文档库 最新最全的文档下载
当前位置:文档库 › 倍流同步整流在DCDC变换器中工作原理分析

倍流同步整流在DCDC变换器中工作原理分析

倍流同步整流在DCDC变换器中工作原理分析
倍流同步整流在DCDC变换器中工作原理分析

倍流同步整流在DC/DC变换器中工作原理分析

在低压大电流变换器中倍流同步整流拓扑结构已经被广泛采用。就其工作原理进行了详细的分析说明,并给出了相应的实验和实验结果。

关键词:倍流整流;同步整流;直流/直流变换器;拓扑

0 引言

随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高了。不论是功率密度、效率和动态响应等方面都有了新要求,特别是要求输出电压越来越低,电流却越来越大。输出电压会从过去的3.3V降低到1.1~1.8 V之间,甚至更低[1]。从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它们都是动态的负载,这就意味着负载电流会在瞬间变化很大,从过去的13A/μs到将来的30A/μs~50A/μs[2]。这就要求有能够输出电压低、电流大、动态响应好的变换器拓扑。而对称半桥加倍流同步整流结构的DC/DC变

换器是最能够满足上面的要求的[3]。

本文对这种拓扑结构的变换器的工作原理作出了详细的分析说明,实验结果

证明了它的合理性。

1 主电路拓扑结构

主电路拓扑如图1中所示。由图1可以看出,输入级的拓扑为半桥电路,而输出级是倍流整流加同步整流结构。由于要求电路输出低压大电流,则倍流同步

整流结构是最合适的,这是因为:

图1 主电路拓扑

1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小;

2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电

流纹波;

3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了;

4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路;

5)动态响应很好。

它唯一的缺点就是需要两个输出滤波电感,在体积上相对要大些。但是,有一种叫集成磁(integrated magnetic)的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁芯内,这样可以大大地减小变换器的体积。

2 电路基本工作原理

电路在一个周期内可分为4个不同的工作模式,如图2所示,理想的波形图

如图3所示。

(a) 模式1[t0-t1]

(b) 模式2[t1-t2]

(c) 模式3[t2-t3]

(d) 模式4[t3-t4]

图2 工作模式图

图3 工作波形图

模式1[t0-t1] 在t=t0时刻,开关管S1导通,变压器原边两端的电压为正,且有Vp=Vin/2;而开关管S2一直都处于关断状态,由于S1的导通,S2的漏源极电压(Vds2)被钳位到输入电压,即Vds2=Vin。变压器副边电压Vsec为高电平,同步开关管SR1的门极也是高电平,SR1导通。此时,负载的电流等于两个输出电感电流之和,且全部流经SR1。在这个模式下,滤波电感Lo1上的电流是增大的,而电感Lo2上的电流是减小的,它们的电流纹波有相互抵消的作用,

所以,负载电流Io的纹波是很小的。

模式2[t1-t2] 在t=t1时刻,S1关断。由于变压器漏感Lk的存在,电流要继续维持原来的方向,所以,如图3(b)中所示,此时在变压器原边存在两个回路,一个是由C1,Coss1,Lk构成,对S1的输出结电容Coss1充电;另一个是由C 2,Coss2,Lk构成,对S2的输出结电容Coss2进行放电。最后S1及S2的漏源极电压都被钳位在输入电压的一半,即Vds2=Vds2=Vin/2。同时,变压器原边的

电压此时为零,副边也是零,此时,SR1及SR2都处于导通状态,分别对两个输出电感上的电流进行续流。且两个电感上的电流都是减小的,所以,最后得到的输出负载电流(ILo1+ILo2)是减小的。

模式3[t2-t3] 在t=t2时刻,S2导通。S1处于关断状态,其两端电压也被钳位到输入电压,即Vds1=Vin。由图2(c)中可以看出,变压器原边的电压为负,且等于输入电压的一半,即Vp=-Vin/2。相对应的同步管SR2导通,所有的负载电流都会流经SR2。且输出电感电流ILo2是增大的,ILo1是减小的。但最终

得到的负载纹波电流是增大的。

模式4[t3-t4] 在t=t3时刻,S2关断。在这个工作模式下,原边的工作原理同图2(b)正好相反。这时,S1及S2都处于关断状态。存储在变压器原边漏感中的能量对S1及S2输出结电容进行充放电。其中对Coss1是放电,而对Coss2进行充电。变压器原副边的电压都为零,副边的两个同步整流管都被触发导通。

