文档库 最新最全的文档下载
当前位置:文档库 › 信号处理及其应用:第5章 数字滤波器基础

信号处理及其应用:第5章 数字滤波器基础

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

数字信号处理答案解析

1-1画出下列序列的示意图 (1) (2) (3) (1) (2)

(3) 1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。 图1.41信号x(n)的波形 (1)(2)

(3) (4) (5)(6) (修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期 (1) 解:非周期序列; (2) 解:为周期序列,基本周期N=5; (3)

解:,,取 为周期序列,基本周期。 (4) 解: 其中,为常数 ,取,,取 则为周期序列,基本周期N=40。 1-4判断下列系统是否为线性的?是否为移不变的? (1)非线性移不变系统 (2) 非线性移变系统(修正:线性移变系统) (3) 非线性移不变系统 (4) 线性移不变系统 (5) 线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的? (1) ,其中因果非稳定系统 (2) 非因果稳定系统 (3) 非因果稳定系统 (4) 非因果非稳定系统

(5) 因果稳定系统 1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图 (1) (2) (3) 解:(1) (2) (3)

1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真? (1) (2) (3) 解: (1)采样不失真 (2)采样不失真 (3) ,采样失真 1-8已知,采样信号的采样周期为。 (1) 的截止模拟角频率是多少? (2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何? (3)若,求的数字截止角频率。 解: (1) (2) (3)

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ), y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32 621 =< =Ωh , 所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652 => =Ωh , 所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ??? ????? ??+???? ????? ??+???? ????? ??=? ?? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分, 即 kHz f f f kHz f f f s s 25000200052150001000512211 ======,, 若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

数字信号处理技术的应用和发展

数字信号处理技术的应用和发展 摘要互联网信息化技术的不断进步和应用范围的持续拓宽加速了数字时代的到来。数字信号处理技术是将声音、图片或者是视频进行信息的模拟再将其转化为数字信息,该技术也是数字时代的标志性技术,目前已经在仪器仪表、通信、计算机以及图像图形处理等领域得到了广泛应用。本文结合数字处理技术的特点,就其应用现状和发展方向进行了思考。【关键词】数字信号处理数字时代计算机技术发展 计算机、机械制造、通讯等技术的进步为数字信号处理技术的发展提供了基础。数字信息护理技术可以对更大层面的数据信息进行分析处理,作为数字信号处理环节中实用性较强的应用型技术综合了数字信号处理理论、硬件技术、软件技术等。分析数字信号技术的发展现状对于技术和优化和应用水平的提高有着重要的理论意义和现实意义。 1 数字信号处理技术概述 1.1 数字信号处理技术的特点 数据提取和转化是数字信号处理技术的本质特征,该技术就是将各类信号从复杂的环境中提取出来并将其转化为更加容易识别和利用的形式。高速的运算能力和高准确性的运算结果是数字信号处理技术的显著特征。通过独特的寻址模式和流水线结构是数字信号处理技术的主要运算方法。在一个指令周期内分别进行一次乘法和一次加法就是硬件乘法累加操作,该技术应用在实际的操作中速度可以达到800Mb/s。除此之外数字信号处理技术的稳定性也十分出色,通过二值逻辑的采用使得数字信号处理技术可以保证较强的环境使用能力。在软件的作用下数字处理技术可以实现参数的修改,保证较强的灵活性。 1.2 数字信号处理技术应用的意义

各类新技术的出现与发展对于社会生产和人类生活产生了巨大的影响,数字信号处理技术作为一项发展较快且适用性强的技术,其发展迅速在各个领域的应用水平也不断提高,销售价格也随之降低。目前应用中的数字信号处理技术的总线、资源及技术结构的标准化程度不断提高,一方面这会加剧我国的电子产品行业的竞争,另一方面也会促进电子产品和其他相关行业的进步与发展。 2 数字信号处理技术的应用思考 2.1 通信领域的应用 目前数字信号技术已经在众多领域得到了应用,通信领域中信号处理技术的应用推动了通信技术的发展和通信行业的变革。数字信号处理技术显著提高了通信信号和信息的处理效率和处理质量,为通信技术的进步与变革提供了基础,数字信号处理技术已经成为了通信理论中的一个新的学科,加快了无线系统成为主流通信方式的进程,数字信号处理技术对于通信行业的发展有着重要的支撑和引导作用,可视电话以及通信扩频等都需要数字信号处理技术参与的情况下才可以实现。 2.2 图像图形技术领域的应用 数字信号处理技术在图像图形技术领域的应用主要集中在有线电视机高品位卫星广播中,除此之外在MPEG2编码器和译码器、DVD活动中的图像压缩和解压中也发挥着重要的作用。数字信号处理技术的应用有效推动了信息处理速度和处理功能的提高,科技的不断进步加快了活动影像解压技术的快速发展。 2.3 仪器仪表领域中的应用 目前仪器仪表领域中相关测量工作中也有着数字信号处理技术的应用,于此同时该技术有取代高档单片机成为主流仪器仪表测量方式的趋势。在仪器仪表的开发和测量中应用数字信号处理技术有利于产品档次的提高,相较于传统的信息处理技术数字信号处理技术的内在资源

