文档库 最新最全的文档下载
当前位置:文档库 › 水泥混凝土路面板底脱空应力分析及配筋计算

水泥混凝土路面板底脱空应力分析及配筋计算

水泥混凝土路面板底脱空应力分析及配筋计算
水泥混凝土路面板底脱空应力分析及配筋计算

2008年05期(总第41期)

基金项目:交通部西部交通建设科技资助项目(200131822370)。

作者简介:罗翥(1975-),男,广西凤山人,助理研究员,博士研究生,研究方向为水泥混凝土路面结构与材料。

本期专题

水泥混凝土路面的早期断板及破碎病害,多数情况下与脱空有关。由于板底冲刷、路基沉降不均、温差翘曲变形等诸多原因,水泥混凝土路面在使用过程中常常出现不同程度的脱空。脱空使局部板体失去了支撑,面板的受力形态发生了显著的变化,在轮载的作用下,过早地发生破坏。因此,有必要对板体的脱空形态进行相应的力学分析,特别是研究在轴载作用下脱空板内应力的变化规律。便于从理论上提出有效的预防和改善措施。

1脱空模型的建立

1.1

脱空模型的基本假设

脱空板的实际形态可能极其复杂,不可能也无必要进行详细的剖析。根据脱空的特点,从偏于安全的角度对脱空面板进行宏观力学建模,在模型分析中,进行如下假定:

(1

)板角出现脱空后,脱空部位即失去支撑,受力模式等同于悬臂结构。

(2)车辆轮迹按圆形模拟,轮迹内荷载均布。(3

)临界荷位处于脱空面最远端的板角、板边部

位,通过试算确定。

1.2脱空板的弯矩

将坐标原点置于脱空板角处,x、y两轴与板的两边重合,两板边的脱空长度分别为Lx、Ly,MN为脱空临界面。假定轮载为p,轮迹圆半径为r,圆心坐标E为(x0,y0),如图1所示。

当脱空不仅限于板角时,面板的两对边分别出现

L1、L2的脱空,则如图2所示。

图1板角脱空示意图

图2板边脱空示意图

根据上述脱空模型,车轮荷载对MN脱空面的弯矩

水泥混凝土路面板底脱空应力分析及配筋计算

翥1,2

,傅

智2,赵尚传2,杜天玲

(1.东南大学交通学院,江苏南京

210096;2.交通部公路科学研究院,北京100088

)摘要:文章针对水泥混凝土路面板底脱空的特点,建立了板角、板边脱空的力学分析模型,根据交通等级和公

路等级进行疲劳和动载修正,提出了脱空板荷载疲劳应力的计算方法。研究了脱空尺寸及交通等级对脱空应力的影响关系,按照钢筋混凝土设计理论,确定了不同脱空状态板体补强设计时所需的配筋量。关键词:道路工程;配筋量;应力分析;水泥路面;板底脱空中图分类号:U416.2

文献标识码:B

公路交通科技应用技术版可按(1)式计算

M=P

2π

!dφr0!(d-ρcosφ)ρdρ=pπr2d(1)

由(1)式可知,在轮载面积确定的情况下,脱空板产生的弯矩与脱空尺寸、轮载大小有关。如果脱空部位有多个轮载作用,脱空临界面产生的总弯矩为各单轮产生弯矩的总和,即总弯矩满足单个弯矩的线性叠加。1.3经疲劳及动载修正后的脱空应力

求得弯矩后,脱空临界面上的弯拉应力可按(2)式确定

(2)式中,lMN为脱空临界面的长度,当脱空出现于板角时,

lMN=L2

-L2

";脱空出现于板边时,lMN=(L1-L2)2+b2

"。

式中kf为考虑设计基准期内荷载应力累积疲劳作用的疲劳应力系数。参照《公路水泥混凝土路面设计规范》(JTGD40-2002),可按表1取值。kc为考虑偏载和动载等因素对路面疲劳损坏影响的综合系数,可参考设计规范取值,即高速公路取1.30;一级公路取1.25;二级公路取1.20;三、四级公路取1.10。

表1荷载疲劳应力系数取值参考表

2算例分析

假设某路面出现板角脱空,脱空边长度分别为Lx=1.2m,Ly=1.5m,脱空形态如图3所示。

图3板角脱空算例示意图

由上述计算公式,可求得脱空临界面长度lMN=1.92m。单轴双轮组100kN轮载作用于脱空部位,轮载触地压力为p=0.8MPa,轮迹圆半径r=0.1m,两轮迹圆心坐标分别为E1(0.1,0.1);E2(0.1,0.4)。由(1)式得两轮载对脱空临界面的总弯矩为M=35.33kN?m。

按重交通计,疲劳应力系数为kf=2.607,动载系数为kc=1.3,板厚h=0.25m。可得轮载在脱空临界面产生的应力为σ=5.98MPa。实际上,由于应力和疲劳系数有关,所以脱空破坏是一个渐变的过程,图4显示了不同轴载次数作用下的荷载疲劳应力值。从图中可以看出,脱空板的荷载疲劳应力与轴次的对数呈良好的指数关系。同时可以查得,满足混凝土板5.0MPa设计弯拉强度的疲劳轴次为86万次。这就是说,当板角出现Lx=1.2m;Ly=1.5m的脱空时,如果不采取补救措施,在5000次/日的交通量作用下,不出半年即发生断裂破坏,足见脱空影响之大。

图4脱空板轴载作用次数与荷载疲劳应力的关系

3脱空尺寸及交通等级对脱空应力的影响分析从以上分析可以看到,影响脱空应力的主要因素是脱空尺寸及交通等级。下面将重点讨论这两个因素对脱空板应力的影响关系。

计算参数:标准单轴双轮轴载100kN,迹圆半径r=0.1m,轮迹圆心间距0.3m,轮载触地压力为p=0.8MPa,面板宽度b=4m,板厚h=0.25m,交通等级按表1的分类取用。板角应力计算结果如表2所示,板边应力计算结果如表3所示。

表2不同交通等级条件下的板角脱空荷载疲劳应力/MPa

由计算可知,当板角出现1.0m×1.0m的三角脱空时,在标准轴载作用下,若板体设计弯拉强度为5.0MPa,在各交通等级中,均不会发生破坏。当脱空扩大为2.0m×2.0m时,能满足重交通作用。当脱空进一步增至3.0m×3.0m时,在轻交通作用下就会发生破坏。

由计算可知,在标准轴载作用下,荷载疲劳应力随脱空增大而急剧增大,当两脱空边分别增大至1.0m时,

交通等级特重重中等轻

设计车道标准轴载累

计作用次数Ne(×104)

>2000>100>3<3

疲劳应力系数kf>2.607>2.198>1.800<1.800

2008年05期(总第41期)

本期专题

5.0MPa的板体设计弯拉强度仅能满足中等交通的作用。计算结果表明,板边脱空比板角脱空具有更大的危害性。

表3不同交通等级条件下的板边脱空荷载疲劳应力/MPa

表3、表4中仅列出几种脱空尺寸板体产生的应力,其余形状的脱空板可按式(1)、式(2)计算或通过线性插值确定。

4配筋计算

板底脱空显著改变其受力状态,导致水泥混凝土路面疲劳轴次急剧减少,因此,针对易于出现脱空路段,如纵向填挖交界、横向半填半挖路段,在设计上应采取适当的局部配筋补强,加大安全储备,预防路面过早发生损坏。

