文档库 最新最全的文档下载
当前位置:文档库 › GMP多肽合成仪

GMP多肽合成仪

GMP多肽合成仪
GMP多肽合成仪

GMP多肽合成仪

仪器简介:

PSI500全自动多肽合成仪是全球第一款整机全部采用316L不锈钢制造的全自动多肽合成仪,可以防止任何多肽合成试剂的腐蚀;是世界上第一个采用试剂循环功能的多肽合成仪,可为客户节约40%以上的试剂;其完全采用PSI公司I独有的“无死角”搅拌技术,最大限度的提高多肽合成的耦合效率;PSI500目前已成为欧美企业和中国企业使用最多的大型多肽合成

1、合成量为5g到1kg,实现了线性放大

2、多肽合成实现全程自动控制,氨基酸和试剂的添加,搅拌速度、反应时间等均可通过模块化的程序设定

3、均匀快速搅拌系统,搅拌充分彻底,反应无死角,树脂无破损

4、试剂循环使用功能,可节约大约40%的试剂,不但大大降低生产成本,而且有利于环保

5、选用美国航天飞机专用马达,不需维修,持久耐用

6、整机采用316L不锈钢材质可以防止任何多肽合成实际的腐蚀

7、采用通用耗材,大大降低了客户使用成本

8、依照美国FDA标准设计制造,全面符合中国GMP认证

多肽合成方法

多肽合成中肽键形成的基本原理 一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水。 在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B)。如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。 因此,多肽合成-即每一个肽键的形成,包括三个步聚: 第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在; 第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。 第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继??? 续肽合成,选择性脱除保护基也是必需的。 由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。 在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。 在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一的例外),存在发生的消旋的潜在危险。 多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思熟虑地规划,依战略选择,可以选择性脱除Nα-氨基保护基或羧基保护基。“战略”一词这里是指单个氨基酸的缩合反应顺序。一般来说,在逐步合成和片段缩合之间是有区别的。在溶液中进行肽合成(也指“常规合成”),对困难序列,多数情况下,用肽链逐步延长法只能合成较短的片段。要合成更长的肽时,目标分子必须分割成合适的片段,并确定在片段缩合过程中,它们能使能C端差向异构化程度最小。在单个片段逐步组装完成后,再连接产生目标化合物。肽合成战术包括选择最恰当的保护基组合和最佳的片段偶联方法。 最初的固相多肽合成(SPPS)只是肽和蛋白质逐步合成法的一种变化,其概念是将增长的肽链连接到一个不溶性的聚合物载体上,由Robert Bruce Merrifield在1963年首次报道。今天,为纪念他1984年获得诺贝尔奖而称之为Merrifield。在聚合物载体上,也可以进行片段缩合反应。

