文档库 最新最全的文档下载
当前位置:文档库 › 全固态紫外激光

全固态紫外激光

全固态紫外激光
全固态紫外激光

第28卷第9期 光子学报 V o1.28N o.9 1999年9月 ACT A PHOT ONICA SINICA Septem ber1999 

全固态紫外激光器研究*

陈国夫 王贤华 杜戈果

(瞬态光学技术国家重点实验室,中国科学院西安光学精密机械研究所,西安710068)

摘 要 本文报道了具有增强谐振倍频腔的全固态紫外激光器研究.半导体激光二极管(LD)泵浦的Nd∶YVO4激光晶体产生波长为1064nm的近红外光,腔内倍频输出波长为532nm的绿光,再送入增强谐振腔进行四倍频,输出波长为266nm的深紫外激光.产生深紫外激光的基频绿光输入阈值可低到2.5mW.据我们所知,这是国内首次报道的全固态紫外激光器.

关键词 半导体激光二极管泵浦;Nd∶YVO4激光器;增强谐振倍频;紫外激光

0 引言

固体激光器的激光波长一般在可见光和近红外波段.近年来国际上科学工作者努力研究紫外激光器,这是因为紫外激光器在高分辨光谱学(只需功率几微瓦)、大气探测、微电子学、医学诊断、高密度光数字存储、光化学、光生物学、激光诱发的物质原子荧光和紫外吸收(如Si原子的荧光诱发、冷冻和控制)、空间光通讯、机械成型、紫外器件的研究等领域有着广泛的应用1~4.通常紫外激光器有激发物激光器、氮激光器和四倍频固体激光器5.而LD泵浦的四倍频全固态激光器是首选的有前途的紫外激光源,那是因为这种激光器具有稳定可靠,寿命长,光束质量好,可调谐,小型紧奏,重量轻,结构简单,操作简单,价格低等实用化的优点6.所以近年来,美、英、日、法、德已在开展四倍频全固态紫外激光器的工作1,5,7.多数是用LD泵浦惯用的Nd∶YAG晶体,再进行倍频.本文报道用波长808nm小型半导体激光二极管LD泵浦Nd∶YVO4激光晶体产生1064nm的近红外光,腔内倍频输出波长为532nm的绿光,再送入增强谐振腔进行四倍频,输出波长为266nm 的深紫外激光.与N d∶YAG比较,Nd∶YVO4激光晶体具有更大的增益截面,是N d∶YAG的4倍;吸收系数大,是Nd∶YAG的5倍,偏振输出,激光阈值低等优点8,9,现在,小型大功率808nm的半导体激光器正合适泵浦Nd∶YVO4激光器带来新的生机10.在小功率泵浦的条件下,利用短腔谐振倍频技术,已成功获得紫外激光输出,这些实验结果国内还未见报道.

1 实验装置和实验结果

全固态紫外激光器由双端泵浦源、二倍频Nd∶YVO4激光器、增强谐振倍频、测量和控制系统构成.实验装置如图1所示

.

图1 全固体紫外激光器实验装置

F ig.1 Ex perimental setup of the ultra vio la at la ser

腔内倍频半导体激光二极管泵浦的Nd∶YVO4的谐振腔采用的是折叠式驻波腔.腔内倍频结构是输出为自准直的聚焦腔.M1、M2为平面反射镜.M3为凹凸反射透射镜作为倍频聚焦及倍频光输出自准直,M4是凹面回光反射镜,用以形成折叠式驻波腔结构.在腔体设计时考虑到尽

*国家自然基金资助项目(69778012)收稿日期:1999—06—29

可能减少腔内元件以提高工作稳定性,在折叠腔内未引入象散补偿玻片.通过选择最佳入射角,减小由聚焦凹面镜引起的象散.激光腔的光束传输矩阵为

M =A B C

D =

d b c

a

a b c

d

(1)

式中a b c d =1l 101100n 1/n

21L 1/n 20

1100n 2/n 1

?1l 2+l 30110-2/R 111l 401

100n 1/n 3?

1L 2/n 3

110

0n 3/n 11

l 5

0110

-2/R 21

n 1为空气折射率,n 2为Nd ∶YVO 4晶体折射

率,n 3为KT P 晶体折射率.

根据矩阵光学,稳定腔的条件是 A +D /2<1.