按钢筋混凝土理论,脱空部位的配筋面积Ag可按式(3)确定。其中设计弯矩Mu=kfkcM,可由式(1)计算确定的弯矩值M经过疲劳应力系数kf和动载系数kc修正后求得

(3)

式中,Ag为脱空部位配筋量;fc为混凝土设计抗压强度;lMN为脱空临界面长度;h0为设计截面有效高度,为板厚h减保护层厚度a,即h0=h-a;γc为混凝土的材料安全系数,取1.25;fg为钢筋抗拉强度。

在轮载作用下,脱空部位板体的最大弯矩出现在脱空临界面的上表面,因此,钢筋应置于面板的上半部分。为与应力分析相对应,按满足疲劳寿命的设计要求,将上述各脱空状态所需的配筋量分别计算,计算中采用标准单轴双轮轴载100kN,混凝土的设计抗压强度按C30计,钢筋按二级筋考虑,混凝土面板厚h=25cm,保护层厚度为a=5cm。板角应力配筋计算结果参见表4,板边应力配筋计算参见表5。

表4不同交通等级条件下的板角脱空配筋量/mm2

表5不同交通等级条件下的板边脱空配筋量/mm2

以上是按设计规范交通等级分类及各种不同脱空形态计算求出的配筋量。计算结果表明,为抵抗疲劳破坏,脱空部位的配筋量是相当可观的。工程应用时,可按实际交通量等级及不同脱空面积进行插值计算,选用不同的配筋量。但是,当脱空面积超过一定尺寸后,这些配筋量仅有理论上的意义,此时对面板进行配筋是不经济的,必须在脱空出现初期,立刻进行板底灌浆处治,调整板底的支撑状况,延缓面板的破坏,延长路面使用寿命。

5结语

(1)针对水泥混凝土路面脱空破坏特点,建立了板角、板边脱空的力学分析模型。提出了脱空应力计算方法,并对应力进行疲劳和动载修正,对板角脱空破坏进行算例分析。

(2)板底脱空显著改变其受力状态,导致水泥混凝土路面疲劳轴次急剧减少。对易于出现脱空路段,在设计上应采取适当的局部配筋补强。加大安全储备,预防路面过早发生损坏。

(3)按钢筋混凝土结构设计理论,提出了脱空部位路面的配筋计算方法,并给出了不同脱空形态所需的配筋量。

参考文献:

[1]赵茂才,著.水泥混凝土路面板下脱空封堵设计理论与处治技术[M].哈尔滨:哈尔滨工业大学出版社,2003.

[2]JTGD40-2002,公路水泥混凝土路面设计规范[S].

[3]罗翥.水泥混凝土路面板底支撑不均匀的力学分析[D].北京:交通部公路科学研究院硕士学位论文,2003.

[4]傅智,著.水泥混凝土路面施工技术[M].上海:同济大学出版社,2004.

[5]叶见曙.结构设计原理[M].北京:人民交通出版社,2003.

[6]JTGF30-2003,公路水泥混凝土路面施工技术规范[S].

[7]曲庆璋,章权,季求知,等编著.弹性板理论[M].北京:人民交通出版社,2000.

[8]黄与宏.板结构[M].北京:人民交通出版社,1992.

10

2008年05期(总第41期)

水泥混凝土路面板底脱空原因

水泥混凝土路面板底脱空原因 水泥混凝土路面交付使用后,在交通荷载和环境的作用下,会逐渐在板块和基层之间出现空隙,即产生局部脱空,或称之为原始脱空区。混凝土路面的局部脱空现象较为常见且分布较广。脱空的出现对水泥混凝土路面板的受力极为不利的,因为它改变了路面的力学结构,使弹性地基上的弹性薄板受力形式不复存在,取而代之的是一种类悬臂梁或类简支梁受力模式(如图1)。加上混凝土抗弯拉强度很低,脱空后路面一般会迅速断裂、破碎。如果不及时采取相应的措施,随着水的浸入,在行车荷载的作用下,经过反复抽吸循环,将使脱空面积加大,面板更容易产生破裂。严重影响行车质量和路面的使用寿命,也会增加后期的维修费用和难度。板底脱空产生的原因如下: (一)基层材料选择不合理 基层材料级配不够合理或细料太多,不耐冲刷,稳定性、防冻性差,容易形成脱空。 (二)接缝、裂缝未及时填封 接缝料损坏或缺失,造成水的浸入。水的渗入使基层材料强度、刚度进一步降低,此时在荷载的作用下,强度较低的路面就会出现比其他部位更大的变形,且很难恢复而形成脱空。浸入的水在荷载作用下在板下流动,冲刷基层表面。在反复的挤压和抽吸作用下,挤水与基层材料中的细料形成泥浆,沿接缝缝隙喷溅而出,使脱空面积进一步增大,形成恶性循环。 (三)水泥混凝土路面自身的缺陷 水泥混凝土路面基层材料的刚度远小于水泥混凝土路面的刚度,在行车荷载的作用下,面层和基层对弯沉变形的恢复不一样,导致面板在荷载离开后恢复原状,而基层残留部分变形无法恢复,因此出现基层与路面板的脱离,形成脱空。

日趋增大的交通量和重载、超载车的不断增多,更加剧了脱空病害的产生与发展。 (四)路面排水系统的缺陷 路面排水系统存在缺陷,使本应及时排走的水大量长时间滞留在路面上,势必路面积水会下渗至基层,造成局部基层软化,下沉形成脱空。 (五)路基密实度不足 路基密实度不足,尤其是高填方路段,由于路基填筑材料的不均匀性,造成工后沉降也不均匀,从而形成板底脱空。填石路堤未振动夯实或路基设计填土高度较低,当两侧为农田或渔塘时,会导致地下水位升高,地下毛细水浸蚀基层使局部强度降低也会出现脱空现象。 (六)自然环境因素的影响 温度和湿度的变化也对面板产生影响,很容易引起板的翘曲变形;为避免过大的温度应力使面板断裂或拱起而设置的纵缝、横缝,随着面板的收缩、膨胀、裂缝也随着张开、闭合,这些都为水的浸入创造了条件。 刚性路面板下脱空,主要有三方面的因素。(1)由于板与板之间传荷能力降低,车辆荷载对板的不同部位产生的压应力不同,导致基层的塑性变形不同。(2)地表水的入渗在板的不同空间部位强度上存在很大差别,致使基层强度不均,变形不均,引发唧泥冲刷作用。(3)高填方路堤侧面的临空面易造成侧向变形不均以及路基的不均匀沉降等,是板下脱空的主要原因。板下脱空出现后,随着路面使用年限的增加,如不及时治理,脱空区的分布范围将逐渐扩大。2板下脱空的工程治理[2],[3]水泥混凝土路面最严重的病害是路面板的断裂,而断裂往往是由板下脱空引起的。解决板下脱空问题,可改变路面板不利的受力条件,延长路面使用寿命。灌浆技术是解决这一问题有效的工程治理方法,它是通过对水泥混凝土板下压注水泥浆、水泥粉煤灰膨润土浆液或水泥砂浆达到稳定水泥混凝土板块的目的,改善地基的物理力学性能,起到防渗、堵漏和加固的作用。

