的需求。 同轴腔滤波器通过在谐振腔之间开窗口或加探针,实现电感或电容耦合,通过改变窗口的位置、大小或者探针的粗细、长短等来控制耦合电感或电容的强弱以实现窄带滤波器;而且很容易实现谐振器之间的交叉耦合,通过控制交叉耦合的数量和强弱得以实现传输零点的位置和数目。在有电容加载的情况下,同轴腔滤波器具有小型化的优势,并且具有带宽窄、矩形系数高、功率容量高等优点,所以其应用前景非常广泛,是国内外广泛研究的热点。 总之, 同轴腔广义Chebyshev滤波器具有体积小、带宽窄、矩形系数高、功率容量高等优点, 是国内外广泛研究的热点。 本文主要论述运用广义切比雪夫滤波函数综合交叉耦合滤波器,并在HFSS中设计出了带有传输零点的四腔同轴腔滤波器。交叉耦合滤波器的综合设计从给定的滤波器参数(中心频率,带宽,带内的回波损耗,归一化端口阻抗等)开始,首先得出广义切比雪夫函数滤波器的反射系数和传输系数递推关系式,根据理论响应的表示关系式提取出描述各谐振腔耦合关系的耦合矩阵以及源与负载端的加载Q值;然后利用耦合谐振器电路理论在实际的微波电路结构中实现耦合矩阵中可实现的耦合系数和源与负载端的加载Q值。最终的仿真结果说明了这种方法的可行性和实用性。 关键词:广义Chebyshev函数交叉耦合同轴腔滤波器HFSS 耦合矩阵 Design Of Cross-coupled Coaxial Cavity Filter

耦合电容、滤波电容、去耦电容、旁路电容

耦合电容器主要的作用是隔离直流信号。电容的阻抗和信号的频率成反比,信号的频率越高,衰减越小。理论上,对于直流信号的阻抗是无穷大。很多场合需要放大的是交流信号,所以,会用耦合电容去掉信号中的直流部分。 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下, 阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。 而去耦电容可以弥补此不足。这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一 (在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。) 2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地 2.旁路电容和去耦电容的区别 去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量 。去耦电容还可以为器件提供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。 我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用: 一是作为本集成电路的蓄能电容; 二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路; 三是防止电源携带的噪声对电路构成干扰。 在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。 去耦 在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。

交叉耦合带通滤波器

大学 课程设计任务书 注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 指导教师签名:日期:

前言 (1) 一、背景知识 (2) 1、滤波器的发展 (2) 2、微波滤波器的应用 (2) 3、交叉耦合滤波器提出与发展 (3) 二、交叉耦合带通滤波器设计原理 (4) 1、交叉耦合滤波器的设计思路 (4) 2、新型耦合开环结构 (5) 3、交叉耦合滤波器的设计 (6) 三、仿真步骤 (9) 1、建立新工程 (9) 2、设置求解类型 (9) 3. 设置模型单位 (10) 4、建立滤波器模型 (10) 5、创建端口 (19) 6、创建Air (20) 7、设置边界条件 (20) 8、为该问题设置求解频率及扫频范围 (22) 9、优化仿真 (23) 10、保存工程 (24) 11、后处理操作 (25) 四、设计总结 (25) 参考文献 (27)