多肽合成仪手册

SYMPHONY 1. 系统简介与说明 1.1 简介 Symphony主窗口如下所示,其中包含了系统中所有菜单栏和图标工具栏,其相应的功能包括:编写肽序列、编辑程序、合成操作、执行一个单步操作、计算氨基酸的重量和溶剂的体积等。窗口的底部是系统状态栏,显示当前N2、真空及空气的状态和计算机时间,同时,当一个废液桶充满后,会显示警告信息。操作者正在进行的很多相关操作状态都会在状态栏中显示。 使用Symphony窗口可使编程、编写肽序列、给反应器加压、选择某个肽序列等操作变得相当简单,只需鼠标点击,就可以执行。在此过程中,操作将按照默认参数进行。溶剂和试剂的名称分别显示在RV操作窗口和瓶准备操作窗口及报告中。默认条件下,系统使用的是肽化学中标准的溶剂名称和氨基酸名称,这些名称均来自于瓶准备操作窗口中显示的Good Laboratory Practice(GLP)文件,操作者可以创建和使用自定义的GLP文件。除此之外,本窗口中还有许多功能可供操作者使用,如:操作者可以在计算窗口中计算合成所需溶剂和试剂的量,可以创建一个新的自定义GLP文件,并且可以指定其为所有溶剂和试剂的GLP文件。计算窗口所用到的溶剂和试剂(AA)数据文件既可以由操作者自定义,也可以使用系统默认值。 不同窗口中有许多相同的功能部分,在共性帮助文档中有对应的解释。 1.2 系统概述 1.2.1 共性 在不同的窗口中有许多相同的功能部分,其中之一就是文件对话框,另外一个就是文件File Open(文件打开)按钮。操作者可以点击窗口右上方的“X”图标来关闭窗口,同样的功能也可以点击Close(关闭)按钮来实现。操作者可以通过点击窗口右上方的最小化和最大化图标来实现窗口的最小化和最大化。所有窗口中都有cursor和input focus。编辑控制框或编辑框可供操作者输入信息,当某个编辑控制框或编辑框被选中时,操作者可以在其中选择或输入信息,光标闪动的地方就是操作者可以输入信息的位置。通常情况下,光标是一条闪烁的线条,当然,操作者也可以自定义光标形状。如果操作者希望改变输入,只需简单的按动Tab键,如果希望反向移动,同时按shift和Tab键即可。操作者可以在编辑框中输入信息,可以在下拉式选择列表框中输入或选择某一信息,一般情况下,下拉式选择列表框

国内外多肽合成仪主要品牌及选购指南

国内外多肽合成仪主要品牌及选购指南 一、基本概念 1.多肽 是一种与生物体内各种细胞功能都相关的生物活性物质,它的分子结构介于氨基酸和蛋白质之间,是由多种氨基酸按照一定的排列顺序通过肽键结合而成的化合物。 2.多肽合成 是一个重复添加氨基酸的过程,固相合成顺序一般从C端(羧基端)向 N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。从1963年Merrifield发展成功了固 相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一 个常用技术,表现出了经典液相合成法无法比拟的优点,从而大大的减轻了每步产品提纯的难度。多肽合成总的来说分成两种:固相合成和液相多肽合成。 3.多肽合成仪 多肽合成是一个以树脂(人工合成的固相介质)为载体,在一定的反应条件下重复添加氨基酸,经过化学反应后合成多肽的过程,多肽合成仪即是用来合成多肽的仪器。一般情况下,多 肽合成仪整体由主体、传输设备、动力装置以及软件系统组成。 二、历史背景 1.固相合成法的诞生 多肽合成研究已经走过了一百多年的光辉历程。1902年,Emil Fischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢,直到1932年,Max Bergmann等人开始使用苄氧羰基(Z来保护α-氨基,多肽合成才开始有了一定的发展。 到了20世纪50年代,有机化学家们合成了大量的生物活性多肽,包括催产素,胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出 现提供了实验和理论基础。 1963年,Merrifield首次提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程 碑意义的合成方法,一出现就由于其合成方便,迅速,成为多肽合成的首选方法,而且带来了 多肽有机合成上的一次革命,并成为了一支独立的学科——固相有机合成(SPOS)。因此,Merrifield荣获了1984年的诺贝尔化学奖。Merrifield经过了反复的筛选,最终屏弃了苄氧 羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,同时,Merrifield在60年代末发明了第一台多肽合成仪,并首次合成生物蛋白酶,核糖核酸 酶(124个氨基酸)。 1972年,Lou Carpino首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下 可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,以BOC和FMOC这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改 造和完善。同时,固相合成树脂,多肽缩合试剂以及氨基酸保护基,包括合成环肽的氨基酸正 交保护上也取得了丰硕的成果。 2.多肽合成仪的诞生 虽然Merrifield在发明固相多肽合成科学并取得巨大成功的同时,使用了自主研发的合成