板钢筋计算之二板面通长筋

板钢筋计算之二板面通长筋 3、板面通长钢筋(上层通长钢筋) 板面通长钢筋有水平和垂直两个方向,可以布置多个板块或者一个板块。 长度L=板扣除两端支座的长度(板净长)+左锚固+右锚固+“连接长度” ·“左锚固、右锚固”算法有如下四种 La(钢筋的锚固长度); 0.4 La +15*D(钢筋的锚固长度的0.4倍+钢筋直径的15倍); 支座宽–支座保护层+板厚–2*保护层; 伸过支座中心线+板厚–2*保护层(即,支座宽度的一半+现浇板的厚度-2*现浇板的保护层) ·“连接长度”算法为: 当采用焊接、机械连接时:连接长度= 0,计算接头个数; 当采用搭接时,连接长度=接头个数* L1=取整(通长钢筋直段长/定尺长度)* L1 根数的算法和板底通长钢筋一致; 根数N=ceil[(钢筋布置范围–2倍的受力筋到支座边的距离)/钢筋间距]+1; 例如:根数N=取整(3000/180)+1=17.67,取18根。 根数N=取整(3000/200)+1=16,取16根。 在根数计算时,起始受力筋距离支座边间距有三种情况可选择: A:50mm,第一根钢筋距离支座边50mm; B:保护层距离,第一根钢筋距离支座边保护层距离; C:S/2,第一根钢筋距离支座边S/2(S为间距); 下面举例说明板底通长钢筋的计算; 工程名称培训工程,第2标准层,3自然层,板砼强度为20,板厚为120mm,保护层为20mm,非抗震。计算图中右下角的钢筋(1,2/b,c之间的板),该板水平净长3275mm,左梁宽度250mm,右梁宽度300mm板的垂直方向净长是4600mm,钢筋的数据为A10-200.如下图:

水平方向钢筋的长度L=板扣除两端支座的长度(净长)+左锚固+右锚固+“连接长度”=3275+310+310+=3895 钢筋根数的算法与板底通长钢筋 一致,不在详讲!

公路水泥混凝土路面设计规范

1总则 1.0.1 为适应交通运输发展和公路建设的需要,提高水泥混凝土路面的设计质量和技术水平,保证工程安全可靠、经济合理,制定本规范。 1.0.2 本规范适用于新建和改建公路和水泥混凝土路面设计。1.0.3 水泥混凝土路面设计方案,应根据公路的使用任务、性质和要求,结合当地气侯、水文、土质、材料、施工技术、实践 经验以及环境保护要求等,通过技术经济分析确定。水泥混 凝土路面设计应包括结构组合、材料组成、接缝构造和钢筋 配制等。水泥混凝土路面结构应按规定的安全等级和目标可 靠度,承受预期的荷载作用,并同所处的自然环境相适应, 满足预定的使用性能要求。 1.0.4 水泥混凝土路面设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1 水泥混凝土路面cement concrete pavement 以水泥混凝土做面层(配筋或不配筋)的路面,亦称刚性路面。 2.1.2 普通混凝土路面plain concrete pavement 除接缝区和局部范围外面层内均不配筋的水泥混凝土路面,亦称素混凝土路面。

2.1.3 钢筋混凝土路面jointed reinforced concrete pavement 面层内配置纵、横向钢筋或钢筋网并设接缝的水泥混凝土路面。 2.1.4 连续配筋混凝土路面continuous reinforced concrete pavement 面层内配置纵向连续钢筋和横向钢筋,横向不设缩缝的水泥混凝土路面。 2.1.5 钢纤维混凝土路面steel fiber reinforced concrete pavement 在混凝土面层中掺入钢纤维的水泥混凝土路面。 2.1.6 复合式路面composite pavement 面层由两层不同类型和力学性质的结构层复合而成的路面。 2.1.7 水泥混凝土预制块路面concrete block pavement 面层由水泥混凝土预制块铺砌成的路面。 2.1.8 碾压混凝土roller compected concrete 采用振动碾压成型的水泥混凝土。 2.1.9 贫混凝土lean concrete 水泥用量较低的水泥混凝土。 2.1.10 设计基准期限design reference period 计算路面结构可靠度时,考虑各项基本度量与时间关系所取用的基准时间。 2.1.11 安全等级safety classes