前言 微波滤波器是微波系统中重要元件之一,它用来分离或者组合各种不同频率信号的重要元件。在微波中继通信、卫信通信、雷达技术、电子对抗及微波测量中,具有广泛的应用。 众所周知,滤波器的设计在低频电路中是用集总参数元件(电感L和电容C)构成的谐振回路来实现。但当频率高达300Mhz以上时,低频下的集总参数的LC谐振回路已不再适用了。这一方面由于当回路的线性尺寸和电磁波的波长可以比拟时,辐射相当显著,谐振回路的品质因数大大下降,因而必须采用分布参数的微波滤波器。任何一个微波系统都是由各种各样的微波器件、有源电路和传输线等组成的。微波元件种类很多。按传输线类型可分为波导式、同轴式和微带式等;按功能可分为连接元件、终端元件、匹配元件、衰减元件、相移元件、分路元件、波型变换元件、滤波元件等;按变换性质可分为互易元件、非互易元件和非线性元件等。 本文正是根据微波滤波器的特性设计一种微带交叉耦合带通滤波器,要求其小型化、频段规则性高、边缘陡峭,可用于小型化天线系统。 摘要: 交叉耦合滤波器具有高选择性、低插入损耗、宽阻带、高的带外截止特性等,已被广泛应用于现代微波通信系统中,本文拟采用高品质谐振腔交叉耦合的形式实现该带通滤波器,结构简单紧凑,通带陡度较高,适合小型化设计,性能较高的天线或雷达双工器等电路使用。 关键词: 交叉耦合滤波器、微带线、设计、HFSS

旁路电容和耦合电容详解讲解

关于旁路电容和耦合电容精讲从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合. 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰. 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定. 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源.这应该是他们的本质区别. 去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF. 分布电容是指由非形态电容形成的一种分布参数.一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容.这种电容的容量很小,但可能对电路形成一定的影响.在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候.也成为寄生电容,制造时一定会产生,只是大小的问题.布高速PCB时,过孔可以减少板层电容,但会增加电感. 分布电感是指在频率提高时,因导体自感而造成的阻抗增加.

实验二 源-负载耦合的交叉耦合滤波器设计与仿真

实验二 源-负载耦合的交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个源-负载耦合的交叉耦合滤波器 2.查看并分析该源-负载耦合的交叉耦合滤波器的S 参数 二、实验设备 装有HFSS 软件的笔记本电脑一台 三、实验原理 交叉耦合滤波器在非相邻谐振腔之间引入了交叉耦合,以得到有限频率传输零点,从而提高了滤波器的选择特性。一般来讲,一个N 腔交叉耦合滤波器最多能实现N-2个传输零点。对于给定的一种含有N 个谐振器的滤波器,如果在源与负载之间也引入耦合,则可实现N 个传输零点。源-负载耦合的交叉耦合滤波器等效电路模型如图所示。 e R 2 在上图所示的等效电路模型中,ij M 表示各个谐振腔之间的耦合系数,Si M 、L i M 分别表示源、负载与第i 个腔之间的耦合系数。SL M 则表示源与负载之间的耦合系数。整个电路由N 个谐振腔构成,各个谐振腔之间是电感耦合。对于窄带滤波器,做如下规一化: 110=?=ωω,

这里0ω为中心频率,ω?为相对带宽。 回路矩阵方程为: R)I M (sU I Z E 0++=?=j 其中,0U 是将(N+2)×(N+2)阶单位矩阵中第一个元素和最后一个元素令为0,其它元素都保持不变所得的矩阵。M 是耦合矩阵,是一个(N+2)×(N+2)阶方阵,其中对角线上的元素代表每一个谐振腔的自耦合,它表示每一个谐振腔的谐振频率i f 与滤波器的中心频率o f 之间的偏差。(在同步调谐滤波器中,我们认为每个谐振腔的自耦合系数的值都取零)。矩阵中非对角线上的元素表示各个谐振腔之间的耦合系数。 R 矩阵是(N+2)×(N+2)阶方阵,除21)2,2(,)1,1(R N N R =++=R R 非零以外,其它元 素值都等于零。 由上可得到该滤波器网络的传输函数: )() (22 )(2112Z Z 1N D cof D R R e R i s t L == 其中,)(1N Z cof D 表示Z 矩阵的第一行;第N 列元素的代数余子式;)(Z D 表示Z 矩阵的行列式。 对上式做进一步分析,可以发现:其分子多项式与分母多项式是同阶多项式。因此,必须选择分子分母同阶的函数形式作为源.负载耦合交叉耦合滤波器的逼近函数。一般情况下,我们可以通过将奇数阶椭圆函数的分子多项式舍去一个零点,或者直接选择偶数阶椭圆函数作为逼近函数。这里需要指出的是,两种逼近函数的构造方法,都必须对波纹系数做一定的修正。 将滤波器看作一个二端口网络,那么其导纳矩阵为