两个输出电感上的电流都在不断地减小,所以,总的负载电流是减小的。

在模式4[t3-t4]后,接着就进入下一个周期。

3 实验及结果

在前面分析的拓扑基础上,完成了一个输入为DC 36V,输出为1V/25A的D C/DC变换器。这个电路中所用到的参数见表1所列,其中所有的参数和图1的

主电路中所标注的是相对应的。

表1 实验参数

图4所示的是原边两个主管和副边同步管的门极驱动波形。通道R2表示S1的驱动波形;通道R1表示S2的驱动波形;通道1是同步管SR2的驱动波形;通道2是同步管SR1的驱动波形。由表1可以看到,变压器漏感Lk=600nH。所以,在电流较小的时候,存储在漏感中的能量不是很大,因而开关管在关断后的

漏感和开关管输出结电容间的振荡不是很大,图5所示的是在负载电流Io=5A

时的S2漏源极vds2的波形。

图4 门极驱动波形

图5 vds2波形(Io=5A)

当变换器以满载Io=25A输出时,变压器原边的振荡就明显地增大。这是因为,当输出电流增大的时候,反映到原边的电流也会增大,所以,这个时候存储在变压器漏感中的磁能就会增大,在toff期间内振荡的时间较长,幅值也较大,如图6所示。在大电流的拓扑中,这种振荡的损耗也是不可忽略的。图7给出了变换器的效率曲线图,最大值出现在Io=15A时。

图6 vds2波形(Io=25A)

图7 效率曲线图

4 结语

对适于低压大电流的整流拓扑(倍流整流+同步整流)的工作原理作了详细的说明,并在分析的基础上,给出了相应的实验结果。证明了这种整流拓扑在低压大电流DC/DC变换器中的合理性。随着对电源性能要求的提高,这种整流拓扑将会越来越广泛地被采用。但应该指出的是,变压器的漏感应该尽量地减小,

以减少原边振荡。

IPM自举电路设计过程中的关键问题研究

IPM自举电路设计过程中的关键问题研究 摘要:介绍了IPM自举电路的基本拓扑结构和原理,并在理论分析的基础上,研究和探讨了自举电阻、自举二极管和自举电容的选型方法,重点对自举电容初始充电展开研究,提出了一种简单实用的初始充电方法,在实际项目应用中取得良好的充电效果。实验结果表明,这种初始充电方法简单、实用、安全可靠,解决了初始充电可能导致IPM上下管直通的问题。关键词:自举电路;自举电容;自举电阻;自举二极管;初始充电 通常IPM模块应有四路独立电源供电,下桥臂三个IGBT控制电路共用一个独立电源,上桥臂三个IGBT控制电路用三个独立电源。对于小功率IPM,可以由自举电路将其他三路电压进行自举而得到三个独立电源[1]。IPM模块通过将功率器件、驱动电路和保护电路高度集成在一块很小封装基板上,使得功率模块应用单一电源供电成为可能。为了简化设计,驱动电路已普遍采用单一控制电源方案。使用单一电源,必须满足两个要求:一是保证控制电源能够为上桥臂功率器件提供正确的门极偏置电压;二是保证直流母线上的高压不致串到控制电源电路而烧坏元器件。通常使用自举电路法来实现IPM模块的单一电源供电。实现自举有两个关键问题:一是自举电容的初始充电;二是自举电容充完电后,当下臂关断后上臂并未立即导通,而在从下臂关断到上臂导通期间,电容会放电,因此必须保证少量放电后电容电压仍有驱动能力。如果以上两个问题未能处理好,将导致即使PWM波形正常,IPM也不能工作,因为自举电压不足以驱动上臂导通。本文介绍了IPM自举电路的基本拓扑结构和原理,并重点研究了自举电容初始充电问题,通过在控制程序中执行简单的初始充电语句,很好地解决了上述关键问题,并在项目中取得良好的充电效果。1 IPM模块自举电路基本拓扑结构和原理电压自举,就是利用电路自身产生比输入电压更高的电压。基于电容储能的电压自举电路通常是利用电容对电荷的存储作用来实现电荷的转移,从而实现电压的提升。电压自举电路利用电荷转移的方式进行工作,通过存储电容,把电荷从输入转移到输出,提供负载所需要的电流。图1给出了双倍压电压自举电路的基本原理。 假设所有开关均为理想开关,电容为理想电容。当开关S1和S3闭合时,电源VCC给电容C充电使其电压达到VCC。然后开关S1和S3断开,S2闭合,直接接到电容C的低压端,此时电容C上仍然保持有前一个相位存储的电荷VCC×C。由于在S2闭合时,电容C上的电荷量不能突变,因此有:(V0-VCC)×C=VCC×C,即V0=2VCC。在没有直流负载的情况下,通过图1所示的电路,在理想情况下,输出可达到输入电压的两倍。2 自举电路设计中的关键问题研究本项目的IPM型号选用IGCM20F60GA[2]。图2是IPM自举电路原理图。由图2可知,自举元件一端接电路的输入部分,另一端接到同相位的输出电路部分,借输入、输出的同相变化,把自己抬举起来,即自举元件引入的是正极性的反馈。 对原理图中第一路自举电路进行分析[3-4]。IPM模块自举电路仅由自举电阻R62、自举二极管D9和自举电容E1组成,因此简单可靠。其电路基本工作过程为:当VS因为下桥臂功率器件导通被拉低到接近地电位GND时,控制电源VCC会通过R62和D9给自举电容E1充电。当上桥臂导通,VS上升到直流母线电压后,自举二极管D9反向截止,从而将直流母线电压与VCC隔离,以防止直流母线侧的高压串到控制电源低压侧而烧坏元器件。此时E1放电,给上桥臂功率器件的门极提供驱动电压。当VS再次被拉低时,E1将再次通过VCC充电以补充上桥臂导通期间E1上损失的电压。这种自举供电方式就是利用VS端的电平在高低电平之间不停地摆动来实现的。,自举电路给E1充电,E1的电压基于上桥臂输出晶体管源极电压上下浮动。由于运行过程中反复地对自举电容进行充放电,因此必须选择适当的参数,保证