水泥混凝土路面板底脱空施工处理的分析与探讨

水泥混凝土路面板底脱空施工处理的分析与探讨 发表时间:2015-08-28T09:17:35.460Z 来源:《基层建设》2015年1期供稿作者:唐述云[导读] 广西全州县交通运输局本人就近年来的施工经历,对水泥混凝土路面板底灌浆施工作简单的分析和探讨。唐述云广西全州县交通运输局 摘要:上世纪八十年代以来,水泥混凝土我国得到了广泛地应用,公路工程建设也不另外,特别是水泥混凝土路面。但是,由于资金问题,在设计上,不能按照国外的高标准高质量进行设计;而在施工建设中,施工企业又为了自身的利益偷工减料,使工程质量存在着不少隐患;另外,随着经济水平地不断发展,车辆交通量也日益增长,而我国目前的法制法规并不健全,超宽、超载、超重车辆泛滥成灾,导致了公路路面病害繁多,给安全行车造成了隐患。 关键词:路面;板底;脱空;灌浆;施工 前言为了搞好水泥混凝土路面的养护,延长其使用寿命,改善其通行能力,早在十几年前就有人员进行探讨、研究和试验,但是一直没有取得好的效果。如水泥混凝土路面的各种接缝反射就是让人头痛的问题。近年来,此类问题已经引起各级领导、教授、专家的关注,全国各地的高等级公路水泥混凝土路面也正期待着一次大规模的维修改建施工,分析水泥混凝土路面病害形成原因,提出施工处理措施已显得十分重要。本人就近年来的施工经历,对水泥混凝土路面板底灌浆施工作简单的分析和探讨。 一.路面脱空板形成分析水泥混凝土路面脱空板的形成原因主要由其内在和外在因素共同作用引起。在我国,高等级公路路面基层设计,一般采用的是稳定类集料或无结合料的粒料类材料,其稳定性和粘接性差,回弹模量小,在车辆荷载反复冲击和气温热胀冷缩的作用下,基层产生的塑性变形远大于水泥混凝土面板的变形,致使原本紧密接触的水泥混凝土面板和基层分裂;同时,由于水泥混凝土路面本身接缝、裂缝繁多,养护人员对接缝、裂缝的处理不能及时,雨水轻而易举地侵入,形成板底积水,再结合基层材料中的不稳定细料,就形成了泥浆;加上来来往往的车辆荷载冲击,泥浆就沿面板边缘、接缝、裂缝等喷出,造成板底空虚,成为脱空板。 二.路面脱空板的确定可采用人工观察、弯沉测定法来确定。人工法一般是通过肉眼观察路面板的接缝、裂缝、唧泥等情况来判断脱空,特别是在雨天或者有重车通过时,较容易确定,但是它存在主观性,难免错判、漏判,并且无数据可依。弯沉测定法不仅解决了人工法的缺陷,还是公路工程建设、设计、施工等的重要检测手段,有数据为依据,完全符合我国交通行业标准。弯沉测定法确定水泥混凝土路面脱空板:1.施工前,对水泥路面板逐块进行编号,一般是沿着路线前进方向逐公里进行,编号标写于路缘石上,并做好记录。 2.用贝克曼梁弯沉仪逐块板检测,每块板检测板角四个点。 3.弯沉数据整理,实测弯沉值介于14-40(0.01mm),路面板完好的进行板底灌浆处理;大于0.4mm 或者裂缝、破碎等病害严重的,进行换板处理。 三.路面脱空板板底灌浆施工准备1.施工机械主要由钻孔取芯机、搅拌机、灌浆机等组成,所需数量应根据工程规模和进度要求配置。灌浆机械及水泥等材料还需专用车辆装运,避免污染路面。 2.材料选择和浆液配合比设计(1)水泥,应采用42.5 号普通硅酸盐水泥,其各项性能要符合《硅酸盐水泥、普通硅酸盐水泥》(GB 175-1999)规定;并有出厂合格证,及相关检验报告。 (2)水,遵照《公路水泥混凝土路面施工技术规范》(JTG F30-2003)第3.5 条款执行。 (3)外加剂,主要包括早强剂、减水剂、膨胀剂等,产品质量应符合要求。并在进场时,附有省级以上外加剂检测机构认定的等级检验报告,用量必须先通过试验确定。 (4)浆液配合比设计,浆液24 小时的抗压强度要在5MPa 以上,一般的水胶比在0.40~0.50 之间;浆液的流动性好,结石率高,而泌水率、干缩率要小。 四.路面脱空板板底灌浆的施工1、布孔和钻孔:通常情况下一块板设置5 个孔,按四角和中心成梅花型布置,边孔距边50cm。采用Φ30mm 的钻进取芯机钻孔,严格按照布孔点进行,先开水再开机,均速钻进;孔深应贯穿混凝土板,若基层经过稳定处理,还应穿透垫层钻入土基内、但深度不得超过7cm;孔径要略大于灌浆机的喷嘴直径,浆液喷嘴口不能低于混凝土的板底,以确保浆液正常流动。 2、清孔:钻孔完成,应将孔内的钻芯清除,确保孔深符合设计要求,并安排人员检测。当灌浆与钻孔分开施工时,应堵塞孔口,防止杂物进入,影响灌浆效果。 3、制浆:应按照设计配合比进行,先将水泥、粉煤灰放入筒内,搅拌15s,然后加入外加剂,搅拌15s,再逐渐加水搅拌均匀,检测浆液流动度,符合要求方可灌浆。在施工中,一般浆液越稀流动性越好可灌性也越好,但是干缩性大,不利于填充板底空隙;而相反越稠流动性却不好。在灌注过程中,搅拌机不得停止搅拌,以免浆液沉淀、离析。 4、灌浆:应采用“围、挤、压”的方法,先将灌浆区围住,中间插孔挤密,灌浆顺序应由低向高,由外向内,先边孔后中孔的顺序进行。灌浆管的喷嘴要固定牢固,才能使浆液慢速均匀地渗透灌入。灌浆,应采用间断性灌入,每次1~2 分钟。灌浆压力控制在1.0~2.0 MPa 内,最大不超过2.5 MPa;在灌浆过程中,应特别注意控制面板出现新裂缝,造成人为破坏。 5、停灌的判断:(1)控制压力在1.0~2.0 MPa 内,稳压1~2 分钟,间断性灌浆2~3次或是灌浆管的喷嘴飞出,即可停灌;(2)有浆液从相邻灌浆孔溢出,立即用木楔堵孔,再稳压30s 卸压,视为灌满;(3)观察面板的周边及接缝,若有浆液溢出,用塑料袋等物封堵,稳压30s,也可停止灌注;(4)观测面板抬升或隆起现象,当抬高达到0.3 mm 时,应立即卸压停止灌浆,避免造成板块的断裂。 6、封孔、养生和交通开放:灌浆完毕,应在浆液初凝以前及时进行封孔,采用1:2 的水泥砂浆封堵,并抹平。养生和交通开放是脱空板灌浆处理的最后一个环节。浆液抗压强度未达到3MPa 时,应严格禁止所有车辆、机械驶入,利于浆液的强度增强。一般添加了早强剂的浆液,保养期也不应小于1 d。 五.路面脱空板灌浆后的质量检测为了有效地控制板底灌浆质量和检验灌浆后的效果,提高面板的回弹模量,恢复水泥混凝土路面原有的使用功能。不论是在施工过程之中,还是在完工后,必须要进行严格详细地检测:1.浆液抗压强度的抽检,每个工作班组每天抽检不少于1 组试件,并要求与现场同条件下养护。 2.基层、底基层浆液检验:采取钻心取样的方法进行,抽检板块的数量不少于灌浆板块数量的5%,在每一板块距离灌浆孔不小于60cm 处取芯,用不小于Ф30mm 钻头,分两步取芯:首先钻穿水泥混凝土面板入基层深度不少于5cm,取芯样,观看砼面层与基层间有无饱满的浆液层,然后再钻深至底基层不少于5cm,查看基层与底基层有无饱满的浆液层。

水泥混凝土路面设计计算案例

水泥混凝土路面设计计算案例 一、设计资料 某公路自然区划Ⅱ区拟新建一条二级公路,路基为粘性土,采用普通混凝土 路面,路面宽为9m ,经交通调查得知,设计车道使用初期标准轴载日作用次数 为2100次,试设计该路面厚度。 二、设计计算 (一)交通分析 二级公路的设计基准期查表10-17为20年,其可靠度设计标准的安全等级 查表10-17为三级,临界荷位处的车辆轮迹横向分布系数查表10-7取0.39取交 通量年增长率为5%. 设计基限期内的设计车道标准荷载累计作用次数按式(10-3)计算: 6 2010885.939.005 .0365]1)05.01[(2100365]1)1[(?=??-+?=?-+?=ηr t r s e g g N N 由表10-8可知,该公路属于重交通等级。 (二)初拟路面结构 相应于安全等级为三级的变异水平等级为中级。根据二级公路、重交通等级 和中级变异水平,查表10-1初拟普通混凝土面层厚度为0.22m 。基层选用水泥 稳定粒料(水泥用量5%),厚度为0.18m 。垫层为0.15m 低剂量无机结合料稳定 土。普通混凝土板的平面尺寸为宽4.5m ,长5m 。纵缝为设计拉杆平缝(见图10-8 (a )),横缝为设计传力杆的假缝(见图10-5(a ))。 (三)路面材料参数确定 查表10-11、表10-12,取重交通等级的普通混凝土面层弯拉强度标准值为 5.0MPa ,相应弯拉弹性模量为31GPa 。 根据中湿路基路床顶面当量回弹模量经验参考值表10-10,取路基回弹模量 为30MPa ,根据垫层、基层材料当量回弹模量经验参考值表10-9,取低剂量无 机结合料稳定土垫层回弹模量为600MPa ,水泥稳定粒料基层回弹模量为 1300MPs 。 按式(10-4)-(10-9),计算基层顶面当量回弹模量如下: )(101315.018.015.060018.01300222 222 2122 2121MPa h h E h E h E =+?+?=++ ) (57.2)15 .0600118.013001(4)15.018.0(1215.060018.01300)11(4)(122123312 21122132311m MN h E h E h h h E h E Dx ?=?+?++?+?=++++=--