数字信号处理试题和答案 (1)

一. 填空题 1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。 3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。 4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。 5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。 6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。 8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。 9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。 10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关 11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。 12.对长度为N的序列x(n)圆周移位m位得到的序列用x m (n)表示,其数学表达式为 x m (n)= x((n-m)) N R N (n)。 13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。 14.线性移不变系统的性质有交换率、结合率和分配律。 15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

数字信号处理应用论文

摘要:介绍了DSP技术(器件)的主要特点.总结了DSP在家电、办公设备、控制和通信领域的主要应用及其发展趋势。 关键词:数字信号处理;音频/视频;控制;通信 DSP数字信号处理技术(Digital Signal Processing)指理论上的技术;DSP数字信号处理器(Digital Sig—hal Processor)指芯片应用技术。因此,DSP既可以代表数字信号处理技术,也可以代表数字信号处理器,两者是不可分割的,前者要通过后者变成实际产品。两者结合起来就成为解决实际问题和实现方案的手段DsPs一数字信号处理解决方案。DSP运用专用或通用数字信号处理芯片,通过数字计算的方法对信号进行处理,具有精确、灵活、可靠性好、体积小、易于大规模集成等优点。DSP芯片自从1978年AMI公司推出到现在,其性能得到了极大的提高。 1 DSP的特点 1.1 修正的哈佛结构 DSP芯片采用修正的哈佛结构(Havardstructure),其特点是程序和数据具有独立的存储空间、程序总线和数据总线,非常适合实时的数字信号处理口]。同时,这种结构使指令存储在高速缓存器中(Cache),节约了从存储器中读取指令的时间,提高了运行速度。如美国德州仪器公司——TI(Texas Instruments)的DSP芯片结构是基本哈佛结构的改进类型。 1.2 专用的乘法器 一般的算术逻辑单元AI U(Arithmetic and Logic Unit)的乘法(或除法)运算由加法和移位实现,运算速度较慢。DSP设置了专用的硬件乘法器、多数能在半个指令周期内完成乘法运算,速度已达每秒数千万次乃至数十亿次定点运算或浮点运算,非常适用于高度密集、重复运算及大数据流量的信号处理。如MS320C3x系列DSP芯片中有一个硬件乘法器:TMS320C6000系列中则有两个硬件乘法器。 1.3 特殊的指令设置 DSP在指令系统中设置了“循环寻址”(Circular addressing)及“位倒序”(bit—reversed)等特殊指令,使寻址、排序及运算速度大大提高引。另外,DSP指令系统的流水线操作与哈佛结构相配合,把指令周期减小到最小值,增加了处理器的处理能力。尽管如此,DSP芯片的单机处理能力还是有限的,多个DSP芯片的并行处理已成为研究的热点。 2 DSP在家电、办公设备中的应用 2.1高清晰度电视 传统电视采用线性扫描的信号处理方式,画面像素最高仅4O~5O万个,会带来画质的损失,而DSP数字超微点阵(Digital SuperMicro Pixe1)技术,超越传统的线性扫描,进入由“点”组成的微显示数字技术层面,从模拟的“线”飞跃到数字的“点”。DSP是逐点优化的。它运用全新的逐点扫描技术,修复并优化每一个点的质量,消降图像边缘模糊现象,细节部分的锐利度成倍提高。 2.2 A/V(Audio/Video)设备 家庭影院主要由数字化A/V(Audio/Video)设备组成,DSP不仅带来环绕声,而且提供虚拟各种现场效果。VCD(VideoCompact Disc)、DVD(Digital Video Disc)、MD(Minidiskette)、DAB(Digital Audio Brod—casting)、DVB(Digital Video Box)等数字音视频产品中,DSP的价值主要体现在音频的Hi—Fi(HighFideli—ty)处理上。目前,对MPEG(Moving Picture Expe Group)音频Layer2、I ayer3等用c语言仿真研究,在此基础上用C549实现了MP3解码器的采样;用’C6201和’C6701分别实现MP3编码器和MPEG一2AAC编解码器。MPEG 一2AAC重建的音质超过MP3和AC一3将成为直播卫星、地面DAB和SW、Mw、AM 广