合成多肽药物有关物质研究的几点考虑

发布日期20071127 栏目化药药物评价>>非临床安全性和有效性评价 标题合成多肽药物有关物质研究的几点考虑 作者审评五部 部门 正文内容 审评五部 有关物质研究是合成多肽药物药学研究的一项重要内容,由于合成多肽本身结构、合成工艺以及稳定性方面的特殊性,这类药物的 有关物质研究较为复杂、存在一定的难度。国家食品药品监督管理 局颁布的《合成多肽药物药学研究技术指导原则》已经就该类产品 的有关物质研究提出了原则性的要求,本文主要是根据审评中遇到 的一些共性问题就合成多肽药物有关物质研究需重点关注的几个 问题做进一步的说明。 (一)合成多肽药物有关物质的特点和研究的难点。 合成多肽的有关物质主要为源于合成过程带来的工艺杂质和由于多肽不稳定而产生的降解产物、聚合物等。 工艺杂质尽管目前合成多肽的纯化工艺已经有了很大进步,但工

艺杂质仍是合成多肽有关物质的重要来源,这主要是由于合成多肽的一些工艺杂质(如缺失肽、断裂肽、氧化肽、二硫键交换的产物等)与药物本身的性质可能非常近似,从而给纯化造成了一定的难度。而且,不同的多肽合成方法也在很大程度上决定了终产品中杂质的性质,例如液相合成和固相合成所引入的工艺杂质就会明显不同,固相合成中Boc合成法与Fmoc合成法所产生的杂质也会有所差异,甚至不同的保护/脱保护策略都会带来不同的工艺杂质。因此,在进行合成多肽的有关物质研究时,研究者必须结合自身的工艺特点对可能由此引入的杂质有充分认识,从而才能够建立有针对性的有关物质研究方法。同时,这也意味着,对于仿制产品而言不能盲目照搬国家标准、已上市产品的有关物质检查方法,必须充分考虑到产品本身的工艺特点。 降解产物及聚合物多肽的化学稳定性和物理稳定性一般较差,因此降解产物、聚合物等是合成多肽有关物质研究的主要对象之一。影响合成多肽稳定性的因素包括脱酰胺、氧化、水解、二硫键错配、消旋、β-消除、聚集等,研究显示合成多肽中最常见的降解产物是脱酰胺产物、氧化产物、水解产物。在组成多肽的各种氨基酸中,天冬酰胺、谷胺酰胺易于发生脱酰胺反应(尤其是在pH值升高和高温条件下);甲硫氨酸、半胱氨酸、组氨酸、色氨酸、酪氨酸最易氧化,对光照也较为敏感;天冬氨酸参与形成的肽链较易断裂,尤其是Asp-Pro和Asp-Gly肽键。由于一个多肽分子中通常

生物多肽工艺流程

生物多肽工艺流程 一、固相肽合成 (1)投料:树脂加入固相合成仪,加入DCM溶胀,抽干后加入DMF洗涤,洗涤结束抽干备用。 (2)缩合:将氨基酸用一定体积的DMF溶解,加入缩合剂活化后投入固相合成仪,补充DMF至反应浓度,搅拌反应。 (3)脱除保护基:以Kaiser试剂检测反应程度,反应结束后抽干溶剂,DMF洗涤,加入PIP/DMF溶液脱除保护基,以Kaiser试剂检测反应程度,反应完毕抽干溶剂,DMF洗涤,准备加入下一个氨基酸。 (4)缩合循环:按照树脂序列依次连接氨基酸,按照“脱保护——洗涤——活化氨基酸——投料缩合——洗涤”步骤进行缩合循环操作,按照氨基酸序列完成剩余n个氨基酸的缩合。 (5)出料:合成结束之后用IPA和DCM交叉洗涤树脂,完成树脂收缩收缩,出料至不锈钢托盘。 (6)树脂干燥:树脂在真空干燥箱中室温干燥,干燥完毕称重,计算收率。 (7)有机废液回收,集中处理。 (8)清场:操作结束后操作人员及时清场。 二、树脂裂解 (1)配液:按照裂解液成分比例配置裂解液,并提前置冰柜中冷藏保存。 (2)投料:肽树脂加入反应釜中,加入预冷的裂解液,搅拌反应。 (3)出料:裂解结束后放出反应液,抽滤除去树脂并以TFA洗涤。 (4)浓缩:裂解液转入旋转蒸发仪室温浓缩至小体积。 (5)析出:浓缩后的反应液倾入预冷的甲基叔丁基醚(简称醚)中,搅拌使