水泥混凝土路面断板、错台原因分析及应对措施

混凝土路面错台机理研究及防治措施 摘要:针对水泥混凝土路面破坏情况,通过分析,提出了路面断板、错台是造成其破坏的主要原因,而断板与错台是由于地基、路基、构造物、垫层、底层、基层、混凝土路面强度、混凝土路面的切缝时间、构造要求等诸多环节处理不当所形成,同时提出了水泥混凝土路面断板、错台的防治措施和处理方法,以提高水泥混凝土路面的质量及使用寿命。 关键词:水泥混凝土路面断板错台原因分析防治措施 1错台原因传统水泥混凝土路面理论认为:水泥混凝土路面错台的原因是水损引起唧泥,进而引起板端脱空,从而导致错台出现。具体的讲,现行水泥混凝土路面理论认为错台主要是由以下原因引起的: 1) 路基基层碾压不密实,强度不足,致使基层在行车荷载作用下发生塑性累积位移; 2) 局部地基不均匀下沉; 3) 相邻板间的传荷能力下降; 4) 水浸入基层,行车荷载使路面板产生泵吸现象,动水将面板与基层间的碎屑抛向后方,把后方的板抬起。 2 错台原因的进一步分析 2.1 错台是由于基层塑性变形引起的通过计算可知,当后轴重为10 t 的汽车荷 载作 用在一块混凝土板(板的尺寸为4 m x 3. 5 m x 0. 24m)的端部(板边)、且不考虑相邻板的共同作用时,基层中的压应力仅为0. 2 MPa竖向位移不超过0.4mm. 基层抗压强度一般较高(5 MPa),在0. 2 MPa的压应力作用下,应力比为0. 04, 根据材料的力学行为一般规律,这种应力水平下的反复加载过程中,材料产生累计塑性位移的可能性几乎不存在。即使考虑超载,基层的应力状态也不足以引起累计塑性位移。另外,由于基层材料一般为脆性材料,塑性变形远远小于其弹性变形。因此从塑性位移角度看,不可能产生毫米级的塑性位移从而导致错台现象。 2. 2 局部地基不均匀下沉局部地基不均匀下沉会导致错台现象,但局部地基不均匀下沉的原因又是什么,是否一定就是该路段施工原因造成的呢?局部地基不均匀下沉能否解释错台为什么只在横缝处出现、这种极富规律的现象呢?显然局部地基不均匀下沉解释错台有些似是而非。 2. 3 相邻板传荷能力下降 如上面的计算,即便只考虑单板受力,荷载引起的弹塑性位移也不足以引起错台, 因此传荷能力下降明显也并非错台的直接原因。 2. 4 水浸入基层 行车荷载使路面板产生泵吸现象,动水将面板与基层问的碎屑抛向后方,把后方的板抬起。这个原因初看上去是对的,但事实上存在许多值得进一步推敲的地方:如果仅仅是一端将板抬起,而另一端不下沉,那末错台时路面板将绝大部分脱空,但事实上错台发生时,脱空仅在板端出现;实际板错台时,板一端向上位移,而另一端向下位移,是整块板的整体运动在板端的表现。面板不脱空、仅考虑板的局部变形

板钢筋计算之板底筋

一、板钢筋计算依据和钢筋的类型 1、板的平法图集和计算依据是《04G101-4》 2、现浇混凝土楼板的钢筋分为以下几种 1、板底钢筋(包括特殊形式的板底通长钢筋); 2、上层通长钢筋、支座负筋(包括特殊形式板面通长钢筋); 3、支座筋的分布筋、温度筋、附加筋; 4、马蹬筋; 二、各种板钢筋的详细计算 1、字母代表的含义: La—非抗震时锚固长度; d ---钢筋直径; L1E—连接长度; BHC—保护层; Ha—支座宽度 S--- 钢筋间距 ceil—向上取整 2、板底通长钢筋(下层通长钢筋) 板底通长钢筋有水平和垂直两个方向,可以布置多个板块或者一个板块。 长度L=板扣除两端支座的长度(板净长) + 左锚固 + 右锚固+ “连接长度”+12.5*D(II级以上为0) 其中:12.5D是指一级钢中的180度弯钩,一端弯钩是6.25D,两端就是12.5D. “左锚固、右锚固”算法有如下几种,可根据图纸说明操作: Max ( ha /2,5*d) (即,支座宽度的一半与钢筋直径的5倍相比取大值); Max ( ha /2,12*d) (即,支座宽度的一半与钢筋直径的12倍相比取大值); La (即,钢筋的锚固长度); ha /2+5*d (即,支座宽度的一半加钢筋直径的5倍); ha–bhc (即,支座宽度 - 保护层); ha /2 (即,支座宽度的一半); ·“连接长度” 算法为: 当采用焊接、机械连接时:连接长度 = 0 ,计算接头个数; 当采用搭接时,连接长度=接头个数 * L1=取整(通长钢筋直段长 / 定尺长度)* L1 根数N= ceil [(钢筋布置范围–2倍的受力筋到支座边的距离) / 钢筋间距 ] +1; 在根数计算时,起始受力筋距离支座边间距有三种情况可以考虑 A:50mm,第一根钢筋距离支座边50mm; B:保护层距离,第一根钢筋距离支座边保护层距离; C:S/2,第一根钢筋距离支座边S/2(S为间距); 下面举例说明板底通长钢筋的计算; 工程名称培训工程,第2标准层,3自然层,板砼强度为20,板厚为120mm,保护层为20mm,非抗震。计算图中右下角的钢筋(1,2/b,c之间的板),该板水平净长3275mm,左梁宽度250mm,右梁宽度300mm板的垂直方向净长是4600mm,钢筋的数据A10-200.如下图:

水泥混凝土路面板工程施工工艺

水泥混凝土路面板施工工艺 混凝土板的施工工艺为安装模板、安设传力杆、混凝土拌和与运输、混凝土摊铺和振捣、表面修整、接缝处理、混凝土养护和填缝。 1、安装模板 模板宜采用钢模板,弯道等非标准部位以及小型工程也可采用木模板。模板应无损伤,有足够的强度,内侧和顶、底面均应光洁、平整、顺直,局部变形不得大于3mm,振捣时模板横向最大挠曲应小于4mm,高度应与混凝土路面板厚度一致,误差不超过±2mm,纵缝模板平缝的拉杆穿孔眼位应准确,企口缝则其企口舌部或凹槽的长度误差为钢模板±1mm,木模板±2mm。 2、安设传为杆 当侧模安装完毕后,即在需要安装传力杆位置上安装传为杆。当混凝土板连续浇筑时,可采用钢筋支架法安设传力杆。即在嵌缝板上预留园孔,以便传力杆穿过,嵌缝板上面设木制或铁制压缝板条,按传力杆位置和间距,在接缝模板下部做成倒U形槽,使传力杆由此通过,传力杆的两端固定在支架上,支架脚插入基层内。 当混凝土板不连续浇筑时,可采用顶头木模固定法安设传为杆。即在端模板外侧增加一块定位模板,板上按照传为杆的间距及杆径、钻孔眼,将传力杆穿过端模板孔眼,并直至外侧定位模板孔眼。两模板之间可用传力杆一半长度的横木固定。继续浇筑邻板混凝土时,拆除挡板、横木及定位模板,设置接缝板、木制压缝板条和传力杆套管。 3、摊铺和振捣