束腰半径 为

2

=( B / n )[1-

((A +D )/2)2]1/2

(3)当入射角 =5°,在输出光镜M 3上光束半径 随l 2+l 3的变化如图2.当l 2+l 3=50m m 时,在

图2 输出镜M 3上的光斑尺寸随l 2+l 3

的变化F ig.2 Spo t size on M 3v s l 2+l 3

输出镜M 3上的光斑直径随入射角 的变化,如图3,从总体考虑l 2+l 3=50mm , =5°,M 3的曲

图3 输出镜M 3上的光斑尺寸随入射角 的变化F ig.3 Spo t size on M 3v s

率半径R =100mm ,M 4的曲率半径R =150mm.在这种腔体结构下在输出镜M 3上的子午面和弧矢面上的光斑尺寸相对误差不超过0.3%,输出光束为高斯光束.为了提高倍频效率采用聚焦共轭腔结构.

Nd ∶YVO 4激光晶体两端的泵浦源均由波长可温控、光纤输出的半导体激光器LD 和耦合器组成3

.LD 的最大功率可达15W ,波长在808nm 附近可调谐,功率通过直径为1.16mm 的光纤束输出,自己研制了小型的准直聚集耦合器,将光纤输出端面、准直系统、聚焦透镜都封闭在一个小型的系统中,使用中免调,还避免了环境中的灰尘污染,耦合器的出口处是焦距为3.3cm 的透镜,调节耦合器和激光晶体Nd ∶YVO 4的相对位置,使泵浦达到最佳状态.

如图1所示,N d ∶YVO 4激光晶体、KT P 倍频晶体和腔镜M 1、M 2、M 3、M 4构成腔内二倍频激光器,532nm 的绿光由自准直凹凸透镜M 3输出.Nd ∶YVO 4激光晶体是福建物质结构所生产的,几何尺寸为8(3×3×5)mm.二倍频晶体KTP 是山东大学晶体研究所生产的,二类相位匹配,双面对1064nm 和532nm 波长处镀双增透膜.M 1、M 2为平面腔镜,在1064nm 波长,反射率R >95.5%.在800~810nm,透过率T >90.5%.腔内倍频结构采用聚焦共轭结构以提高倍频效率,自准直凹凸透镜M 3,曲率半径为100m m,在1064nm 波长,反射率R ≥99.6%,在532nm 波长,透过率T ≥94%.凹面镜M 4,曲率半径为150m m ,在1064nm 和532nm 波长,都有反射率R >99.9%.当每端LD 的泵浦功率均为6W 时,输出绿光为1.5W .效率为11%.

四倍频晶体BBO 和M 5、M 6、M 7、M 8构成增强谐振倍频腔,M 5是平面镜,在532nm 波长,透过率T =12%,M 6也是平面镜,反射率R =99.4%.M 6安装在PZT 驱动器上,凹面镜M 7的曲率半径为150mm ,在532nm 波长,反射率为99.4%.凹面镜M 8的曲率半径也是150mm ,在532nm 波长,R =99.8%,在266nm 波长,透过率T =84%,四倍频晶体BBO 的几何尺寸为(5×5×6)mm ,位于M 7和M 8的共同焦点上,谐振腔的腔长尽量与Nd ∶YOV 4的腔长匹配.紫外光由腔镜M 8输出.

石英棱镜将紫外光分离出来,由接收器测量.接收到的紫外信号送入计算机接口还可同时输入

786

光子学报

28卷

示波器,以便实时监测,再控制PZT,使紫外光输

出最大.

在现在的结构和冷却条件下,由M 4透过的1064nm 的光估计,在无KT P 时Nd ∶YVO 4腔内

功率大于80W ,放入KTP 二倍频晶体,绿光输出最大为1.5W .图4(a )、(b )分别为1064nm 和532nm 的光谱曲线,绿光在谐振倍频腔中的损耗约为12%.接收器接收的紫外光最大为

5V.

(a) (b)

图4 腔内倍频传N d ∶YV O 4激光器的光谱曲线.(a )1064nm ,(b)532nm F ig .4 Spectr um o f N d ∶Y V O 4laser of intr acavity fr equency doubling

参考文献

1 Go ldberg L ,K liner D A V.T unable U V g eneration at 286nm by fr equency tr ipling of a hig h-pow er mo de -lo cked

semiconducto r laser.O pt L ett ,1995,20(15):1640~1642

2 Saya ma S ,Ohtsu M .T unable U V cw genera tio n at 276nm w avelength by fr equency co nv ersio n o f laser dio des .Opt

Commu ,1998,(1):110~1123 Bahns J T ,L ynds L ,Stw alley W C,Simmons V ,R obinson T ,Bililign S.Airbo rne-mer cur y detection by r esonant U V laser pumping.Opt L ett ,1997,22(10):727~729

4 K ung A H ,Jr -I L ee ,Chen Poe -jo u .A n efficient all -so lid -st ate ultr aviolet laser source .Appl P hys L ett ,1998,72(13):