析出大量固体。 (6)离心:浊液离心,并用预冷的醚洗涤。 (7)粗肽干燥:涤完成的粗肽转至真空干燥箱中室温干燥。 (8)有机废液回收,集中处理。 (9)清场:操作结束后操作人员及时清场。 三、多肽HPLC纯化 (1)溶解:操作人员将粗肽溶解,调节PH至工艺规定范围。 (2)过滤:滤去粗肽溶液中不溶物,过滤ACN和纯化水。 (3)配制纯化液:根据工艺内容配制A相(乙腈)和B相(水)。 (4)纯化:在制备型液相上进行纯化,分别接收流份。 (5)检验及返工:对制备流份进行检查,合并合格流份,其他部分根据需要再次纯化。 (6)废弃流动相按有机废液回收,集中处理。 四、浓缩过滤冻干 (1)浓缩:合并滤液旋蒸除去有机溶剂,有机废液回收,集中处理。 (2)过滤:浓缩后水相无菌过滤。 (3)冻干:滤液置冻干机中,设定升温程序冻干。 (4)出箱:出料、加内包。 五、质量检查、入库 工艺流程图如下所示。

多肽合成基础知识汇编

多肽合成基础知识汇编 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

----------------------------------------------------------------------------------------- 多肽合成 基础知识汇编 编制: 合成部 ----------------------------------------------------------------------------------------- 一、多肽合成概论 1.多肽化学合成概述: 1963年,[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc 固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要

关于多肽合成

关于多肽合成 1.多肽化学合成概述: 1963年,R.B.Merrifield[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc 固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc 法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。 多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。 从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和及洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法, 2.固相合成的基本原理 多肽合成是一个重复添加氨基酸的过程,固相合成顺序一般从C端(羧基端)向 N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。现在多采用固相合成法,从而大大的减轻了每步产品提纯的难度。为了防止副反应的发生,参加反应的氨基酸的侧链都是保护的。羧基端是游离的,并且在反应之前必须活化。化学合成方法有两种,即Fmoc和tBoc。由于Fmoc比tBoc存在很多优势,现在大多采用Fmoc 法合成,如图: 具体合成由下列几个循环组成:

合成多肽药物药学研究技术指导原则

附件三 合成多肽药物药学研究技术指导原则

合成多肽药物药学研究技术指导原则 一、前言 多肽类化合物是一类重要的生物活性分子。20世纪70年代生物技术在生命科学领域的应用,使多肽等生物技术药物的研究进展迅速;与此同时,随着多肽固相合成技术及高效液相色谱(HPLC)纯化、分析技术等的发展,合成多肽药物的开发也成为药物研究中的一个活跃领域。 采用化学合成方法制备多肽,可以对天然多肽的结构进行修饰,从而增加多肽与受体的亲和力、选择性,增强对酶降解的抵抗力或改善药代动力学特性,甚至由受体的激动剂变为拮抗剂;此外,新技术的发展,例如以多肽固相合成和组合化学为基础的组合肽库合成技术,使得在短时间内获得大量的多肽化合物成为可能,药物筛选的效率不断提高。因此,将会有越来越多的采用化学合成方法制备的多肽类化合物成为治疗用药物。 合成多肽药物是指采用化学合成方法制备的多肽类药物。这类药物的药学研究同样遵循国家食品药品监督管理局已经发布的相关技术指导原则的一般性要求。但是,由于多肽主要由氨基酸(包括天然氨基酸和非天然氨基酸)构成,这使得多肽类药物在制备方法、结构确证、质量研究等方面又有与一般药物不同的独特问题。本指导原则就是在已有的相关指导原则基础上,对合成多肽药物药学研究方面所涉及的特殊问题进行分析,结合国内对多肽药物研究和评价的实践经验,提出多肽药物药学各项研究的一般性要求。当然,具体品种研究的内容与深度还要取决于品种本身的特性。 本指导原则适用于采用液相或固相合成方法制备的多肽药物。