双向DCDC变换器设计

用于锂电池化成系统的桥式DC/DC变换器.......................... 错误!未定义书签。1引言.. (2) 2 双向H桥DC/DC变换器拓扑分析................................ 错误!未定义书签。 双向DC/DC变换器 (3) 双向H桥DC/DC变换器结构分析 (3) 双向H桥DC/DC变换器工作状态分析 (4) 正向工作状态模型分析 (4) 反向工作状态模型分析 (4) 3 硬件电路分析设计............................................ 错误!未定义书签。 器件参数选择分析 (5) 主开关管的选择 (5) 滤波电感参数的计算 (6) 硬件电路分析设计 (6) 驱动电路分析设计 (6) 4 系统结构与控制 (9) 系统结构 (9) 控制系统结构 (9) DC/DC变换器控制方法 (10) 电压控制模式 (10) 电流控制模式 (10) 软件设计 (10) 5 实验调试与结果分析 (11) 实验平台搭建 (11) 样机调试 (12) 供电电源调试 (12) 驱动信号调试 (12) 单片机程序,VB工程调试 (13) 保护与采样电路测试 (14) 开环、闭环测试 (15) 小结 (17) 6 总结 (17) 7 谢辞 (17) 参考文献...................................................... 错误!未定义书签。用于锂电池化成系统的桥式DC/DC变换器 摘要:随着锂电池在生活中各个方面的广泛普及,锂电池在生产过程中重要的化成环节逐渐成为关注的焦点。本文主要设计介绍了使用于锂电池化成系统的桥式变换器部分,包含计算机监控、DC/DC双向变换器。双向DC/DC变换器通过调节MOSFET的占空比,实现对锂电池的智能充放电。本文对双向DC/DC变换器的工作原理进行了分析,并通过样机对预期功能进行验证。 关键字:电池化成;双向DC/DC变换器;实验分析 Abstract:As the lithium battery becomes more and more popular in every aspects of

双向DC-DC变换器设计-全国大学生电子设计竞赛

2015年全国大学生电子设计竞赛 双向DC-DC变换器(A题) 学号:1440720117 吕刚 2015年12月30日

摘要 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 在本次设计中恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 关键字电池充放电升压降压XL4016 XL6019 STM32

目录 一、系统方案 (1) 1、双向DC-DC变换电路的论证与选择 (1) 2、测量控制方案和辅助电源的论证与选择 (1) 3、控制方法的论证与选择 (1) 二、系统理论分析与计算 (2) 三、电路与程序设计 (3) 1、电路的设计 (3) (1)系统总体框图 (3) 2、程序的设计 (5) (1)程序功能描述与设计思路 (5) (2)程序流程图 (6) 3、程序流程图 (7) 四、测试仪器与数据分析 (7) 附录1:电路原理图 (9) 附录2:源程序 (10)