1542~1544

5 F eugnet G,P ocholle J P.8-mJ T EM 00diode-end-pumped fr equency -qua dr upled N d ∶Y A G laser.O pt L ett,1998,23

(1):55~57

6 Per saud M A ,T olchard J M ,Fer guson A I .Efficient g ener ation of pico seco nd pulses at 243nm .I EEE J Q uant Elec ,

1990,26(7):1253~1258

7 Ro termund F ,Pet ro v V.Gener atio n of t he four th harm onic o f a femt osecond T i ∶sapphir e laser.Opt Let t,1998,23

(13):1040~1042

8 杜戈果,王贤华,陈国夫.L D 泵浦的高效掺钕钡酸钇(N d ∶YV O 4)激光器.光子学报,1998,27(7):616~6189 何慧娟,廖严,陈冰瑶.激光二极管泵浦Nd ∶Y V O 4晶体的高效内腔倍频绿光激光器研究.光学学报,1998,18(3):

277~280

10 尹红兵,吴光照,罗山.可望实用化的几种新型激光晶体.激光与电子学进展,1997,(7):6~9

787

9期陈国夫等.全固态紫外激光器研究

ALL -SOLID -STATE ULTRAVIOLET LASER

Chen Guofu,Wang Xianhua,Du Geg uo

State K ey laboratory of T r ansient Op tics T echnology ,X i ′an I nstitute of Op tics &p recision M echanics ,X i ′an 710068

R eceived date :1999-06-29

Abstract All -so lid -state ultr av iolet laser w ith a r esonant enhanccement cavity is reported .A frequen-cy -quadrupled Nd ∶YVO 4laser pumped by LD is described.The Nd ∶YVO 4laser with intracav ity fre-qency-do ubled g enerate g reen laser and deliv er into a enhancement resonant cavity for frequency-quadrupled .The laser has generated ultravoilet lig ht at 266nm w ith low threshold .

Keywords LD pum pe ;Nd ∶YVO 4laser ;Enhancement resonant fr equency -doube ;Ultrav oilet laser Professor Chen Guofu w as g raduated fro m Beijing U niv ersity in 1966.He

is the head of the State Key Lab .of Transient Optics T echno log y ,Xi ′an

Institute o f Optics and Precision M echanics,Academ ia Sinica.He had w orked at Imperial Co lleg e and St.Andr ew s Univ er sity as a visiting schol-ar from 1984~1987.His research involves ultrashort light generation ,measurement and fs no nlinear optics .

788

光子学报

28卷

紫外激光器研究进展及其关键技术讲解

紫外激光器研究进展及其关键技术 黄川 2120160620 摘要:本文详细介绍了利用LD泵浦的紫外激光器产生紫外激光的非线性原理,并在此基础上介绍了在全固态紫外激光器中用到的倍频晶体的种类和各自的应用场景;介绍了近年来高功率固体紫外激光器研制的国内外进展情况,最后展望了高功率全固体紫外激光器研制的未来。 关键词:紫外激光;非线性光学;相位匹配 1、引言 因为紫外激光具有的短波长和高光子的能量特点,所以紫外激光在工业领域内具有非常广泛的应用。在工业微加工领域内,相较于红外激光的热熔过程,紫外激光加工时的“冷蚀效应”可以使加工的尺寸更小,达到提高加工精度的目的。另外,紫外激光器在生物技术,医疗设备加工,大气探测等领域也有广泛的应用。 一般而言,可以将紫外激光器划分为三类:固体紫外激光器,气体紫外激光器,半导体紫外激光器。其中固体紫外激光器应用最为广泛的是激光二极管泵浦全固态激光器。而利用激光二极管抽运的固体UV激光器相较于其他类型的紫外激光器而言,具有效率高,性能可靠,硬件结构简单的特点,因此应用最为广泛,基于LD抽运的全固态UV激光器也得到了迅猛的发展。 在实际的应用当中,实现紫外连续激光输出的方法一般是利用晶体材料的非线性效应实现变频的方法来产生。产生全固态紫外激光的方法一般有两种:一是直接对全固体激光器进行3倍频或4倍频来得到紫外激光;另一种方法是先利用倍频技术得到二次谐波,然后再利用和频技术得到紫外激光。相较于前一种方法,后者利用的是二次非线性极化率,其转换效率要高很多。最常见的是通过三倍频和四倍频技术产生355nm和266nm的紫外激光。下文将简单介绍紫外激光产生的非线性原理。 2、非线性频率转换原理 2.1 介质的非线性极化 激光作用在非线性介质上会引起介质的非线性极化,这是激光频率变换的非线性基础。在单色的电磁波作用下,介质的内部原子,离子等不会发生本征能级的跃迁,但是这些离子的电荷分布以及运动状态都会发生一些变化,引起光感应的电偶极矩,这个电偶极矩作为新的辐射源辐射电磁波。

