文档库 最新最全的文档下载
当前位置:文档库 › 单源最短路径 贪心算法

单源最短路径 贪心算法

单源最短路径 贪心算法
单源最短路径 贪心算法

实验三单源最短路径

一、实验目的及要求

掌握贪心算法的基本思想

用c程序实现单源最短路径的算法

二、实验环境

Window下的vc 2010

三、实验内容

1、有向图与单源点最短路径

2、按路径长度非降的次序依次求各节点到源点的最短路径

3、Dijkstra算法

四、算法描述及实验步骤

设给定源点为Vs,S为已求得最短路径的终点集,开始时令S={Vs} 。当求得第一条最短路径(Vs ,Vi)后,S为{Vs,Vi} 。根据以下结论可求下一条最短路径。

设下一条最短路径终点为Vj ,则Vj只有:源点到终点有直接的弧

;从Vs 出发到Vj 的这条最短路径所经过的所有中间顶点必定在S中。即只有这条最短路径的最后一条弧才是从S内某个顶点连接到S外的顶点Vj 。

若定义一个数组dist[n],其每个dist[i]分量保存从Vs 出发中间只经过集合S中的顶点而到达Vi的所有路径中长度最小的路径长度值,则下一条最短路径的终点Vj必定是不在S中且值最小的顶点,

即:dist[i]=Min{ dist[k]| Vk∈V-S }

利用公式就可以依次找出下一条最短路径。

在程序中c[][]表示带权邻接矩阵, dist[]表示顶点到源点的最短路径, p[]记录顶点到源点最短路径的前驱节点, u源点,函数Way是递归的构造出最短路径的次序。

五、实验结果

程序执行的结果:

六、源代码

#include

#include

using namespace std;

#define MAX 999

void getdata(int **c,int n)

{

int i,j;

int begin,end,weight;

for (i=1;i<=n;i++)

{

for (j=1;j<=n;j++)

{

if(i==j)

c[i][j]=0;

else

c[i][j]=MAX;

}

}

do {

cout<<"请输入起点终点权值(-1退出):";

cin>>begin;

if(begin==-1) break;

cin>>end>>weight;

c[begin][end]=weight;

} while(begin!=-1);

}

void Dijkstra(int n,int v ,int *dist,int *prev,int **c)

{

bool s[MAX];

int i,j;

for (i=1;i<=n;i++)

{

dist[i]=c[v][i]; //从源点到各点的值

s[i]=false;

if(dist[i]==MAX) prev[i]=0; //最大值没有路径

else prev[i]=v; //前驱为源点

}

dist[v]=0;s[v]=true;

for (i=1;i<=n;i++)

{

int temp=MAX;

int u=v;

for(j=1;j<=n;j++)

if((!s[j])&&(dist[j]

for (j=1;j<=n;j++)

{

if((!s[j])&&(c[u][j]

{

int newdist=dist[u]+c[u][j];

if(newdist

}

}

}

}

void PrintPath(int *prev,int n,int begin,int end)

{

int *path=new int [n+1];

int i,m=n;

bool k=true;

path[end]=end;

for(i=end-1;i>1;i--)

{

path[i]=prev[path[i+1]]; //构造路径

m--;

}

for (i=m;i<=end;i++) {

cout<"; //输出路径}

cout<<"\b\b"<<" "<

}

void main()

{

int n,i;

int v=1;

cout<<"请输入顶点个数:";

cin>>n;

int *dist=new int [n+1];

int *prev=new int [n+1];

int **c;

c=new int *[n+1];

for (i=0;i<=n;i++)

{

c[i]=new int [n+1];

}

getdata(c,n); //获取数据

int begin=1,end;

cout<<"请输入所求单源路径的起点终点:";

cin>>begin>>end;

v=begin;

Dijkstra(n,v,dist,prev,c); //计算路径

PrintPath(prev,n,begin,end); //输出路径system("pause");

}

贪心算法经典例题

贪心算法经典例题 发布日期:2009-1-8 浏览次数:1180 本资料需要注册并登录后才能下载! ·用户名密码验证码找回密码·您还未注册?请注册 您的账户余额为元,余额已不足,请充值。 您的账户余额为元。此购买将从您的账户中扣除费用0.0元。 内容介绍>> 贪心算法经典例题 在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。 从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。 我们看看下面的例子 例1 均分纸牌(NOIP2002tg) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为: ①9 ②8 ③17 ④ 6 移动3次可达到目的: 从③取 4 张牌放到④(9 8 13 10) -> 从③取 3 张牌放到②(9 11 10 10)-> 从②取 1 张牌放到①(10 10 10 10)。 [输入]:键盘输入文件名。 文件格式:N(N 堆纸牌,1 <= N <= 100) A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000) [输出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。 [输入输出样例] a.in: 4 9 8 17 6 屏慕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 我们用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0