实验二源-负载耦合的交叉耦合滤波器设计与仿真

实验二源 -负载耦合的交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个源 -负载耦合的交叉耦合滤波器 2.查看并分析该源-负载耦合的交叉耦合滤波器的S 参数 二、实验设备 装有 HFSS 13.0软件的笔记本电脑一台 三、实验原理 交叉耦合滤波器在非相邻谐振腔之间引入了交叉耦合,以得到有限频率传输零点,从而提高了滤波器的选择特性。一般来讲,一个 N 腔交叉耦合滤波器最多能实现 N-2 个传输零点。对于给定的一种含有 N 个谐振器的滤波器,如果在源与负载之间也引入耦合,则可实 现 N 个传输零点。源-负载耦合的交叉耦合滤波器等效电路模型如图所示。 R1M S 1M1k M kN 1F M NL 1F1F e1i s01/2H i 11/2H ...1/2H i k 1/2H ... 1/2H i N1/2H i L R 2 M Sk M kL M 1 N M SL 在上图所示的等效电路模型中,M ij表示各个谐振腔之间的耦合系数,M Si、 M i L分别表示源、负载与第i个腔之间的耦合系数。M SL则表示源与负载之间的耦合系数。整个电 路由 N 个谐振腔构成,各个谐振腔之间是电感耦合。对于窄带滤波器,做如下规一化: 01,1 这里0为中心频率,为相对带宽。 回路矩阵方程为: E Z I (sU0j M R)I 其中, U 0是将(N+2)× (N+2) 阶单位矩阵中第一个元素和最后一个元素令为0,其它元素都保持不变所得的矩阵。M 是耦合矩阵,是一个(N+2) × (N+2) 阶方阵,其中对角线上的元素代表每一个谐振腔的自耦合,它表示每一个谐振腔的谐振频率 f i与滤波器的中心频率 f o之间的偏差。(在同步调谐滤波器中,我们认为每个谐振腔的自耦合系数的值都取零)。 矩阵中非对角线上的元素表示各个谐振腔之间的耦合系数。 R 矩阵是(N+2)×(N+2)阶方阵,除R(1,1)R1, R( N 2, N 2)R2非零以外,其它

旁路、耦合、退耦电容的选取

旁路、退耦、耦合电容的选取 高手和前辈们总是告诉我们这样的经验法则:“在电路板的电源接入端放置一个1~10μF 的电容,滤除低频噪声;在电路板上的电源与地线之间放置一个0.01~0.1μF 的电容,滤除高频噪声。”在书店里能够得到的大多数的高速PCB 设计、高速数字电路设计的经典教程中也不厌其烦的引用该首选法则(老外俗称Rule of Thumb )。但是为什么要这样使用呢?各位看官,如果你是电路设计高手,你可以去干点别的更重要的事情了,因为以下的内容仅是针对我等入门级甚至是门外级菜鸟。 做电路的人都知道需要在芯片附近放一些小电容,至于放多大?放多少?怎么放?将该问题讲清楚的文章很多,只是比较零散的分布于一些前辈的大作中。鄙人试着采用拾人牙慧的方法将几个问题放在一起讨论,希望能加深对该问题的理解;如果很不幸,这些对你的学习和工作正好稍有帮助,那我不胜荣幸的屁颠屁颠的了。(以上有些话欠砍,在此申明以上不是我所写) 什么是旁路? 旁路(Bypass ),在电路中为了改变某条支路的频率特性,使得它在某些频段内存在适当的阻值,而在另一些频段内则处于近似短路的状态,于是便产生了旁路电容的概念。旁路电容之所以为旁路电容,是因为它旁边还存在着一条主路, 而并不是某些电容天生就是用来做旁路电容的,也就是说什 么种类的电容都可以用来做旁路电容,关键在于电容容值的 大小合适与否。旁路电容并不是电解电容或是陶瓷电容的专 利。之所以低频电路中多数旁路电容都采用电解电容原因在 于陶瓷电容容值难以达到所需要的大小。 使用旁路电容的目的就是使旁路电容针对特定频率以上 的信号相对于主路来说是短路的。如图形式:要求旁路电容需要取值的大小; 已知:1、旁路电容要将流经电阻R 的频率高于f 的交流信号近似短路。求旁路电容的大小? Ic Ir