紫外激光器研究进展及其关键技术

紫外激光器研究进展及其 关键技术 Last revision on 21 December 2020

紫外激光器研究进展及其关键技术 黄川 摘要:本文详细介绍了利用LD泵浦的紫外激光器产生紫外激光的非线性原理,并在此基础上介绍了在全固态紫外激光器中用到的倍频晶体的种类和各自的应用场景;介绍了近年来高功率固体紫外激光器研制的国内外进展情况,最后展望了高功率全固体紫外激光器研制的未来。 关键词:紫外激光;非线性光学;相位匹配 1、引言 因为紫外激光具有的短波长和高光子的能量特点,所以紫外激光在工业领域内具有非常广泛的应用。在工业微加工领域内,相较于红外激光的热熔过程,紫外激光加工时的“冷蚀效应”可以使加工的尺寸更小,达到提高加工精度的目的。另外,紫外激光器在生物技术,医疗设备加工,大气探测等领域也有广泛的应用。 一般而言,可以将紫外激光器划分为三类:固体紫外激光器,气体紫外激光器,半导体紫外激光器。其中固体紫外激光器应用最为广泛的是激光二极管泵浦全固态激光器。而利用激光二极管抽运的固体UV激光器相较于其他类型的紫外激光器而言,具有效率高,性能可靠,硬件结构简单的特点,因此应用最为广泛,基于LD抽运的全固态UV激光器也得到了迅猛的发展。 在实际的应用当中,实现紫外连续激光输出的方法一般是利用晶体材料的非线性效应实现变频的方法来产生。产生全固态紫外激光的方法一般有两种:一是直接对全固体激光器进行3倍频或4倍频来得到紫外激光;另一种方法是先利用倍频技术得到二次谐波,然后再利用和频技术得到紫外激光。相较于前一种方法,后者利用的是二次非线性极化率,其转换效率要高很多。最常见的是通过三倍频和四倍频技术产生355nm和266nm 的紫外激光。下文将简单介绍紫外激光产生的非线性原理。 2、非线性频率转换原理

深紫外全固态激光源

文章点评: 深紫外全固态激光源 实用化的深紫外全固态激光设备出现之前,获取小于200nm的深紫外波段,主要依靠同步辐射和气体放电等非相干光源。这些光源虽有波长短、波段宽的优势,但设备造价高昂,而且存在能量分辨率低、光子通量小、密度低等不足,不能满足深紫外波段前沿科学装备发展的需求。深紫外全固态激光器(DUV-DPL) 不仅仪器成本降低、结构紧凑,而且具有更加优异的性能。 许祖彦院士2009年7月在《中国激光》V ol. 36. No. 7发表的“深紫外全固态激光源”一文中,对DUV-DPL的历史、发展和应用进行了详细的描述。他们利用陈创天院士团队在国际上首次生长出的深紫外激光非线性光学晶体KBBF,创新性地提出氟化钙棱镜耦合专利技术,巧妙地克服了KBBF匹配角切割难题,研制成功实用化、精密化的深紫外固态激光源装备,并成功地应用在周兴江博士所研制的深紫外激光高能量分辨、角分辨光电子能谱仪上,引起国际科仪界的强烈关注。全固态深紫外激光器的研制成功,不仅使得我国激光科技研究突破了200nm以下的深紫外壁垒,实现了仪器的实用化、精密化,而且极大推进了我国科研人员在激光科技研究领域的继续深入,促进了我国前沿科学、光电子产业发展,为这一技术研究领域在国际上持续保持优势地位奠定了坚实的基础。 从上述文章发表到今天,正如许院士在文中所预言,DUV-DPL已经拓展出更多的应用。近几年,他们研制了5类共7台应用深紫外全固态激光器的国际首创的大型科学仪器,提供给物理、化学和材料学家。目前,我国科学家已应用该系列装备在光谱学、石墨烯材料、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等领域获得了一系列重要研究成果,使我国深紫外激光领域的科研水平处于国际领先地位。例如: 周兴江博士研发的同时具有自旋分辨和角分辨的深紫外激光光电子能谱仪、光子能量可调谐深紫外激光光电子能谱仪,用来进行电子参数测量,包括电子能量、动量、自旋等;李灿院士研发的深紫外激光拉曼光谱仪,检测范围最低限降至177.3nm,拉曼光谱大大增加;包信和研究员研发的深紫外激光发射电子显微镜,其精确度将提高到5nm;王占国院士研发的深紫外光致发光光谱仪,用于超宽带隙半导体材料方面的研究,使这类新材料的基础参数检测成