二、合成多肽药物药学研究的基本考虑 合成多肽药物药学研究的主要内容、研究思路、研究方法及一般性的技术要求与其他类型的化学药物基本一致。但是,由于多肽药物的特点,在进行药学研究时还应注意考虑以下问题。 1、关于多肽(原料药)合成工艺选择的考虑 多肽的化学合成是有机合成的一个非常特殊的分支,目前主要有液相合成和固相合成两种方法。 液相合成是经典的多肽合成方法,一般采用逐步合成或片段缩合方法。逐步合成法通常从链的C'末端氨基酸开始,向不断增加的氨基酸组分中反复添加单个α-氨基保护的氨基酸。片段缩合一般先将目标序列合理分割为片段,再逐步合成各个片段,最后按序列要求将各个片段进行缩合。液相合成的优点是每步中间产物都可以纯化、可以获得中间产物的理化常数、可以随意进行非氨基酸修饰、可以避免氨基酸缺失,缺点是较为费时、费力等。 固相合成是将目标肽的第一个氨基酸的羧基以共价键的形式与固相载体(树脂)相连,再以这一氨基酸的氨基为合成起点,使其与相邻氨基酸(氨基保护)的羧基发生酰化反应,形成肽键。然后让包含有这两个氨基酸的树脂肽的氨基脱保护后与下一个氨基酸的羧基反应,不断重复这一过程,直至目标肽形成为止。其优点是简化了每步反应的后处理操作,避免因手工操作和物料转移而产生的损失,产率较高且能够实现自动化等;其缺点是每步中间产物不可以纯化,必须采用较大的氨基酸过量投料,粗品纯度不如液相合成物,必需通过可靠的分离手段进行纯化等。 液相合成和固相合成各有优缺点,应根据合成的实际需要选择适合的工艺。一般而言,液相合成法较适于合成短肽;固相合成法