实验二 源-负载耦合的交叉耦合滤波器设计与仿真上课讲义

实验二源-负载耦合的交叉耦合滤波器设 计与仿真

实验二 源-负载耦合的交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个源-负载耦合的交叉耦合滤波器 2.查看并分析该源-负载耦合的交叉耦合滤波器的S 参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 交叉耦合滤波器在非相邻谐振腔之间引入了交叉耦合,以得到有限频率传输零点,从而提高了滤波器的选择特性。一般来讲,一个N 腔交叉耦合滤波器最多能实现N-2个传输零点。对于给定的一种含有N 个谐振器的滤波器,如果在源与负载之间也引入耦合,则可实现N 个传输零点。源-负载耦合的交叉耦合滤波器等效电路模型如图所示。 e R 2 在上图所示的等效电路模型中,ij M 表示各个谐振腔之间的耦合系数,Si M 、L i M 分别表示源、负载与第i 个腔之间的耦合系数。SL M 则表示源与负载之间的耦合系数。整个电路由N 个谐振腔构成,各个谐振腔之间是电感耦合。对于窄带滤波器,做如下规一化: 110=?=ωω, 这里0ω为中心频率,ω?为相对带宽。 回路矩阵方程为: R)I M (sU I Z E 0++=?=j

其中,0U 是将(N+2)×(N+2)阶单位矩阵中第一个元素和最后一个元素令为0,其它元素都保持不变所得的矩阵。M 是耦合矩阵,是一个(N+2)×(N+2)阶方阵,其中对角线上的元素代表每一个谐振腔的自耦合,它表示每一个谐振腔的谐振频率i f 与滤波器的中心频率 o f 之间的偏差。(在同步调谐滤波器中,我们认为每个谐振腔的自耦合系数的值都取 零)。矩阵中非对角线上的元素表示各个谐振腔之间的耦合系数。 R 矩阵是(N+2)×(N+2)阶方阵,除21)2,2(,)1,1(R N N R =++=R R 非零以外,其它 元素值都等于零。 由上可得到该滤波器网络的传输函数: )() (22 )(2112Z Z 1N D cof D R R e R i s t L == 其中,)(1N Z cof D 表示Z 矩阵的第一行;第N 列元素的代数余子式;)(Z D 表示Z 矩阵的行列式。 对上式做进一步分析,可以发现:其分子多项式与分母多项式是同阶多项式。因此,必须选择分子分母同阶的函数形式作为源.负载耦合交叉耦合滤波器的逼近函数。一般情况下,我们可以通过将奇数阶椭圆函数的分子多项式舍去一个零点,或者直接选择偶数阶椭圆函数作为逼近函数。这里需要指出的是,两种逼近函数的构造方法,都必须对波纹系数做一定的修正。 将滤波器看作一个二端口网络,那么其导纳矩阵为 ()()()()()()()()()()??? ???-+??????=?? ????=??????=∑=k k k k N k k n n n n d r r r r j s K K j s y s y s y s y s y s y s y s y s y 2221121110022211211222112111001λY 这里假设源和负载阻抗相等并设为1Ω,则当N 为偶数时, ()()()()() s m s n s y s y s y d n 112222== ()()()()[]() s m s P s y s y s y d n 12121ε== 当N 为奇数时, ()()()()() s n s m s y s y s y d n 112222==

相关文档