紫外激光器及其分类

紫外激光的波长短,能量聚集集中,分辨率高,特别是具有“冷加工”的特性,能直接破坏连接物质的化学键,而不产生对外围的加热,因此成为加工脆弱物质的理想工具,并能对多种材料进行打孔、切割、烧蚀,在微加工领域中具有广泛的应用。 紫外激光器主要有三种。 第一种是固态、调Q Nd:YAG激光器,其中特殊的晶体被用来把红外1064 nm 波长的光转变成紫外353 nm波长的光。光束形状是高斯型,所以光斑是圆形的,能量从中心到边缘逐渐下降。由于短波长和光束质量限制,光束可以聚焦的大小在10 μm量级。大体上,像全固化激光器一样,紫外激光器对温度变化是很敏感的。在冷启动后,需要长达30分钟来达到足够的稳定性。因此,这些激光器通常有特殊的待机条件,这样所有关键的元件保持在工作温度。高重复频率和小的聚焦光斑使得激光器很适合进行小尺寸的加工。 第二种紫外激光器是气体激光器,准分子激光器。该激光器的波长依赖于所使用的气体混合物类型(如表格所示)。产生的光束不是圆的而是矩形的,光束截面上强度大体上是一致的,在边缘上忽然下降。可以使用掩膜技术来产生不同的几何形状的光斑。加工的细节可以小到几个微米,而聚焦的光学期间和工件之间的距离可以大到50到100 mm。也可使用全息术来产生具体的光束能量图样。 第三种紫外激光器是金属蒸汽激光器。虽然几种其它金属蒸汽也可以用,但是主要使用铜蒸汽。铜蒸汽激光器产生波长为511 nm和578 nm的辐射。此外,还利用混频和倍频来产生波长为255 nm,271 nm,289 nm的紫外辐射。光束分布是高斯分布,这使得该激光器很适用于和其他固态紫外激光器的一样的适用范围。 和其他类型的激光器一样,紫外激光器适合于一个特定的应用领域。它们很适合用在小尺寸、高质量的场合。该技术也开辟了尚无可用技术的新应用领域。可以肯定的是,将来我们会看到大量我们今天想都没有想过的新应用。与可见可红外激光相比,该技术相对较低的处理率将促使激光器制造商开发具有更高平均功率的激光器。这将降低该技术的成本。

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

全固态激光器

全固态激光器全固态激光器(DPL)具有体积小、重量轻、效率高、性能稳定、可靠性好、寿命长、光束质量高等优点,市场需求十分巨大。全固态激光技术是目前我国在国际上为数不多的从材料源头直到激光系统集成拥有整体优势的高技术领域之一,具备了在部分领域加速发展的良好基础。引言高功率、小型化的全固态蓝绿激光器在海洋探测、水下通信等军事领域或者医学方面都具有重要的地位,这些应用一般都需要高功率蓝绿激光。目前,常用的1064 nm Nd∶Y AG激光器的倍频效率一般只有50%左右[1~4],因此通过提高倍频效率来提高整机的电光效率显得非常重要。如何提高非线性光学频率变换的效率一直是激光技术界的研究热点。David Eimerl[5]提出了正交频率变换的概念受到关注,他们按照正交频率变换的方式使用两块KD*P晶体,对于基波是Nd∶YLF激光输出经掺Nd磷酸盐玻璃放大器放大后的1053 nm激光脉冲,在基波功率密度为200 MW/c…半导体激光泵浦的全固态激光器是20世纪80年代末期出现的新型激光器。全固态激光器的总体效率至少要比灯泵浦高10倍,由于单位输出的热负荷降低,可获取更高的功率,系统寿命和可靠性大约是闪光灯泵浦系统的100倍,因此,半导体激光器泵浦技术为固体激光器注入了新的生机和活力,使全固态激光器同时具有固体激光器和半导体激光器的双重特点,它的出现和逐渐成熟是固体激光器的一场革命,也是固体激光器的发展方向。并且,它已渗透到各个学科领域,例如:激光信息存储与处理、激光材料加工、激光医学及生物学、激光通讯、激光印刷、激光光谱学、激光化学、激光分离同位素、激光核聚变、激光投影显示、激光检测与计量及军用激光技术等,极大地促进了这些领域的技术进步和前所未有的发展。这些交叉技术与学科的出现,大大地推动了传统产业和新兴产业的发展。全固态激光器是其应用技术领域中关键的、基础的核心器件,因此一直倍受关注。近年来,由于大功率半导体激光器迅速发展,促成全固态激光器的研发工作得以卓有成效地展开,并取得了诸多显赫成果。已经确认,传统灯泵浦固体激光器的赖以占据世界激光器市场主导地位的所有运转方式,均可以通过半导体激光器泵浦成功地加以实现。通常应用在激光打标机、激光划片机、激光切割机、激光焊接机、激光去重平衡、激光蚀刻等系统中。由于全固态激光器具有高光电转换效率、高功率、高稳定性、高可靠性、寿命长、体积小等优势,采用全固态激光器已成为激光加工设备的趋势和主流方向。全固态激光器的研发与应用概况近几年,美国、德国、特别是日本都在加大力量发展全固态紫外激光器,特别是中大功率全固态紫外激光器的开发应用。由于1064nm或532nm波长激光对材料的加工主要是产生气化或熔融等热作用,所以加工出的产品往往很难达到精细、光滑,甚至有些材料(如陶瓷、硅片等)在加工时会引起碎裂,因此,全固态紫外激光器在激光微加工、激光精密加工有着广泛推广应用的趋势。目前国外工业发达国家,全固态紫外激光器已开始成为工业用标准激光器。据文献报道:日本M.Nishioka公司已研发出40W的266nm全固态紫外激光器;三菱公司也在市场上推出了18W 355nm 25kHz全固态紫外激光器产品;另外相干公司的A VIV系列激光器已做到在266nm,30kHz时,平均功率大于3W,在355nm,40kHz时,平均功率大于10W;光谱物理公司的YHP-series系列激光器也达到在266nm,20kHz时,平均功率大于1.5W,在355nm,20kHz 时,平均功率大于3.5W;Lightwave electronics公司所推出的Q301-SM激光器也达到了在355nm,10kHz时,平均功率大于10W的技术指标。总体来说,国外全固态紫外激光器技术及应用设备已趋向成熟,但价格昂贵。高功率半导体激光列阵单光纤耦合模块可直接作为光源广泛应用于激光医疗、信息产业、激光加工、国防工业、激光武器和战术装备等领域。作为泵浦光源将是泵浦全固态激光器的核心器件,是一种高光-光转换效率(大于30%)的高功率泵浦全固态激光器的商用半导体激光光源模块,是替代灯泵浦激光器的理想产品。目前,国外半导体激光器单根光纤耦合模块的最高研究水平是耦合进入1个芯径400μm,输出功率200W。耦合进入1根800μm的光纤,输出功率700W;耦合进入1根1.5mm的光纤,输出功率超过2000W。国外出售的单光纤耦合模块产品水平如:Apollo公司产品为