组合化学_新药创制的高效方法与技术

2003年4月重庆大学学报Apr.2003 第26卷第4期Journal of Chongqing University V ol.26 N o.4 文章编号:1000-582X(2003)04-0080-06 组合化学:新药创制的高效方法与技术Ξ 廖春阳,李伯玉,张梦军,李志良 (重庆大学化学化工学院,重庆 400044) 摘 要:阐述了一种新药创制及绿色化学的高效方法与技术———组合化学的起源、现状、建库及活性物鉴别表征,固相与液相组合合成,介绍了各种分析手段在大规模组合化学与高通量群集筛选中的应用。讨论组合化学信息与计量学的应用:估计合成收率,预测产物活性。说明了绿色组合化学能充分利用资源和原料,节省人力和时间。将组合化学与药物设计相结合,可望高效寻找到理想新药。同时还扼要交流了实验室完成的工作,并对组合化学发展作出展望。 关键词:组合化学;组合库;群集筛选;化学信息与计量学;绿色化学;新药创制 中图分类号:R914;O69;T Q655 文献标识码:A 组合化学(C ombichem)起源于R.B.Merrifield[1] (1984年诺贝尔化学奖得主)于1963年提出关于多肽固相合成的开创性工作,故在早期被称作同步多重合成,合成肽组合库,也被称为组合合成,组合库和自动合成法等。组合化学最初是为了满足生物学家发展的高通量筛选技术对大量的新化合物库的需要而产生的。60年代初期,Merrifield[1]建立的固相多肽合成法为组合化学方法的建立奠定了基础。随后,多肽合成仪的出现,使该方法成为一种常规手段。80年代中叶,G eysen[2]建立的多中心合成法,H oughton[3]建立的茶叶袋法中首次引入了肽库的概念。1991年,混合裂分合成法[4]的提出标志着组合化学的研究进入了一个飞速发展的阶段。1996年,在美国加州的C oronado召开了“组合化学”研讨会,同年,两种与组合化学密切相关的“分子多样性”和“生物筛选杂志”诞生。C A从1994年的第120卷设立“组合化学”主题索引以来,迄今已收录相关文献1200篇以上。美国化学会于2000年还创立了组合化学杂志的专门学术期刊。迄今,国内外众多学者已用专辑或专文介绍了组合化学原理及基本方法技术[4-6]。组合化学起源于药物合成,继而发展到有机小分子合成,分子构造分析,分子识别研究,受体和抗体的研究及材料科学包括超导材料的研制等领域,它是一项新型化学技术,是集分子生物学、药物化学、有机化学、分析化学、组合数学和计算机辅助设计等学科交叉而形成的一门边缘前沿学科,在药学、有机合成化学、生命科学和材料科学中扮演着愈来愈重要的角色。组合化学主要由3部分组成:组合库的合成,库的筛选,库的分析表征。组合库设计的目的之一,正是以分子最大的多样性模拟生物多样性。因此,组合化学也是代表21世纪发展趋势的仿生化学的研究范畴之一。目前,虽然编码标识技术和高通量筛选方法发展缓慢制约了组合化学的蓬勃发展,但随着固相及液相合成技术的进步,组合化学必将得到更大发展并推进新药创制。 1 新药创制背景 药物研究与开发过程的结果是能够表征出确定化合物的结构,此类化合物对某一指定的生物学指标具有人们期望的活性,并且已在适当的动物模型上测定出其对相关疾病有合适的生物可利用性及功效,同时具有高效安全等特点。药物开发过程几个关键步骤如下:治疗的目标→寻找先导化合物→优化先导化合物→研制候选药物→新药物。药物开发是一项耗时耗资的工程,从启动一项研究计划到开发出一个潜在的药物并进行临床试验,对于一个大的制药公司而言,这一过程一般需要5年左右。开发期如此漫长,原因之一是合成与筛选到所期望的被测试活性化合物通常很慢甚至要多次反复的一步。在药物开发计划的早期,药物化学家需要找到一种先导化合物(lead com2 pound),即对生物学指标有效而效果可能较差的某种分子结构。在此阶段,药物开发者经常将文献中或竞争对手的化合物作为先导物,但经常会遇到治疗的靶 Ξ收稿日期:2002-12-03 基金项目:霍英东基金[98]与国家“春晖计划”教育部启动基金[99-38]及重庆市应用基础课题[01-03-06]资助项目作者简介:廖春阳(1977-),男,广西柳州人,重庆大学硕士,主要从事组合化学和筛选,药物合成与分析,分子设计及模拟。

多肽合成

多肽合成技术 多肽化学已经走过了一百多年的光辉历程,1902年,Emil Fischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢,当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。直到1932年,Max Bergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。也就是这个阶段,Fred Sanger发明了氨基酸序列测定方法,并为此获得了1958年的Nobel 化学奖。还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。1963年,Merrifield提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。当然,Merrifield也因此荣获了1984年的Nobel化学奖。也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。同时,Merrifield在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。1972,Lou Carpino 首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。 多肽化学合成的基本介绍 多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。 1.1.氨基酸保护基 20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。其中Trp也可以不保护,因

多肽合成方法

多肽合成中肽键形成的基本原理一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水。在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B)。如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。因此,多肽合成-即每一个肽键的形成,包括三个步聚:第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在;第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继??? 续肽合成,选择性脱除保护基也是必需的。由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。 在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没 有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一 种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。 在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一 的例外),存在发生的消旋的潜在危险。 多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护 以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思熟虑 地规划,依战略选择,可以选择性脱除 N α -氨基保护基或羧基保护基。“战略” 一词这里是指单个氨基酸的缩合反应顺序。一般来说,在逐步合成和片段缩合之间 是有区别的。在溶液中进行肽合成(也指“常规合成”),对困难序列,多数情况 下,用肽链逐步延长法只能合成较短的片段。要合成更长的肽时,目标分子必须分 割成合适的片段,并确定在片段缩合过程中,它们能使能 C 端差向异构化程度最 小。在单个片段逐步组装完成后,再连接产生目标化合物。肽合成战术包括选择最 恰当的保护基组合和最佳的片段偶联方法。 最初的固相多肽合成( SPPS )只是肽和蛋白质逐步合成法的一种变化,其概念是将 增长的肽链连接到一个不溶性的聚合物载体上,由 Robert Bruce Merrifield