对于半干硬性现场拌制的混凝土一次摊铺容许达到的混凝土 路面板最大板厚度为22~24cm;塑性的商品混凝土一次摊铺的最大厚度为26cm。超过一次摊铺的最大厚度时,应分两次摊铺和振捣,两层铺筑的间隔时间不得超过3Omin,下层厚度约大于上层,且下层厚度为3/5。每次混凝土的摊铺、振捣、整平、抹面应连续施工,如需中断,应设施工缝,其位置应在设计规定的接缝位置。振捣时,可用平板式振捣器或插入式振捣器。 施工时,可采用真空吸水法施工。其特点是混凝土拌合物的水灰比比常用的增大5%~10%,可易于摊铺、振捣,减轻劳动强度,加快施工进度,缩短混凝土抹面工序,改善混凝土的抗干缩性、抗渗性和抗冻性。施工中应注意以下几点: 1) 真空吸水深度不可超过30cm。 2) 真空吸水时间宜为混凝土路面板厚度的1.5倍(吸水时间以min 计,板厚以cm计)。 3) 吸垫铺设,特别是周边应紧贴密致。开泵吸水一般控制真空表lmin内逐步升高到400~500mmHg,最高值不宜大于650~700mgHg,计量出水量达到要求。关泵时,亦逐渐减少真空度,并略提起吸垫四角,继续抽吸10~15s,以脱尽作业表面及管路中残余水。 4) 真空吸水后,可用滚杠或振动梁以及抹石机进行复平,以保证表面平整和进一步增强板面强度的均匀性。 4、接缝施工 纵缝应根据设计文件的规定施工,一般纵缝为纵向施工缝。拉杆在立模后浇筑混凝土之前安设,纵向施工缝的拉杆则穿过模板的拉杆孔安设,纵缝槽宜在混凝土硬化后用锯缝机锯切;也可以在浇筑过程中埋人接缝板,待混凝土初凝后拔出即形成缝槽。

公路水泥混凝土路面设计新规范混凝土板厚度计算示例

公路水泥混凝土路面设计新规范混凝土板厚度计算示例 内容提要本文主要把《公路水泥混凝土路面设计规范》(JTG D40-2011)中的计算每个示例,加上标题、要点、提示,便于学习和查阅。 关键词公路水泥混凝土路面设计规范计算示例 示例1 粒料基层上混凝土面板厚度计算 (1)二级公路设计轴载累计作用次数 Ne=74.8×10次中等交通荷载等级 (2)板底当量回弹模量值 Et=120 MPa; (3)设计轴载 Ps=100 KN ;最重轴载 Pm=180 KN ; (4)设计厚度0.25m=计算厚度0.24m+0.01m ; 示例 2 水泥稳定粒料基层上混凝土面板厚度计算 (1)一级公路设计轴载累计作用次数 Ne=1707×10次重交通荷载等级; (2)板底当量回弹模量值 Et=125 MPa; (3)设计轴载 Ps=100 KN ;最重轴载 Pm=180 KN; (4)由面板、半刚性基层的弯曲刚度,求出路面结构总想对刚度半径rg,再计算面层、基层荷载、温度应力(下层板温度应力不需计算); (5)设计厚度0.27m=计算厚度0.26m+0.01m ; 示例 3 碾压混凝土基层上混凝土面板厚度计算 (1)一级公路设计轴载累计作用次数 Ne=3.186×10次特重交通荷载等级;

(2) 板底当量回弹模量值 Et=130 MPa ; (3) 设计轴载 Ps=100 KN ;最重轴载 Pm=250 KN ; (4) 由面板、半刚性基层的弯曲刚度,求出路面结构总想对刚度半径rg,再计算面层、基层荷载、 温度应力(下层板温度应力不需计算); (5) 面层与基层竖向接触刚度 设夹层取 3000 MPa,不设夹层按式(B.5.2-5)计算; (6) 设计厚度0.31m=计算厚度0.30m+0.01m ; 示例 4 面层复合板的厚度计算 要点(复合板模型) (1) 一级公路 设计轴载累计作用次数 Ne=400×10次 重交通荷载等级; (2) 板底当量回弹模量值 Et=110 MPa ; (3) 设计轴载 Ps=100 KN ;最重轴载 Pm=180 KN ; (4) 先计算出复合板的等效弯曲刚度c D ~、c h ~ 等效厚度、半刚性基层板的弯曲刚度b D 、路面结构总 想对刚度半径g r ,再计算复合板的荷载、温度应力; (5) 计算厚度0.08m 的橡胶水泥混凝土与0.17m 的普通混凝土复合而成的面层满足要求。 示例 5 旧混凝土路面上加铺沥青混凝土设计 要点:复合式面板,沥青上面层的作用主要是提供路面的表面使用功能,并有一定承载作用,通过分析增加40mm 沥青上面层方可减小10mm 混凝土下面层厚度。混凝土板是主要承载层,其作用类似于普通混凝土面层,这是计算分析及设计的主要着眼点。通过对有沥青上面层的混凝土板的三维有限元法分析,得出了荷载应力与温度应力的修正公式及有关计算系数,并绘制出计算诺模图。计算时,应先求无沥青上面层时混凝土板的应力,之后再考虑沥青上面层的影响,从而得到有沥青上面层的混凝土板的荷载应力和温度应力。 (1) 已建一级公路剩余设计基准期30年内设计车道设计荷载累计作用次数Ne=3.73×10次 重交 通荷载等级; (2) 设计轴载 Ps=100 KN ;最重轴载 Pm=200 KN ; (3) 旧路通车10年,再设计使用年限30年,是由于沥青加铺层保护作用,可再使用30年; (4) 经计算,所选沥青混凝土加铺层厚度(0.1m ),使得旧混凝土面层不仅可以承受设计基准期内 荷载应力和温度应力的综合疲劳作用,也可以承受最重轴载在最大温度梯度时的一次作用。 示例 6 连续配筋混凝土路面配筋设计

公路水泥混凝土路面设计新规范混凝土板厚度计算示例

公路水泥混凝土路面设计新规混凝土板厚度计算示例 容提要本文主要把《公路水泥混凝土路面设计规》(JTG D40-2011)中的计算每个示例,加上标题、要点、提示,便于学习和查阅。 关键词公路水泥混凝土路面设计规计算示例 示例1 粒料基层上混凝土面板厚度计算 要点(弹性地基单层板模型) 序号路面结构厚度(m)备注 1 普通水泥混凝土面层0.23 Fr=4.5 MPa 2 级配碎石0.20 E=300 MPa 3 路基:低液限黏土查表E.0.1-1 E=80 MPa 距地下水位1.2m,查表E.0.1-2 湿度调正系数0.75 路床顶综合回弹模量 E=80×0.75=60 MPa (1)二级公路设计轴载累计作用次数 Ne=74.8×10次中等交通荷载等级 (2)板底当量回弹模量值 Et=120 MPa; (3)设计轴载 Ps=100 KN ;最重轴载 Pm=180 KN ; (4)设计厚度0.25m=计算厚度0.24m+0.01m ;