数字信号处理基础书后题答案中文版

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、35000π =ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π =ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S === μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数 倍 -200 200 400 600 800 1000 1200 0.10.20.30.40.50.60.70.80.91 幅度 频

数字信号处理在语音信号分析中的应用

《数字信号处理》 课程设计报告 数字信号处理在语音信号分析中的应用 专业班级: 姓名: 学号:

目录 摘要 (3) 1、绪论 (3) 2、课程设计的具体容 (4) 2.1.1、读取语音信号的任务 (4) 2.1.2、任务分析和解决方案 (5) 2.1.4、运行结果和相应的分析 (5) 2.2、IIR滤波器设计和滤波处理 (6) 2.2.1、设计任务 (6) 2.2.2、任务分析和解决方案 (7) 2.2.3、编程得到的MATLAB代码 (7) 2.2.4、运行结果和相应的分析 (7) 2.3、FIR滤波器设计和滤波处理 (9) 2.3.1、设计任务 (9) 2.3.2、任务分析和解决方案 (9) 2.3.3、编程得到的MATLAB代码 (9) 2.3.4、运行结果和相应的分析 (11) 3、总结 (13) 4、存在的不足及建议 (13) 5、参考文献 (13)

数字信号处理设计任务书 摘要 语音信号滤波处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前 发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。本设计通过录制一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab平台对语音信号进行加噪然后再除去噪声,进一步设计两种种滤波器即高通滤波器、带通滤波器,基于这两种滤波器设计原理,对含加噪的语音信号进行滤波处理。最后对比滤波前后的语音信号的时域和频域特性,回放含噪语音信号和去噪语音信号。论文从理论和实践上比较了不同数字滤波器的滤波效果。 1.绪论 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能,声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。 随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。数字滤波器是数字信号处理的基础,用来对信号

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)??? ? ??-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω= 73π, 所以314 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ω π2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他0 2 n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)

数字信号处理

数 字 信 号 处 理 发 展 和 应 用 学院:通信学院 专业:电子信息工程 班级:电信1103 姓名:XXX 学号:XXX

数字信号处理发展和应用 【摘要】数字信号处理(DSP)是广泛应用于许多领域的新兴学科,因其具有可程控、可预见性、精度高、稳定性好、可靠性和可重复性好、易于实现自适应算法、大规模集成等优点,广泛应用于实时信号处理系统中。本文概述了DSP 技术的发展历史,各个领域的应用状况,以及在未来的发展趋势。 【关键词】数字信号处理;数据处理;信息技术;发展趋势 一、数字信号处理(DSP)的发展历史 数字信号处理技术的发展经历了三个阶 段。 70 年代DSP 是基于数字滤波和快速傅立叶变换的经典数字信号处理,其系统由分立的小规模集成电路组成,或在通用计算机上编程来实现DSP 处理功能,当时受到计算机速度和存储量的限制,一般只能脱机处理,主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展,理论和技术进入到以快速傅立叶变换(FFT) 为主体的现代信号处理阶段,出现了有可编程能力的通用数字信号处理芯片,例如美国德州仪器公司(TI 公司) 的TMS32010 芯片,在全世界推广应用,在雷达、语音通信、地震等领域获得应用,但芯片价格较贵,还不能进入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人,理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段,能够用高速的DSP 处理技术提取更深层的信息,硬件采用更高速的DSP 芯片,能实时地完成巨大的计算量,以TI 公司推出的TMS320C6X芯片为例,片内有两个高速乘法器、6 个加法器,能以200MHZ频率完成8 段32 位指令操作,每秒可以完成16 亿次操作,并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X、C3X、C5X、C6X 不同应用范围的系列,使新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用,数字化的产品性能价格比得到很大提高,占有巨大的市场。 二、数字信号处理(DSP)的主要应用领域 1·DSP在电力系统自动化中日益渗透 1.1数字信号处理(DSP)技术在电力系统模拟量采集和测量中的应用 计算机进入电力系统调度后,引入了EMS/DMS/SCADA的概念,而电力系统数据采集和测量是SCADA的基础部分。传统的模拟量的采集和获得,通过变送器将一次PT和CT的电气量变为直流量,再进行A/D转换送给计算机。应用了交流采样技术以后,经过二次PT、CT的变换后,直接对每周波的多点采样值采用DSP处理算法进行计算,得到电压和电流的有效值和相角,免去了变送器环节。这不仅使得分散布置的分布式RTU很快地发展起来,而且还为变电站自动化提供了功能综合优化的手段。 1.2数字信号处理(DSP)在继电保护中的应用 到目前为止,应用于我国电力系统的微机保护产品采用的CPU大多为单片机,由于受硬件资源及计算功能的限制,其采样能力及采样速度很难令人满意。因此,对非正常运行条件下的系统参数测量,在速度和精度上无法满足要求,一些复杂原理和算法的实现,基于常规CPU的保护产品也都难以胜任。基于DSP 的数据采集和处理系统由于其强大的数学运算能力和特殊设计,都使得它在继