双向DC-DC变换器(A题) 【本科组】 一、系统方案 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 1、双向DC-DC变换电路的论证与选择 方案1:由降压斩波变换电路(即Buck变换电路)和升压斩波变换电路(即Boost 电路)组成双向DC-DC变换电路,分别各使用一个全控型器件VT(IGBT或MOSFET),对输入直流电源进行斩波控制通过调整全控型器件VT的控制信号占空比来调整输出电压。 方案2:采用XL4016开关型降压芯片和XL6019开关型升压/降压芯片构成升压、降压电路具有低纹波,内助功率MOS,具有较高的输入电压范围,内置过电流保护功能与EN引脚逻辑电平关断功能。 综合以上两种方案,考虑到时间的限制,选择了比较容易实现的方案2。 2、测量控制方案和辅助电源的论证与选择 由于瑞萨单片机开发套件数量有限,所以我们选择了一款相对便宜,速度快,性价比较高的STM32103V8T6作为控制器,显示部分由于收到题目对作品重量的要求,选择了质量轻,分辨率较高的0.96寸OLED屏幕显示。由于市场上所售开关电源模块的,纹波大的因素,所以辅助电源选择了一个较小的9V变压器,进行,整流滤波作为辅助电源。 3、控制方法的论证与选择 方案1:采用PWM调节占空比的方法控制降压芯片的控制端,达到控制恒流和控制恒压的目的,采用PWM调节软件较为复杂,而且PWM调节较为缓慢,软件控制难度大。 方案2:恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 综合以上两种方案,选择软件较为简单,硬件较为复杂的方案2。

自举电路的应用

自举电路在电路设计中的应用 朱丽华 (福建信息职业技术学院福州, 350003) 摘要:在电路的设计中,常利用自举电容构成的自举电路来改善电路的某些性能指标,如利用自举提高射随器的输入阻抗、利用自举提高电路增益及扩大电路的动态范围等。本 文就自举电路的工作原理及典型应用作一介绍。 关键词:自举;自举电容;自举电路 在电路的设计中,常利用自举电容构成自举电路来改善电路的某些性能指标,如利用自举电路提高射随器的输入阻抗,利用自举电路提高放大器增益或扩大电路的动态范围等等。现就自举电路的工作原理及典型应用作一介绍。 一、自举电路的工作原理 自举电路的本质是利用电容两端电压瞬间不能突变的特点来改变电路中某一点的瞬时电位。图1是一射极跟随器电路,在偏置电路中加入电阻R3的目的在于提高输入电阻,因为输入电阻为 Ri = [R3+(R1//R2)]//[r be+(1+β)(R4//R L)] 只要将R3值取大,就可以使输入电阻增大。 但是R3取值是不能任意选大的,R3太大将使静态工作点偏离要求,因此,这种偏置方式虽然可以提高输入阻抗,但效能是有限的。 若在该电路中加一电容C3时(如图2所示),只要电容C3的容量足够大,则可认为B点的电压变化与输出端电压变化相同,R 两端的电压变化为-,此时流过R3的电流为 =(-)/ R 3=(-)/ R3 由于电路的跟随着变化而变化,即≈,所以流过R3的电流极小,说明R3此时对交流 呈现出极高的阻抗(比R3的实际阻值要大得多),这就使射极跟随器的输入阻抗得到极大提高。这种利用电容一端电位的提高来控制另一端电位的方法称为“自举”,所以称电容C3为自举电容。自举从本质上说是一种特殊形式的正反馈。 二、应用实例 1.利用自举电路提高射极跟随器的输入电阻 射随器具有输入阻抗高、输出阻抗低的特点,所以在电子线路中的应用是极为广泛的。图3是一典型射极跟随器电路,由于基极采用的是固定偏置电路,所以无法保证工点的稳定。如果将它改为如图4所示