【精选】贪心算法的应用

贪心算法的应用 课程名称:算法设计与分析 院系:计算机科学与信息工程学院 学生姓名:**** 学号:********** 专业班级:********************************** 指导教师:****** 201312-27

贪心算法的应用 摘要:顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。贪心算法求问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 背包问题是一个经典的问题,我们可以采用多种算法去求解0/1背包问题,比如动态规划法、分支限界法、贪心算法、回溯法。在这里我们采用贪心法解决这个问题。 关键词:贪心法背包问题最优化

目录 第1章绪论 (3) 1.1 贪心算法的背景知识 (3) 1.2 贪心算法的前景意义 (3) 第2章贪心算法的理论知识 (4) 2.1 问题的模式 (4) 2.2 贪心算法的一般性描述 (4) 第3章背包问题 (5) 3.1 问题描述 (5) 3.2 问题分析 (5) 3.3算法设计 (5) 3.4 测试结果与分析 (10) 第4章结论 (12) 参考文献 (13) 附件 (13)

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

贪心算法的应用

从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。 我们看看下面的例子 例1 均分纸牌(NOIP2002tg) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为: ①9 ②8 ③17 ④6 移动3次可达到目的: 从③取 4 张牌放到④(9 8 13 10) -> 从③取 3 张牌放到②(9 11 10 10)-> 从②取 1 张牌放到①(10 10 10 10)。 [输入]:键盘输入文件名。 文件格式:N(N 堆纸牌,1 <= N <= 100) A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000) [输出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。 [输入输出样例] : 4 9 8 17 6 屏慕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 我们用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0v,则将a[i]-v张纸牌从第I堆移动到第I+1堆; (2)若a[i]

贪婪算法

答:贪婪算法(Greedy algorithm)是一种对某些求最优解问题的更简单、更迅速的设计技术。用贪婪法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。 贪婪算法是一种改进了的分级处理方法。其核心是根据题意选取一种量度标准。然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。这种能够得到某种量度意义下最优解的分级处理方法称为贪婪算法。 对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。 一般情况下,要选出最优量度标准并不是一件容易的事,但对某问题能选择出最优量度标准后,用贪婪算法求解则特别有效。最优解可以通过一系列局部最优的选择即贪婪选择来达到,根据当前状态做出在当前看来是最好的选择,即局部最优解选择,然后再去解做出这个选择后产生的相应的子问题。每做一次贪婪选择就将所求问题简化为一个规模更小的子问题,最终可得到问题的一个整体最优解。其有以下特性: ⑴ 有一个以最优方式来解决的问题。为了构造问题的解决方案,有一个候选的对象的集合:比如不同面值的硬币。 ⑵ 随着算法的进行,将积累起其它两个集合:一个包含已经被考虑过并被选出的候选对象,另一个包含已经被考虑过但被丢弃的候选对象。 ⑶ 有一个函数来检查一个候选对象的集合是否提供了问题的解答。该函数不考虑此时的解决方法是否最优。 ⑷ 还有一个函数检查是否一个候选对象的集合是可行的,也即是否可能往该集合上添加更多的候选对象以获得一个解。和上一个函数一样,此时不考虑解决方法的最优性。 ⑸ 选择函数可以指出哪一个剩余的候选对象最有希望构成问题的解。 ⑹ 最后,目标函数给出解的值。

贪心算法的应用实例

贪心算法的应用实例 例2.排队问题 【题目描述】 在一个医院B 超室,有n个人要做不同身体部位的B超,已知每个人需要处理的时间为ti,(00,从而新的序列比原最优序列好,这与假设矛盾,故s1为最小时间,同理可证s2…sn依次最小。 例3.:数列极差问题 【题目描述】 在黑板上写了N个正整数做成的一个数列,进行如下操作:每一次擦去其中的两个数a 和b,然后在数列中加入一个数a×b+1,如此下去直至黑板上剩下一个数,在所有按这种操作方式最后得到的数中,最大的max,最小的为min,则该数列的极差定义为M=max-min。 编程任务:对于给定的数列,编程计算出极差M。 输入输出样例: 输入: 4 2 1 4 3 输出: 13 【算法分析】 当看到此题时,我们会发现求max与求min是两个相似的过程。若我们把求解max与min的过程分开,着重探讨求max的问题。 下面我们以求max为例来讨论此题用贪心策略求解的合理性。 讨论:假设经(N-3)次变换后得到3个数:a ,b , max'(max'≥a≥b),其中max'是(N-2)个数经(N-3)次f变换后所得的最大值,此时有两种求值方式,设其所求值分别为 z1,z2,则有:z1=(a×b+1)×max'+1,z2=(a×max'+1)×b+1所以z1-z2=max'-b≥0若经(N-2)次变换后所得的3个数为:m,a,