数字信号处理习题集附答案)

第一章数字信号处理概述简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称位“抗折叠”滤波器。 在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理 理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字

长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

数字信号处理习题及答案

三、计算题 1、已知10),()(<<=a n u a n x n ,求)(n x 的Z 变换及收敛域。 (10分) 解:∑∑∞ =-∞ -∞=-= = )()(n n n n n n z a z n u a z X 1 111 )(-∞=--== ∑ az z a n n ||||a z > 2、设)()(n u a n x n = )1()()(1--=-n u ab n u b n h n n 求 )()()(n h n x n y *=。(10分) 解:[]a z z n x z X -=? =)()(, ||||a z > []b z a z b z a b z z n h z H --=---= ?=)()(, ||||b z > b z z z H z X z Y -= =)()()( , |||| b z > 其z 反变换为 [])()()()()(1n u b z Y n h n x n y n =?=*=- 3、写出图中流图的系统函数。(10分) 解:2 1)(--++=cz bz a z H 2 1124132)(----++= z z z z H 4、利用共轭对称性,可以用一次DFT 运算来计算两个实数序列的DFT ,因而可以减少计算量。设都是N 点实数序列,试用一次DFT 来计算它们各自的DFT : [])()(11k X n x DFT = []) ()(22k X n x DFT =(10分)。 解:先利用这两个序列构成一个复序列,即 )()()(21n jx n x n w +=

即 [][])()()()(21n jx n x DFT k W n w DFT +== []()[]n x jDFT n x DFT 21)(+= )()(21k jX k X += 又[])(Re )(1n w n x = 得 [])(})({Re )(1k W n w DFT k X ep == [] )())(()(2 1*k R k N W k W N N -+= 同样 [])(1 })({Im )(2k W j n w DFT k X op == [] )())(()(21*k R k N W k W j N N --= 所以用DFT 求出)(k W 后,再按以上公式即可求得)(1k X 与)(2k X 。 5、已知滤波器的单位脉冲响应为)(9.0)(5n R n h n =求出系统函数,并画出其直接型 结构。(10分) 解: x(n) 1-z 1-z 1-z 1-z 1 9.0 2 9.0 3 9.0 4 9.0 y(n) 6、略。 7、设模拟滤波器的系统函数为 31 11342)(2+-+=++=s s s s s H a 试利用冲激响应不变法,设计IIR 数字滤波器。(10分) 解 T T e z T e z T z H 31111)(-------=

数字信号处理试题及参考答案

数字信号处理期末复习题 一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分) 1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。 (Ⅰ)原信号为带限 (Ⅱ)抽样频率大于两倍信号谱的最高频率 (Ⅲ)抽样信号通过理想低通滤波器 ①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ 2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。 ①Ωs②.Ωc ③.Ωc/2④.Ωs/2 3.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。 ①.R3(n) ②.R2(n) ③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1) 4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。 ①.有限长序列②.右边序列 ③.左边序列④.双边序列 5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。 ①当|a|<1时,系统呈低通特性 ②.当|a|>1时,系统呈低通特性 ③.当0