桥式整流电路的工作原理

桥式整流电路的工作原理 电子系统的正常运行离不开稳定的电源,除了在某些特定场合下采用太阳能电池或化学电池作电源外,多数电路的直流电是由电网的交流电转换来的。这种直流电源的组成以及各处的电压波形如图所示。直流电源的组成 图中各组成部分的功能如下838电子: ⑴电源变压器:将电网交流电压(220V或380V)变换成符合需要的交流电压,此交流电压经过整流后可获得电子设备所需的直流电压。因为大多数电子电路使用的电压都不高,这个变压器是降压变压器新艺图库。 ⑵整流电路:利用具有单向导电性能的整流元件,把方向和大小都变化的50Hz交流电变换为方向不变但大小仍有脉动的直流电。 ⑶滤波电路:利用储能元件电容器C两端的电压(或通过电感器L的电流)不能突变的性质,把电容C(或电感L)与整流电路的负载RL并联(或串联),就可以将整流电路输出中的交流成分大部分加以滤除,从而得到比较平滑的直流电。在小功率整流电路中,经常使用的是电容滤波。 ⑷稳压电路:当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。 利用二极管的单向导电性组成整流电路,可将交流电压变为单向脉动电压。本章为便于分析整流电路,把整流二极管当作理想元件,即认为它的正向导通电阻为零,而反向电阻为无穷大。但在实际应用中,应考虑到二极管有内阻,整流后所得波形,其输出幅度会减少0.6~1V,当整流电路输入电压大时,这部分压降可以忽略。但输入电压小时,例如输入为3V,则输出只有2V 多,需要考虑二极管正向压降的影响。 在小功率直流电源中,常见的几种整流电路有单相半波、全波、桥式和三相整流电路等。 整流(和滤波)电路中既有交流量,又有直流量。对这些量经常采用不同的表述方法:输入(交流)——用有效值或最大值;输出(直流)——用平均值;二极管正向电流——用平均值;二极管反向电压——用最大值。838电子 单相全波桥式整流器电路的工作原理 由图可看出,电路中采用四个二极管,互相接成桥式结构。利用二极管的电流导向作用,在交流输入电压U2的正半周内,二极管D1、D3导通,D2、D4截止,在负载R L上得到上正下负的输出电压;在负半周内,正好相反,D1、D3截止,D2、D4导通,流过负载R L的电流方向与正半周一致。因此,利用变压器的一个副边绕组和四个二极管,使得在交流电源的正、负半周内,整流电路的负载上都有方向不变的脉动直流电压和电流。桥式整流的名称只是说明电路连接方法是桥式的接法,桥式整流二极管:大家常用的一般是由4只单个二极管封装在一起的元件,取名桥式整流二极管,整流桥或全桥二极管。

自举电路

自举电路 编辑词条 自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 编辑本段原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 自举电路只是在实践中定的名称,在理论上没有这个概念。自举电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用自举电路来升压。 常用自举电路(摘自fairchild,使用说明书AN-6076《供高电压栅极驱动 器IC 使用的自举电路的设计和使用准则》) 编辑本段P 沟道高端栅极驱动器 直接式驱动器:适用于最大输入电压小于器件的栅- 源极击穿电压。 开放式收集器:方法简单,但是不适用于直接驱动高速电路中的MOSFET。 电平转换驱动器:适用于高速应用,能够与常见PWM 控制器无缝式工作。编辑本段N 沟道高端栅极驱动器 直接式驱动器:MOSFET最简单的高端应用,由PWM 控制器或以地为基准的驱动器直接驱动,但它必须满足下面两个条件: VCC

各类整流电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压。 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。 (2)半波整流电路的交流利用率为50%。 (3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出 时电压叠加)。 (3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

A题双向DC-DC

A 双向 DC-DC 变换器
摘要:本设计实现了一种基于 MSP430F2616 单片机的可程控双向 DC-DC 变换器。 系统由 18650 电池组、直流稳压电源充电电路、同步 Boost-Buck 电路、滤波电 路、辅助电源、单片机、键盘、AD 转换电路、显示器等电路组成。充电模式下, 输入为 30V 直流电,通过同步降压拓扑结构形成稳定的约 20V 的直流电压,该直 流电压经过程控降压模块实现可程控输出电流。电流经过二次滤除纹波可得到稳 定的电流输出。放电模式下,通过同步升压拓扑结构形成稳定的 30V 电压输出。 同时该电源变换器具过充保护的功能,提高了电源的安全性和稳定性。本电源效 率高、步进精度高、输出电流稳定、安全性高、重量小轻便可携带;通过按键与 显示器实现人机交互,人机交互友好。 关键字:DC-DC,恒流,效率