多肽合成技术

精心整理 多肽合成技术多肽化学已经走过了一百多年的光辉历程,1902年,EmilFischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。直到1932年,MaxBergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。也就是这个阶段,FredSanger 发明了氨基酸序列测定方法,并为此获得了1958年的Nobel化学奖。还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。1963年,Merrifield 提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。当然,Merrifield也因此荣获了1984年的Nobel化学奖。也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。同时,Merrifield在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。1972,LouCarpino首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。 多肽化学合成的基本介绍 多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。 1.1.氨基酸保护基 20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。其中Trp也可以不保护,因为吲哚性质比较稳定。当然在特殊的情况下,有些氨基酸也可以不保护,象,Asn,Gln,Thr,Tyr。

多肽固相合成

发明 英文解释: solid phase peptide synthesis 简写为SPPS 在肽合成的技术方面取得了突破性进展的是R.Bruce Merrifield,他设计了一种肽的合成途径并定名为固相合成途径。由于R.BruceMerrifield在肽合成方面的贡献,1984年获得了诺贝尔奖。下面给出了肽固相合成途径的简单过程(合成一个二肽的过程)。 氯甲基聚苯乙烯树脂作为不溶性的固相载体,首先将一个氨基被封闭基团(图中的X)保护的氨基酸共价连接在固相载体上。在三氟乙酸的作用下,脱掉氨基的保护基,这样第一个氨基酸就接到了固相载体上了。然后氨基被封闭的第二个氨基酸的羧基通过N,Nˊ-二环己基碳二亚胺(DCC,Dicyclohexylcarbodiimide)活化,羧基被DCC活化的第二个氨基酸再与已接在固相载体的第一个氨基酸的氨基反应形成肽键,这样在固相载体上就生成了一个带有保护基的二肽。 重复上述肽键形成反应,使肽链从C端向N端生长,直至达到所需要的肽链长度。最后脱去保护基X,用HF水解肽链和固相载体之间的酯键,就得到了合成好的肽。 固相合成的优点主要表现在最初的反应物和产物都是连接在固相载体上,因此可以在一个反应容器中进行所有的反应,便于自动化操作,加入过量的反应物可以获得高产率的产物,同时产物很容易分离。 化学合成多肽现在可以在程序控制的自动化多肽合成仪上进行。Merrifield成功地合成出了舒缓激肽(9肽)和具有124个氨基酸残基的核糖核酸酶。1965年9月,中国科学家在世界上首次人工合成了牛胰岛素。固相合成法的诞生 多肽合成研究已经走过了一百多年的光辉历程。1902年,Emil Fischer 首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢,直到1932年,Max Bergmann等人开始使用苄氧羰基(Z)来保护α-氨基,多肽合成才开始有了一定的发展。