紫外绿光激光器

紫外、绿光激光器 张成兵、曾海东2013 7.30~8.1 一、激光器原理 1、紫外激光器 下图为紫外激光器的结构图 红外脉冲激光是由半导体激光器(LD)产生中心波长为808nm的激光,经过扩束、准直、聚焦成高质量光斑入射到Nd:Y AG晶体上吸收泵浦功率,利用Cr4+:Y AG饱和吸收晶体为被动调Q元件产生1064nm的激光。激光经透镜1聚焦在其焦点处f1的两端面镀有1064nm和532nm双增透膜的KTP晶体上,倍频出的532nm倍频光和1064nm基频光经f2后聚焦在三硼酸锂(LBO)晶体上和频,LBO晶体入射面镀有1064nm和532nm的增透膜,另一面镀有355nm的增透膜。输出光经石英棱镜把基频光、倍频光、紫光分开。 2、绿光激光器 下图为绿光激光器的结构图 半导体激光器(LD)产生中心波长为808nm的激光,经光纤耦合输出到聚焦透镜后聚焦到Nd:YVO4激光晶体上,晶体尽可能的靠近镀有808nm增透和1064nm高反双色模的M1镜,将KTP倍频晶体放在基波束腰位置可提高1064nm基频光转换为532nm绿光的转换效率,M2是R=100mm的平凹镜,内侧镀有1064nm高反和532nm高透的双色膜,M3是滤色片,从M3出来的既是绿光。(说明:以上所述原理为网上资料查询,本人在海目星学习所获得的信息基本和它是一致的,激光也是通过倍频产生,只不过激光器内部结构会有所不同) 二、激光参数

说明:其它参数无法直接获得,在此就没有列出来。 紫外激光器电流与功率的关系,绿光的与之类似但是功率值要稍高(8~10W) 三、加工材料 绿光激光器适合加工的材质: PCB板、五金、陶瓷、眼镜钟表、电子器件、仪表、控制面板、铭牌展板、塑料等 紫外激光器适合加工的材质: 善长打UV膜的材料、塑料打标、FPC柔性电路切割、玻璃打标、白色按键打标、宝石打孔、金属或非金属镀层去除、盲孔加工等 四、打样实例 样品:热缩管、橡胶、PCB板、UV胶壳、金属名片(蓝、金、红紫) 1)热缩管 激光参数:24A、20k、800mm、10μs、0.05mm 45度双向填充,f=160mm; 下图(1)、(2)分别是放大60倍和210倍的效果图