1 方案论证
变换器设计方案
题目要求电池组在充电模式下,输入直流电为 24~36V 的条件下可以输出恒
流 2A,放电模式可以输出恒压 30V,所以本次设计需要利用双向 DC-DC 拓扑结构。
方案一:采用隔离型 DC-DC 双向变换器。借鉴非隔离单向变换器中反并联开
关管或二极管,以构成非隔离双向变换器的思想,也可以从隔离型单向变换器演
变得到隔离型正激双向 DC-DC 变换器。该方案在需要电气隔离的场合应用比较广
泛。
方案二:采用全桥 DC-DC 双向变换器。通过移相可使控制其开关器件实现零
电压开关。开关器件的电压、电流应尽量小;变压器为双向励磁,利用率较高,
在中、大功率场合有广泛的应用。
方案三:采用 Boost-Buck 双向变换器。常见的非隔离型单向变换器的拓扑
结构有 Buck、Boost、Buck/Boost 等电路。在这些单向变换器的二极管两端反并
联开关管,在开关管两端反并联二极管,即可构成与之对应的 Boost-Buck 双向
变换器电路。
三种方案理论上都能够实现本设计需要的双向 DC-DC 电压变换。正激双向
DC-DC 变换器虽然成本低,驱动电路容易,但由于变压器会处于单向励磁状态,
变压器利用率较低,并且需要额外设计磁复位电路,适用的电路范围较小。全桥
DC-DC 双向变换器虽处于双向励磁状态,利用率较高,但其电路拓扑结构复杂难
以实现;但相比于非隔离双向变换器而言,其效率还是较低的,达不到本设计需
要的效率达到 95%以上的要求。这两种隔离型双向变换器均需要用到变压器,比
较笨重,会超出该设计的系统总质量小于 500g 的要求。而 Boost-Buck 双向变换
器电路精简,无变压器较为轻便,利用率较高,因此本次设计采用 Boost-Buck
双向 DC-DC 拓扑结构。
恒流恒压设计方案
为满足充电模式下,输入为 24~36V 变化时,稳定输出恒定 2A 电流,输入电
压不变情况下充电电流步进可调,充电模式下本电源需要实现降压恒流功能。为
满足放电模式时候,保持输出电压不变,本电源在放电模式下需实现恒压功能。
方案一:采用程序控制 PWM 占空比实现恒压恒流功能。利用高精度 ADC 芯片
对负载进行采样得到负载两端的电压或者电流,根据公式: VOUT VIN TON TON TOFF
(1)
其中
VOU
T
为输出加在负载两端的电压,
VIN
为输入电压,
TON TON TOFF
为控制
PWM


整流器工作原理

整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定 程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。

图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

整流器工作原理

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外

半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。 图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

双向DC-DC变换器(全国大学生电子设计竞赛全国二等奖作品)

2015年全国大学生电子设计竞赛双向DC-DC变换器(A题) 2015年8月15日

摘要 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 在本次设计中恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 关键字电池充放电升压降压XL4016 XL6019 STM32

目录 一、系统方案 (1) 1、双向DC-DC变换电路的论证与选择 (1) 2、测量控制方案和辅助电源的论证与选择 (1) 3、控制方法的论证与选择 (1) 二、系统理论分析与计算 (2) 三、电路与程序设计 (3) 1、电路的设计 (3) (1)系统总体框图 (3) 2、程序的设计 (5) (1)程序功能描述与设计思路 (5) (2)程序流程图 (6) 3、程序流程图 (7) 四、测试仪器与数据分析 (7) 附录1:电路原理图 (9) 附录2:源程序 (10)

双向DC-DC变换器(A题) 【本科组】 一、系统方案 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 1、双向DC-DC变换电路的论证与选择 方案1:由降压斩波变换电路(即Buck变换电路)和升压斩波变换电路(即Boost 电路)组成双向DC-DC变换电路,分别各使用一个全控型器件VT(IGBT或MOSFET),对输入直流电源进行斩波控制通过调整全控型器件VT的控制信号占空比来调整输出电压。 方案2:采用XL4016开关型降压芯片和XL6019开关型升压/降压芯片构成升压、降压电路具有低纹波,内助功率MOS,具有较高的输入电压范围,内置过电流保护功能与EN引脚逻辑电平关断功能。 综合以上两种方案,考虑到时间的限制,选择了比较容易实现的方案2。 2、测量控制方案和辅助电源的论证与选择 由于瑞萨单片机开发套件数量有限,所以我们选择了一款相对便宜,速度快,性价比较高的STM32103V8T6作为控制器,显示部分由于收到题目对作品重量的要求,选择了质量轻,分辨率较高的0.96寸OLED屏幕显示。由于市场上所售开关电源模块的,纹波大的因素,所以辅助电源选择了一个较小的9V变压器,进行,整流滤波作为辅助电源。 3、控制方法的论证与选择 方案1:采用PWM调节占空比的方法控制降压芯片的控制端,达到控制恒流和控制恒压的目的,采用PWM调节软件较为复杂,而且PWM调节较为缓慢,软件控制难度大。 方案2:恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 综合以上两种方案,选择软件较为简单,硬件较为复杂的方案2。