示例 2 水泥稳定粒料基层上混凝土面板厚度计算 要点(弹性地基双层板模型) 序号路面结构厚度(m)备注 1 普通水泥混凝土面层0.26 Fr=5.0 MPa 2 水泥稳定砂砾0.20 E=2000 MPa 3 级配砾石0.18 E=250 MPa 4 路基:低液限粉土查表E.0.1-1 E=100 MPa 距地下水位1.0m,查表E.0.1-2 湿度调正系数0.80 路床顶综合回弹模量 E=100×0.80=80 MPa (1)一级公路设计轴载累计作用次数 Ne=1707×10次重交通荷载等级; (2)板底当量回弹模量值 Et=125 MPa; (3)设计轴载 Ps=100 KN ;最重轴载 Pm=180 KN; (4)由面板、半刚性基层的弯曲刚度,求出路面结构总想对刚度半径rg,再计算面层、基层荷载、温度应力(下层板温度应力不需计算); (5)设计厚度0.27m=计算厚度0.26m+0.01m ;

混凝土路面断板处理方案

威宁县通村公路建设工程 水泥混凝土路面断板和开裂的原因分析及处理方案 毕节市融达公路桥梁工程有限责任公司 威宁县通村公路建设工程项目经理部 二0一六年一月十二日

一、中水已完工的混凝土路面概况 我部承建的通村公路工程共计91条线,约721km;其中水泥混凝土路面公路72条,共计517km;已完工混凝土路面25条,共计137km,正在进行混凝土面层施工的8条,共计51km。 已完工的路线中,有部分路线出现不同程度的开裂及断板现象。以迤那镇迤那至果化为例,完工后出现3处断板和多处开裂现象。在发现问题后我部认真排查施工过程的每一个环节,找出导致断板和开裂的原因,在今后的施工过程中采取针对性措施防止断板和开裂现象,并对已经出现断板及开裂的路面提出有效处理方案。 二、可能导致混凝土路面出现断板和开裂的原因 (1)原材料不合格 水泥标号不够、集料中有害物质或含泥量超标或者集料级配不合理、混凝土配合比控制不当。 (2)施工工艺原因 水泥混凝土路面施工过程中工艺控制不当,搅拌时间不够、振捣不密实;在冷却、硬化过程中会因温度差增大混凝土的弯拉应力,导致开裂;施工中工序控制不当(如混凝土间断时未做施工缝处理、切缝不及时、在不利季节施工等)影响混凝土本身抗弯拉强度不足。

基层表面不平整和材料湿度不当。基层表面不平整造 成路面厚度不一致,增加了基层与面层之间的磨阻力,导 致路面薄弱处难以承受拉应力而开裂;基层材料过于干燥,吸收底部混凝土水分,从而降低混凝土抗弯拉强度。 (3)路基不均匀沉降 湿软路基处理不当、填挖交界处压实度不一致、桥涵 和构造物附近压实度不足、路段地质变化处路基处理不当,以上情况均会产生路基不均匀沉降。 (4)路面结构层设计不合理 在通村公路的设计过程中,未做勘查,也未做交通量 调查,路面结构层的设计通常都是根据经验套用标准结构,未作计算分析,导致部分路段的设计不能适用于实际。 (5)其他情况 路面排水不良,超载和超限车增多等原因。 三、我部施工的混凝土路面断板和开裂的原因分析 针对可能导致混凝土路面出现断板和开裂的各项原因,我部逐项排查核实,对拌和站材料进行抽检、查看施工日 志及材料(砼)的出入库时间、对断板开裂处进行钻芯取样。初步查明可能原因如下: (1)项目附近无好的岩层,岩石中的有害物质含量严 重超标,与水泥拌合后会产生不良反应,影响混凝土质量。

水泥混凝土路面板底脱空检测技术研究

水泥混凝土路面板底脱空检测技术研究 【摘要】一直以来,水泥混凝土路面板底脱空问题都是道路工程领域中备受人们关注的内容,其不仅严重破坏了道路结构的安全性,很容易引发安全事故,造成人员的伤亡,严重制约了我国道路建设的可持续发展。因此,笔者结合多年的工作经验,针对水泥混凝土路面板底脱空检测技术进行初步,结合某工程实例,重点介绍了落锤式弯沉仪与探地雷达的检测方法,并总结出一些自身看法。 【关键词】水泥混凝土;路面;板底脱空;检测技术 目前,水泥混凝土路面普遍存在板底脱空的现象,大大降低了水泥混凝土路面的强度,再加之长期的承载压力,路面积水的损坏,常常导致水泥混凝土路面板底发生断裂或裂缝等质量问题,极大的威胁了水泥混凝土路面的安全性,这一问题也逐渐受到了社会各级的高度关注。然而,随着各种检测技术和检测方法的出现,已经能够对水泥混凝土路面板底的脱空程度进行检测,并采取有效的预防性措施,尽可能的减少了水泥混凝土路面板底脱空问题的发生。因此,本文针对水泥混凝土路面板底脱空检测技术进行研究分析,得出以下相关结论,以供参考。 1.水泥混凝土路面板底脱空的原因 一般来说,水泥混凝土路面板底发生脱空的因素有很多,本文就结合某个水泥混凝土路面实例进行叙述,通过相关调查分析得知,水泥面产生了严重的破裂,并在距车道3-8mm处呈现纵向沉降的状态。因此,根据上述的病害特征,可以看出,导致水泥混凝土路面板出现脱空的主要原因有以下几方面: (1)在大部分的水泥混凝土路面板底脱空实例中,自然沉降是一种常见的脱空现。 (2)对于任何建筑物而言,产生质量危害的原因是与水有着很大的关系,水泥混凝土路面也是一样,在长期经受雨水的冲刷后,水体中的腐蚀物将会渗入到路基中,使基础地基土质逐渐软化,导致承载能力受到了极大的影响,最终造成水泥路面板底发生脱空。 (3)由于本地的气候环境因素,冰雪较多,这就给公路的交通运行造成了极大的不便,相关道路部门为了尽快消除冰雪,通常都会采用盐或者其他消融剂来融解冰雪,而本地的土质条件属于盐碱性,那么,在盐的作用下,水体的渗透力就会变大,再加之盐土在热胀冷缩之后,土地的粘连力也会逐渐降低,严重破坏了土体结构的稳定性。 (4)由于该路段是当地主要的物资道路,有很多大型集装车路过,这就加大了水泥混凝土路面的承载压力,并且,这条高速公路采用了以往传统的轴载设计,存在很多的不足和缺陷,已经远远无法在适应于现代道路设计的需求。