固体紫外激光器简介

固体紫外激光器简介 随着对小型电子产品和微电子元器件需求的日益增长,聚合物材料的精密处理日渐成为激光在工业应用中发展最快的应用领域之一。紫外激光是处理广泛应用于微电子元器件工业中的塑料(如聚酰亚胺)和金属(如铜)等材料的理想工具。固态激光器的最新技术推动了新一代结构紧凑,全固态的紫外激光器的发展,从而使之成为这个领域中更加经济有效的加工手段。布线,钻孔和裁剪电路在绝缘体和铜材料的层布式电路板的生产过程中,要求对小型功能性部件进行精细加工,例如在柔性电路板上加工微形通孔、槽和通路辅助孔,以及成型电路板的最终裁剪。 在以往的大批量生产中,许多小部件都使用机械硬冲压成型的模具压制成型。但是,硬冲模法大的损耗和长的交付周期对小部件的加工和成型而言显得不实用且成本高。类似的加工手段,如,使用程控机械钻孔机进行钻孔和布线,或采用较低成本的钢尺或乔木模冲孔处理等法等,也各有局限性;而在矩形,三角形或D 形孔的钻孔以及复杂曲线的精细加工中,这些传统的方法更显得无能为力;同时,工具的磨损,粘胶的溢出以及钻孔造成的材料破碎等也限制了部件的尺寸,精度和合格率。用于互连多层的微通道技术对于今天的高密度互连电路(HDI)越来越重要,但是它们对小尺寸的要求格外严格。通道的直径范围通常为1到10密尔(25-250微米),而传统的机械钻孔和冲孔不适合用于大批量生产直径在6-8密尔(150-250微米)以下的通孔,因为精细钻头和模具的价格非常昂贵,同时寿命却非常短暂。此外,使用这些方法几乎不可能进行盲通道孔的生产和切开填埋的导电垫片等工作。激光微处理激光独一无二的特性使得它成为微处理的理想工具. 激光是非接触性零磨损工具,能够通过聚焦将非常大的能量密度传递到精确的加工位置进行钻孔、切割和焊接。两者间的相互作用的类型取决于待处理的材料的特征和激光的波长和能量。脉冲式CO2激光器和红外YAG 激光器是在材料处理中较为常用的红外激光光源。 但是,许多塑料和一些大量用在柔性电路板基体材料中的特殊聚合物(如聚酰亚胺)不能通过红外处理或"热"处理过程进行精细加工。热会使塑料变形,在切割边缘或者钻孔边缘上产生炭化形式的损伤,而这可能会导致电路板结构性的削弱和寄生传导性通路,从而不得不增加后续处理工序以改善加工结果。因此,红外激光器不适合于某些柔性电路的处理。除此之外,即使在高能量密度下,CO2 激光器的波长也不能被铜吸收,这更加苛刻地限制了它的使用范围。相比之下,紫外激光器的输出波长在0.4微米以下,这是适合于处理聚合物材料的主要优点。与红外加工不同,紫外微处理过程从本质上来说不是"热"处理过程。大多数材料吸收紫外光比红外光更容易,高能量的紫外光光子直接破坏许多非金属材料表面的分子键,这种"冷"加工出来的部件具有光滑的边缘和最低限度的炭化影响。由于紫外

紫外激光器讲解

Http:https://www.wendangku.net/doc/2118451497.html, 紫外激光器(Nd:YVO4 产品说明: BLUV100系列LD 端面泵浦声光调Q 脉冲紫外激光器,采用国际先进谐振腔设计及激光控制技术,实现激光器在高功率运转下能够获得优秀的光束质量和较窄的激光脉冲宽度。特殊的腔内热补偿技术及谐波转换技术实现高效稳定的倍频转换。 本系列激光器采用Nd:YVO4晶体作为增益介质。是对于单脉冲能量要求不大,重复频率要求较高用户的理想选择。 激光器特点: z 超净实验室封装 z TEM 00基模输出(M2<1.2如右图所示: z 长期工作稳定性高, 可满足24/7工业级应用 z 体积小,结构紧凑 z 单机和远程RS232计算机控制,外部GATE 控制, 外部TTL 及PWM 控制 z 重复频率10-150kHZ 可调

z LD 模块可现场更换 应用范围 薄膜蚀刻 玻璃打标 材料微加工 晶圆切割激光快速成型技术参数: MODEL BLUV100-02BLUV100-03BLUV100-07BLUV100-10Wavelength(nm 355 Pulse Repetition Rate Range: 10Hz to 150kHz(up to 500kHz Pulse Width (ns @30kHZ: 18 Average Power(W @30kHZ : 3.0 10Average Power Stability : <±2% over 12 hours Pulse Energy(uJ @30kHZ: 66 100233333Pulse-to-Pulse instability: <3%rms Spatial Mode: TEM00(M2 <1.3 Beam Divergence Full Angle : < 2 mrad