直流升压电路原理图

几款直流升压电路 直流升压就是将电池提供的较低的直流电压,提升到需要的电压值,其基本的工作过程都是:高频振荡产生低压脉冲——脉冲变压器升压到预定电压值——脉冲整流获得高压直流电,因此直流升压电路属于DC/DC电路的一种类型。 在使用电池供电的便携设备中,都是通过直流升压电路获得电路中所需要的高电压,这些设备包括:手机、传呼机等无线通讯设备、照相机中的闪光灯、便携式视频显示装置、电蚊拍等电击设备等等。 一、几种简单的直流升压电路 以下是几种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。这些电路比较适合用在万用电表中,替代高压叠层电池。

二、24V供电CRT高压电源 一些照相机CRT使用11.4cm(4.5英寸)纯平面CRT作为显示部件,其高压部件的阳极电压为+20kV,聚焦极电压为+3.2kV,加速极电压为+1000V,高压部件供电为直流24V。以下电路是为替换维修这些显示器的高压部件而设计(电路选自网络文章,原作者不详)。该电路的设计也可为其他升压电路设计提供参考。 基本原理:NE555构成脉冲发生器,调节电位器VR2可使之产生频率为20kHz左右的脉冲,电位器VR1调脉宽。TR1为推动级,脉冲变压器T1采用反极性激励,即TR1导通时TR2截止,TR1截止时TR2导通,D3、C9、VR3、R7及D4、R6、TR3组成高压保护电路。VR2用于调频率,调节VR2可调整高压大小。 VR2选用精密可调电阻。T2可选用彩电行输出变压器变通使用。笔者选用的是东洋SE-1438G系列35cm(14英寸)彩电的行输出变压器,采用此变压器阳极电压可达20kV,再适当选取R8的阻值使加速极电压为+1000V、R9的阻值使聚焦极电压为+3.2kV即可。整个部件采用铝盒封装,铝壳接地,这样可减少对电路干扰。 直流升压电压电路图集锦: 三极管升压电路:

全国大学生电子设计竞赛双向DCDC变换器A题设计报告

全国大学生电子设计竞赛双向D C D C变换器A 题设计报告 Hessen was revised in January 2021

2015年全国大学生电子设计竞赛 双向 DC-DC 变换器(A题) 【本科组】 2015年8月13日

目录

摘要 本系统介绍了一种双向DC-DC变换器的基本原理和实现方法。由SG3525芯片产生的PWM波经三极管传入到电路中,驱动MOSFET管,使其关断或导通,使电压升高或降低。同时,可由单片机监测相应信号经判断后控制继电器选择放电或充电的模式使电路保持在一直正常情况下运行。当充电电压超出限幅值时,单片机可自动断开主电路,以保护系统安全。此外,本系统在设计时注重了高精度的要求,使输出电流步进可控,且步进值小于。而系统中各元件的选择以低损耗为标准,提高了系统的低功耗特性,使系统的效率达到最高。本系统经过多次模拟与实验,基本完成各项要求。 关键字:DC-DC变换;低损耗;自动;可控;充电 ABSTRACT This system introduces the basic principle and realization method of a kind of bidirectional DC-DC converter. The PWM wave generated by the SG3525 chip is introduced into the circuit by the transistor, driving the MOSFET tube, making it shut off or on, so that the voltage is raised or lowered. At the same time, the signal can be monitored by a single chip microcomputer to control the relay selection discharge or charging mode to keep the circuit under normal circumstances. When the charging voltage exceeds the limit, the single chip microcomputer can automatically disconnect the main circuit to protect the system security. In addition, the system is designed with high accuracy requirements, so that the output current is controlled, and the step value is less than . In the system, the selection of the components of the system is the standard, which improves the system's low power consumption characteristics, so that

桥式整流电路及工作原理详解

桥式整流电路图及工作原理介绍之我见 桥式整流电路图及工作原理介绍之我见
桥式整流电路如图 1 所示,图(a)(b)(c)是桥式整流电路的三种不同 、 、 画法。由电源变压器、四只整流二极管 D1~4 和负载电阻 RL 组成。四只整流二 极管接成电桥形式,故称桥式整流。
图 1 桥式整流电路图 桥式整流电路的工作原理 如图 2 所示。

在 u2 的正半周,D1、D3 导通,D2、D4 截止,电流由 TR 次级上端经 D1→ RL →D3 回到 TR 次级下端,在负载 RL 上得到一半波整流电压 在 u2 的负半周,D1、D3 截止,D2、D4 导通,电流由 Tr 次级的下端经 D2→ RL →D4 回到 Tr 次级上端,在负载 RL 上得到另一半波整流电压。 这样就在负载 RL 上得到一个与全波整流相同的电压波形,其电流的计算与全波 整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器 件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图 Z 图 1(c)的形式。 桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反 压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此 缺点并不突出,因而桥式整流电路在实际中应用较为广泛。