多肽合成方法

实施例1 本发明多肽的合成 1)实验仪器与材料: 二甲基甲酰胺(DMF),哌啶,树脂,二氯甲烷(DCM),茚三酮反应试剂(茚三酮,维C,苯酚),四甲基脲六氟磷酸盐(HBTU),六氢吡啶(哌啶),三异丙基硅烷TIS,乙二硫醇(EDT),无水乙醚,三氟乙酸(TFA),N-甲基吗啉(NMM),甲醇,各种氨基酸,Fmoc-e-Acp-OH,FITC,多肽固相合成管。 2)溶液配制 脱保护溶剂——六氢吡啶:DMF=1:4 反应液——NMM:DMF=1:24 裂解液——TFA(92.5%)TIS(2.5%)EDT(2.5%) 茚三酮测试液——茚三酮、vc、苯酚各一滴 荧光偶联溶剂——吡啶:DMF:DCM=12:7:5 2)实验步骤: 称量树脂并投入到多肽固相合成管(以下简称反应器)中,加入适量的DMF 溶胀半小时以上。抽掉DMF,用脱保护液进行Fmoc去保护反应,10min于摇床。抽掉去保护液,用DMF、DCM洗涤3次,从反应器中取少量树脂(约5~10mg)于试管中,用乙醇洗涤2次,茚三酮法检测并记录颜色,准备投料,进入氨基酸缩合反应。分别按照SEQ.1- SEQ.N肽的氨基酸序列顺序取相应氨基酸、HBTU (氨基酸:HBTU=1:1),用反应液溶解,投入到反应器中,搅拌反应。1-2小时后,从反应器中取少量树脂于试管中,用乙醇洗涤2次,茚三酮法检测。抽掉反应器中的液体,用DMF、DCM各洗涤2次,得到第一个氨基酸缩合后的肽树脂。对所得肽树脂重复进行以上“Fmoc去保护——氨基酸缩合”反应步骤,至最后一个氨基酸反应完毕,得到序列号为SEQ ID NO.1 –N+1的肽。反应完毕后,DMF、DCM各洗涤树脂2-3次,甲醇洗两次,继续抽干15-20min。反应器中取出合成完的肽树脂,在室温下于裂解液(裂解液先冰浴20min)中裂解两小时。将树脂过滤后,于旋蒸仪蒸干,用无水乙醚(冰浴)洗3次。粗肽使用制备型反相HPLC纯化,使用HPLC检测纯度>90%。所得到的纯肽使用质谱(MS, electrospray)鉴定。 至最后一个肽合成后,取出部分加荧光标记。先将Fmoc-e-Acp-OH按氨基

多肽合成的研究及应用现状

多肽合成的研究及应用现状 多肽合成的研究及应用现状 多肽是一种与生物体内各种细胞功能都相关的生物活性物质,它的分子结构介于氨基酸和蛋白质之间,是由多种氨基酸按照一定的排列顺序通过肽键结合而成的化合物。到现在,人们已在人体中发现和分离出一百多种肽类,关于多肽的研究与应用,也取得了巨大的进步,引发了空前的研究热潮。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值,多肽研究成为了医学和分子生物学研究的重点对象,世界各先进国家无不拨出巨款来建立各种规模的多肽研究中心,以期在这一重要领域中取得突破性进展。现在具有生物活性的多肽已经广泛地应用在临床检测、医学研究、疾病防治和治疗等三大方面。 1,多肽合成的研究历史 多肽合成研究已经走过了一百多年的光辉历程,1902年,Emil Fischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢,直到1932年,Max Bergmann等人开始使用苄氧羰基(Z)来保护α-氨基,多肽合成才开始有了一定的发展。到了20世纪50年代,有机化学家们合成了大量的生物活性多肽,包括催产素,胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现提供了实验和理论基础。1963年,Merrifield首次提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出现就由于其合成方便,迅速,成为多肽合成的首选方法,而且带来了多肽有机合成上的一次革命,并成为了一支独立的学科——固相有机合成(SPOS),为此,Merrifield荣获了1984年的诺贝尔化学奖。Merrifield经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,同时,Merrifield在60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。1972,Lou Carpino 首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,以BOC和FMOC这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善。同时,固相合成树脂,多肽缩合试剂以及氨基酸保护基,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 2,多肽合成的原理与步骤 多肽合成是一个重复添加氨基酸的过程,固相合成顺序一般从C端(羧基端)向 N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点,从而大大的减轻了每步产品提纯的难度。 2.1多肽合成基本原理: 先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和及洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法。 2.2固相多肽合成的步骤: A,树脂的选择及氨基酸的固定

相关文档