水泥混凝土路面板损坏原因的分析及其防治

水泥混凝土路面板损坏原因的分析及其防治 发表时间:2010-04-27T00:46:05.450Z 来源:《建筑科技与管理》2010年第3期供稿作者:陆军民,张文进 [导读] 目前,我国公路发展,特别是高等级公路发展迅猛,高等级路面舒适、平坦已日益为人们所注重。 陆军民,张文进(兴化市堑通路桥建设工程有限公司江苏兴化225700) 【摘要】由于公路具有机动、灵活、直达、迅速、适应性强、服务面广的特点,在社会主义现代化建设中发挥着巨大作用,并且具有良好发展前景。目前,我国公路发展,特别是高等级公路发展迅猛,高等级路面舒适、平坦已日益为人们所注重。但对于高等级水泥混凝土路面板,根据我国已建成通车的高等级公路使用情况看,有相当部分破坏,如开裂、沉陷、错台等。 【关键词】水泥混凝土路面;损坏原因;防治 【Abstract】As the road with a mobile, flexible, direct, rapid, strong adaptability and service a wide range of features, in the socialist modernization play a significant role, and has good prospects for development. At present, China's highway development, especially in the rapid development of high-grade highways, high-grade road comfort, the flat has been growing attention by the people. But for high-grade cement concrete pavement, according to China's high-grade highways have been built and opened in the use of situation, a considerable part of the damage, such as cracking, subsidence, wrong platform and so on. 【Key words】Cement concrete pavement; Damage causes; Prevention 1. 水泥混凝土路面板破坏的原因 1.1重交通荷载因素。随着国民经济和公路交通事业的发展,运输车辆中大型货运车辆的比重不断增加,且车辆超载的现象十分普遍。由于重交通&汽车超载,造成了水泥混凝土路面早期损坏,使路面使用寿命大大缩短,路面使用性能衰减加快,同时加剧了其他路面损坏形式的程度,如地基空壳、接缝损坏、路面接缝唧泥等。汽车超载引起标准轴载换算系数明显增加,累计标准轴次显著增大,水泥混凝土路面结构的使用寿命大大缩短,造成路面结构的早期损坏。 1.2路基施工方面的原因。 1.2.1路基填筑使用了不适宜的材料。公路路基施工规范规定,在通常情况下,不能被压实到规定的密实度和不能形成稳定填方的材料不能用于路基填筑。如:沼泽土,泥炭、含有树根、杂草和易腐朽物质等材料;液限指数大于 50%,塑限指数大于 25%的材料;有机质含量大于 3%的材料;压实含水量和最佳含水量之差大于 2%的材料等等。但是,由于施工单位在路基填筑材料方面控制不严,使用了不适宜材料从而造成路基下沉或塌方,以致影响路面直到路面混凝土板破坏。 1.2.2软基处理不当。在软土地段路基填筑前,应该首先探明地基承载力,然后采取合理的软基处理方案和施工工艺。软基处理方案一般有:混凝土回填土方、石方、或砂砾、袋装砂井,塑料排水板,土工布,土工格栅或以上两种方案组合等,但是施工时,往往由于采取软基处理方案或施工工艺不合理、施工时未认真按要求处理或处理不完善等给路基的稳定造成了隐患,形成路基的沉陷或滑移,最终影响路面混凝土板。 1.2.3路基土石方填筑方面问题(1)施工单位未严格按规范要求的每层填料松铺厚度控制,有时填料的松铺厚度达 60~80cm,这样路基填方的密实度很难达到规范要求的低限值。(2)路基填筑的有效宽度和超宽填筑不够,为达到路基有效宽度,施工单位往往没有按规范要求挖台阶分层填筑压实至路基要求宽度,而是将一些松散土倾倒在边坡上,用人工摊铺拍实,这样补上来的路基部分远未达到密实度要求,造成路基滑坡、层层冲刷。(3)路基填筑每层的填料未用平地机或其它平整机械进行整平或整平效果不好,使低凹地方达不到密实度要求且大量积水。(4)路基施工过程中没有按要求做成一定横坡度;路基施工临时排水系统未做或不畅通,从而使大量的积水渗入下层路基、严重影响路基质量。(5)路基石方或土石混合料填筑时,石头块径过大,使填石路堤或填土石混合料路堤密实度达不到规范要求。由于以上施工方面的原因,对路基的稳定性造成一定影响,直到影响路面混凝土板。 1.2.4填挖交界处未按规范要求施工。当路堤在斜坡上或填挖交界处,或原有路堤上或路堤处在垂直路中线测得的坡度大于 1:5 的坡地时,应把原地面挖成台阶,台阶宽度应不小于 1m,用小型机具进行夯实,并向内侧倾斜 2%,且台阶上不能有积水,然后再分层填筑压实,这样,才能保证路堤的稳定和达到规定的密实度。而施工单位在施工时,遇到以上情况,在路堤填筑时,根本未将施工地段挖成台阶后分层填筑压实,以致影响了路堤填筑的质量,形成隐患给混凝土路面板造成破坏。 1.2.5构造物台背的回填不符合要求。目前,从建成通车的公路来看,构造物台背跳车是通病,然而最明显的是台背沉陷或错台,主要原因是台背回填质量差。台背回填要求每层松铺厚度不得大于 20 cm,密实度必须达到 95%,回填材料最大粒径不大于 5cm,且应具有良好的级配和透水性。然而,施工单位在进行台背回填时,松铺厚度未严格控制,回填材料没有认真地选取。压实仅用人工夯实,有时即使用小型机具进行压实,也只不过是形式,敷衍了事。台背回填尺寸未按规范要求开挖,使得回填材料无法压实达到规定的密实度。现在台背回填中最易被人忽视的是,开挖出的台背,虽说台背回填时中部填筑合乎要求,但边缘不是透水性填料,没有进行更换,所以路面渗入的水积存在台背,这样时间一长便影响了路基的稳定性,造成台背沉陷,以致路面板遭破坏。 1.3路面施工方面的原因 1.3.1路面基层施工质量不合要求。路面基层一般有底基层和面基层。底基层为级配砂砾集料,面基层为水泥稳定类集料。路面开始施工前要求路槽应清理干净,标高应严格控制,否则会影响基层的设计厚度。底基层集料细长及扁平的颗粒不得超过 20%,且不得含有粘土块、腐殖质等有害物质,集料必须有良好的级配,级配曲线应接近圆滑并居中。水泥稳定类集料面基层,在铺筑前,应将底基层面上的所有浮土、杂物全部清除,并严格地整形和压实。水泥稳定集料的级配要求良好,水泥质量要求稳定,水泥用量应严格按试验配合比加入。施工单位在施工时,往往容易忽视的是使用集料的级配不好,含有粘块及有害物质的材料来铺筑基层;路基、底基层、面基层的标高控制不严;水泥稳定集料含水量控制不准;水泥用量不足等,这样严重影响了基层的质量,直至路面板遭破坏。 1.3.2路面水泥混凝土板施工方面的问题。水泥混凝土面层施工,往往施工的厚度未达到设计要求,主要是基层施工标高控制不严所引起;粗集料不具有良好的级配,细长及扁平的颗粒含量太高;细集料和粗集料中含泥量过高,降低了混合料的粘结度;所用水泥质量不稳定或已过期;水泥混凝土在浇筑过程中未完全振捣密实,蜂窝麻面较严重,这样势必影响混凝土板本身的质量,而造成损坏。 2. 水泥混凝土路面板破坏的防治 2.1路基施工方面。路基的质量是非常关键的,由于路面板遭到破坏后,要对路基有质量问题的地段返工是不可能的,且水泥混凝土板

相关文档