二极管整流电路原理与分析
半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。 当输入电压处于交流电压的正半周时,二极管导通,输出电压 vo=vi-vd。当输入电压处于交 流电压的负半周时,二极管截止,输出电压 vo=0。半波整流电路输入和输出电压的波形如图所 示。
二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备, 半波整流输出的脉动电压就足够了。 但对于电 子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理 电路实际上就是在半波整流的输出端接一个电容, 在交流电压正半周时, 交流电源在通过二极管 向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。

升压(自举)电路原理

自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 升压电路原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 升压电路只是在实践中定的名称,在理论上没有这个概念。升压电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用升压电路来升压。 开关直流升压电路(即所谓的boost或者step-up电路)原理 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1. 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

高压侧悬浮驱动的自举原理

---------高压悬浮驱动器IR2110的原理和扩展应用 ---------吴胜华,张成胜,钟炎平,吴保芳 ---------3高压侧悬浮驱动的自举原理 IR2110用于驱动半桥的电路如图2所示。图中C1、VD1分别为自举电容和二极管,C2为VCC的滤波电容。假定在S1关断期间C1已充到足够的电压(VC1≈VCC)。当HIN为高电平时VM1开通,VM2关断,VC1加到S1的门极和发射极之间,C1通过VM1,Rg1和S1门极栅极电容Cgc1放电,Cgc1被充电。此时VC1可等效为一个电压源。当HIN为低电平时,VM2开通,VM1断开,S1栅电荷经Rg1、VM2迅速释放,S1关断。经短暂的死区时间(td)之后,LIN为高电平,S2开通,VCC经VD1,S2给C1充电,迅速为C1补充能量。如此循环反复。 ---------4自举元器件的分析与设计 如图2所示自举二极管(VD1)和电容(C1)是IR2110在PWM应用时需要严格挑选和设计的元器件,应根据一定的规则进行计算分析。在电路实验时进行一些调整,使电路工作在最佳状态。 ---------4.1自举电容的设计 IGBT和PM(POWERMOSFET)具有相似的门极特性。开通时,需要在极短的时间内向门极提供足够的栅电荷。假定在器件开通后,自举电容两端电压比器件充分导通所需要的电压(10V,高压侧锁定电压为8.7/8.3V)要高;再假定在自举电容充电路径上有1.5V的压降(包括VD1的正向压降);最后假定有1/2的栅电压(栅极门槛电压VTH通常3~5V)因泄漏电流引起电压降。综合上述条件,此时对应的自举电容可用下式表示:C1=(1)工程应用则取C1>2Qg/(VCC-10-1.5)。 例如FUJI50A/600VIGBT充分导通时所需要的栅电荷Qg=250nC(可由特性曲线查得),VCC=15V,那么 C1=2×250×10-9/(15-10-1.5)=1.4×10-7F 可取C1=0.22μF或更大一点的,且耐压大于35V的钽电容。 ---------4.2悬浮驱动的最宽导通时间ton(max)当最长的导通时间结束时,功率器件的门极电压Vge仍必须足够高,即必须满足式(1)的约束关系。不论PM还是IGBT,因为绝缘门极输入阻抗比较高,假设栅电容(Cge)充电后,在VCC=15V时有15μA的漏电流(IgQs)从C1中抽取。仍以4.1中设计的参数为例,Qg=250nC,ΔU=VCC-10- 1.5=3.5V,Qavail=ΔU×C=3.5×0.22=0.77μC。则过剩电荷ΔQ=0.77-0.25=0.52μC, ΔUc=ΔQ/C=0.52/0.22=2.36V,可得Uc=10+2.36=12.36V。由U=Uc及栅极输入阻抗 R===1MΩ可求出t(即ton(max)),由===1.236可求出 ton(max)=106×0.22×10-6ln1.236=46.6ms ---------4.3悬浮驱动的最窄导通时间ton(min) 在自举电容的充电路径上,分布电感影响了充电的速率。下管的最窄导通时间应保证自举电容能够充足够的电荷,以满足Cge所需要的电荷量再加上功率器件稳态导通时漏电流所失去的电荷量。因此从最窄导通时间ton(min)考虑,自举电容应足够小。 综上所述,在选择自举电容大小时应综合考虑,既不能太大影响窄脉冲的驱动性能,也不

相关文档