6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。 ①.2 ②.3 ③.4 ④.5 7.下列关于FFT的说法中错误的是( ① )。 ①.FFT是一种新的变换 ②.FFT是DFT的快速算法 ③.FFT基本上可以分成时间抽取法和频率抽取法两类 ④.基2 FFT要求序列的点数为2L(其中L为整数) 8.下列结构中不属于FIR滤波器基本结构的是( ③ )。 ①.横截型②.级联型 ③.并联型④.频率抽样型 9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ④ )。 ①.h[n]=-h[M-n] ②.h[n]=h[M+n] ③.h[n]=-h[M-n+1] ④.h[n]=h[M-n+1] 10.下列关于用冲激响应不变法设计IIR滤波器的说法中错误的是( ④ )。 ①.数字频率与模拟频率之间呈线性关系 ②.能将线性相位的模拟滤波器映射为一个线性相位的数字滤波器 ③.容易出现频率混叠效应 ④.可以用于设计高通和带阻滤波器 11.利用矩形窗函数法设计FIR滤波器时,在理想特性的不连续点附近形成的过滤带的宽度近似等于( ① )。 ①.窗函数幅度函数的主瓣宽度 ②.窗函数幅度函数的主瓣宽度的一半

数字信号处理的应用与发展 历程

数字信号处理的应用 数字信号处理是以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理。 自然界中存在的各种各样的信息和信号都可以通过传感器转换为电信号,例如:声音、语言和音乐可以通过传声器(如话筒)转换成音频信号;人体器官的运动信息(如心电、脑电、血压和血流)可转换成不同类型的生物医学信号;机器运转产生的一些物理变(如温度、压力、转速、振动和噪声等)可用不同类型的传感器转换成对应于各种物理量的电信号;在人造卫星上用遥感技术可得到地面上的地形、地貌,甚至农田水利和各种建筑设施的信息;雷达、声纳能探测远方飞机和潜艇的距离、方位和运行速度等信息。 总之,在现代社会里,信息和信号与人民生活、经济建设、国防建设等很多方面都有着密切的关系。 DSP芯片的应用 随着DSP芯片性能的不断改善,用DSP芯片构造数字信号处理系统作信号的实时处理已成为当今和未来数字信号处理技术发展的一个热点。随着各个DSP芯片生产厂家研制的投入,DSP芯片的生产技术不断更新,产量增大,成本和售价大幅度下降,这使得DSP芯片应用的范围不断扩大,现在DSP芯片的应用遍及电子学及与其相关的各个领域。 典型应用(1)通用信号处理:卷积,相关,FFT,Hilbert变

换,自适应滤波,谱分析,波形生成等。(2)通信:高速调制/解调器,编/译码器,自适应均衡器,仿真,蜂房网移动电话,回声/噪声对消,传真,电话会议,扩频通信,数据加密和压缩等。(3)语音信号处理:语音识别,语音合成,文字变声音,语音矢量编码等。(4)图形图像信号处理:二、三维图形变换及处理,机器人视觉,电子地图,图像增强与识别,图像压缩和传输,动画,桌面出版系统等。(5)自动控制:机器人控制,发动机控制,自动驾驶,声控等。(6)仪器仪表:函数发生,数据采集,航空风洞测试等。(7)消费电子:数字电视,数字声乐合成,玩具与游戏,数字应答机等。 在医学电子学方面的应用 如同其它数字图像处理一样,DSP芯片已在医学图像处理,医学图像重构等领域,如CT、核磁成象技术等方面得到了广泛的应用,已取得了令人满意的效果。在助听,电子耳涡等方面也取得了相当的进展(文献[1,2])。国内、外也有关于脑电、心电、心音和肌电信号处理方面基于DSP芯片系统的报道(文献[4~7]),我们对1996年以前国外生物医学工程的部分核心期刊,如IEEE Transactions on Biomedical Engineering,Computers and Biomedical Research等核心期刊进行检索,有关基于DSP芯片处理系统的报道很少。对国内生物医学工程的核心期刊,如《中国医疗器械杂志》、《中国生物医学工程杂志》、《生物医学工程学杂志》和《中国生物医学工程学报》等刊物进行检索,未见有关基

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试 成功!! 电子科技大学微电子与固体电子学钢教授著 数字信号处理课后答案 1.2 教材第一章习题解答 1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解: ()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6) x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+- 2. 给定信号:25,41()6,040,n n x n n +-≤≤-?? =≤≤??? 其它 (1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解: (1)x(n)的波形如题2解图(一)所示。 (2) ()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4) x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-

(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。 (4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。 (5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。 (1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()n m y n x m ==∑。 解: (1)令:输入为0()x n n -,输出为 '000' 0000()()2(1)3(2) ()()2(1)3(2)() y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--= 故该系统是时不变系统。 12121212()[()()] ()()2((1)(1))3((2)(2)) y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+- 1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+- 2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+- 1212[()()][()][()]T ax n bx n aT x n bT x n +=+ 故该系统是线性系统。

相关文档
相关文档 最新文档