红外激光器与紫外激光器的一些比较

红外激光器与紫外激光器的一些比较 相关网址:https://www.wendangku.net/doc/2118451497.html, https://www.wendangku.net/doc/2118451497.html, https://www.wendangku.net/doc/2118451497.html, https://www.wendangku.net/doc/2118451497.html, 红外YAG激光器(波长为1.06m)是在材料处理方面用得最为广泛的激光源。但是,许多塑料和大量用作柔性电路板基体材料的一些特殊聚合物(如聚酰亚胺),都 关键字:红外激光器,紫外激光器红外激光器与紫外激光器的简单比较 红外YAG激光器(波长为1.06μm)是在材料处理方面用得最为广泛的激光源。但是,许多塑料和大量用作柔性电路板基体材料的一些特殊聚合物(如聚酰亚胺),都不能通过红外处理或"热"处理进行精细加工。因为"热"使塑料变形,在切割或钻孔的边缘上产生炭化形式的损伤,可能导致结构性的削弱和寄生传导性通路,而不得不增加一些后续处理工序以改善加工质量。因此,红外激光器不适用于某些柔性电路的处理。除此之外,即使在高能量密度下,红外激光器的波长也不能被铜吸收,这更加苛刻地限制了它的使用范围。 然而,紫外激光器的输出波长在0.4μm以下,这是处理聚合物材料的主要优点。 与红外加工不同,紫外微处理从本质上来说不是热处理,而且大多数材料吸收紫外光比吸收红外光更容易。高能量的紫外光子直接破坏许多非金属材料表面的分子键,用这种"冷"光蚀处理技术加工出来的部件具有光滑的边缘和最低限度的炭化。而且,紫外短波长本身的特性对金属和聚合物的机械微处理具有优越性.它可以被聚焦到亚微米数量级的点上,因此可以进行细微部件的加工,即使在不高的脉冲能量水平下,也能得到很高的能量密度,有效地进行材料加工 微细孔在工业界中的应用已经相当广泛,主要形成的方式有两种: 一是使用红外激光:将材料表面的物质加热并使其汽化(蒸发),以除去材料,这种方式通常被称为热加工.主要采用YAG激光(波长为1.06μm)。 二是使用紫外激光:高能量的紫外光子直接破坏许多非金属材料表面的分子键,使分子脱离物体,这种方式不会产生高的热量,故被称为冷加工,主要采用紫外激光(波长为355nm)

紫外激光器的发展及应用讲解

紫外激光器的发展及应用 作者姓名:陈跃汉 081011136 完成时间:2010年05月 摘要:录了随着光电子技术的发展中紫外激光器的革命过程以及最新激光仪器,不同的激光仪器各有千秋,避免了上代仪器的缺点,以高重复率激光器和高功率激光器为例,分别代表了两种不同的脉冲激光器产品。多年来紫外激光由气体激光器到固体激光器产生了一大飞跃,目前人们广泛使用的对宽禁带半导体进行打标的高重复率紫外激光器对半导体工业市场产生了巨大的影响。未来科学家将努力把纳米技术运用到微型光电器件的组成中。 关键词:紫外激光器高重复率激光器高功率激光器宽禁带半导体 紫外激光器的产生源于光电子技术的产生以及发展,首先从它的原理来说,紫外光波之所以优于红外光波以及可见光波主要是由于紫外激光可以直接破坏连接物质原子组分的化学键加工物质而不会破坏周围环境。而以准分子激光器和离子激光器为代表的气体激光器是很多年来运用广泛对工业技术具有很大影响的紫外激光。近十年中用激光二极管抽运的固体激光器技术不仅提高了功率,优化了模式质量而且使方向稳定性更加长期。在一些工业中符合高重复率的紫外激光器要数对宽禁带半导体进行打标的紫外激光器,它避免了对晶片的微创。当然激光二极管抽运的固体激光器还有体积小易操作等多种优点。而科学家们更想在性能和体积上优化电子设备,所以纳米技术无疑成为了最好了选择。 本文主要介绍紫外激光器的原理以及常用的激光器,紫外激光器的优良性能,激光器的发展以及最新的激光器产品。 1 紫外激光器的原理 除自由电子激光器外,各种激光器的基本工作原理均相同,产生激光的必不可少的条件就是离子数反转或者增益大于损耗,所以装置中必不可少的组成部分有激励

相关文档