贪心算法设计与应用

实验报告 课程算法设计与分析实验实验名称贪心算法设计与应用第 1 页一、实验目的 理解贪心算法的基本原理,掌握贪心算法设计的基本方法及其应用; 二、实验内容 (一)Huffman编码和译码问题: 1.问题描述 给定n个字符在文件中的出现频率,利用Huffman树进行Huffman编码和译码。设计一个程序实现: 1.输入含n(n<=10)个字符的字符集S以及S中各个字符在文件中的出现频 率,建立相应的Huffman树,求出S中各个字符的Huffman编码。 2.输入一个由S中的字符组成的序列L,求L的Huffman 编码。 3. 输入一个二进制位串B,对B进行Huffman译码,输出对应的字符序列; 若不能译码,则输出无解信息。 提示:对应10 个字符的Huffman树的节点个数<211。 2.测试数据 Input n=5 字符集合S={a, b, c, d, e}, 对应的频率分别为 a: 20 b: 7 c: 10 d: 4 e: 18 字符序列L=ebcca 二进制位串B=01100111010010 Output S中各个字符的Huffman编码:(设Huffman树中左孩子的权<=右孩子的权)a: 11 b: 010 c: 00 d: 011 e: 10 L的Huffman 编码:10010000011 B对应的字符序列: dcaeeb 若输入的B=01111101001,则无解 (二) 加油问题(Problem Set 1702): 1.问题描述 一个旅行家想驾驶汽车从城市A到城市B(设出发时油箱是空的)。给定两个

城市之间的距离dis、汽车油箱的容量c、每升汽油能行驶的距离d、沿途油站数n、油站i离出发点的距离d[i]以及该站每升汽油的价格p[i],i=1,2,…,n。设d[1]=0=xw和yb>=yw。 若黑点b支配白点w,则黑点b和白点w可匹配(可形成一个匹配对)。在一

贪心算法浅析

贪心算法浅析 摘要:本文讲述了贪心算法的基本思路及实现过程,贪心算法的特点、存在的问题以及应用。并通过贪心算法的特点举例列出了几个经典问题,通过对问题的探讨和研究,对贪心算法有了更加深入的了解。 关键词:贪心算法;最优解;最优子结构问题;删数问题;活动安排问题 贪心算法的基本思路及实现过程 1贪心的基本思想 用局部解构造全局解,即从问题的某一个初始解逐步逼近给定的目标,以尽可能快地求得更好的解。当某个算法中的某一步不能再继续前进时,算法停止。贪心算法思想的本质就是分治,或者说:分治是贪心的基础。每次都形成局部最优解,换一种方法说,就是每次都处理出一个最好的方案。 利用贪心策略解题,需要解决两个问题: (1)该题是否适合于用贪心策略求解; (2)如何选择贪心标准,以得到问题的最优/较优解。 2贪心算法的实现过程 (1)应用同一规则F,将原问题变为一个相似的、但规模更小的子问题; (2)从问题的某一初始解出发: While(能朝给定目标前进一步) 求出可行解的一个解元素; (3)由所有解元素组合成问题的一个可行解。 贪心算法的特点 贪心算法的最大特点就是快,通常是线性二次式,不需要多少额外的内存。一般二次方级的存储要浪费额外的空间,而且那些空间经常得不出正解。但是,使用贪心算法时,这些空间可以帮助算法更容易实现且更快执行。如果有正确贪心性质存在,那么一定要采用。因为它容易编写,容易调试,速度极快,并且节约空间。几乎可以说,此时它是所有算法中最好的。但是应该注意,贪心算法有两大难点:

(1)如何贪心 怎样用一个小规模的解构造更大规模的解呢?总体上,这与问题本身有关。但是大部分都是有规律的。正因为贪心有如此性质,它才能比其他算法快。 具有应当采用贪心算法的问题,当“贪心序列”中的每项互异且当问题没有重叠性时,看起来总能通过贪心算法取得(近似)最优解的。或者,总有一种直觉在引导我们对一些问题采用贪心算法。其中“找零钱”这个问题就是一个例子。题中给出的硬币面值事实上具有特殊性,如果面值发生变化,可能贪心算法就不能返回最优解了。但是,值得指出的是,当一个问题具有多个最优解时,贪心算法并不能求出所有最优解。另外,我们经过实践发现,单纯的贪心算法是顺序处理问题的;而且每个结果是可以在处理完一个数据后即时输出的。 (2)贪心的正确性 要证明贪心性质的正确性,才是贪心算法的真正挑战,因为并不是每次局部最优解都会与整体最优解之间有联系,往往靠贪心算法生成的解不是最优解。这样,贪心性质的证明就成了贪心算法正确的关键。对某些问题贪心性质也许是错的,即使它在大部分数据中都是可行的,但还必须考虑到所有可能出现的特殊情况,并证明该贪心性质在这些特殊情况中仍然正确。而这样容易陷入证明不正确贪心性质的泥塘中无法自拔,因为贪心算法的适用范围并不大,而且有一部分极难证明,若是没有把握,最好不要冒险,还有其他算法会比它要保险。 贪心算法存在的问题 (1)不能保证求得的最后解是最佳的。由于贪心策略总是采用从局部看来是最优的选择,因此并不从整体上加以考虑; (2)贪心算法只能用来求某些最大或最小解的问题; (3)贪心算法只能确定某些问题的可行性范围 贪心算法的应用 1哈夫曼编码 2 0-1背包问题 3磁盘文件的存储 4生产调度问题 5信息查询

贪心算法

贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。 贪心法是指从问题的初始状态出发,通过若干次的贪心选择而得出最优解或较优解的一种阶梯方法。事实上,从贪心算法“贪心”一词便可以看出,贪心法总是做出在当前看来是最优的选择,也就是说贪心法不是从整体上加以考虑他所做出的选择只是在某种意义上的局部最优解,而血多问题自身的特性决定了该题可以用贪心算法就能得到最优解。 贪心算法的基本思路 1.建立数学模型来描述问题。 2.把求解的问题分成若干个子问题。 3.对每一子问题求解,得到子问题的局部最优解。 4.把子问题的解局部最优解合成原来解问题的一个解。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步 do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解。

【问题举例】 11-1-1 购买新年贺卡 问题描述: 新年快到了,笑笑打算给他的好友们发新年贺卡,而且他已经选好了子要购买的样式。俗话说得好,货比三家,笑笑来到了商店,看了各个商铺同一种贺卡的价钱。不仅如此,笑笑还记住了每个商铺的存货量。已知笑笑打算购买m 张贺卡,问他最少花多少钱。 输入格式: 第一行有两个整数m和n。其中m表示要购买的贺年卡的数量,n表示商铺的个数。以下n行,每行有两个整数,分别表示该商铺这种贺年卡的单价和存货量。 输出格式: 进一个数,表示笑笑所化的最少的钱数。 输入样例: 10 4 4 3 6 2 8 10 3 6 输出样例: 36 数据规模: 0

贪心算法的实际应用

贪心算法的实际应用 姓名: 班级: 学号: 指导老师:

定义: 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。 贪婪算法(Greedy algorithm)是一种对某些求最优解问题的更简单、更迅速的设计技术。用贪婪法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。 贪婪算法是一种改进了的分级处理方法。其核心是根据题意选取一种量度标准。然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。这种能够得到某种量度意义下最优解的分级处理方法称为贪婪算法。 对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。 一般情况下,要选出最优量度标准并不是一件容易的事,但对某问题能选择出最优量度标准后,用贪婪算法求解则特别有效。最优解可以通过一系列局部最优的选择即贪心选择来达到,根据当前状态做出在当前看来是最好的选择,即局部最优解选择,然后再去解做出这个选择后产生的相应的子问题。每做一次贪婪选择就将所求问题简化为一个规模更小的子问题,最终可得到问题的一个整体最优解。

贪心算法经典例题

贪心算法经典例题 在求解最优问题的过程中,依据某种贪心策略,从问题的初始状态出发,求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。 从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。 【例1】均分纸牌(全国信息学奥林匹克分区联赛(NOIP)2002提高组(TG))。[问题描述]:有N堆纸牌,编号分别为1,2,…, N。每堆上有若干张,但纸牌总数必为N的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为1堆上取的纸牌,只能移到编号为2的堆上;在编号为N 的堆上取的纸牌,只能移到编号为N-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4堆纸牌数分别为: ①9②8 ③17 ④6 移动3次可达到目的: 从③取4张牌放到④(9,8,13,10)→从③取3张牌放到②(9,11,10,10)→从②取1张牌放到①(10,10,10,10)。 [输入]:键盘输入文件名。 N(纸牌堆数,1<=N<=100) A1 A2 … AN(每堆初始纸牌张数,l<=Ai<=10000) [输出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。[输入输出样例]: a.in 4

9 8 17 6 屏幕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 这里用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0v,则将a[i]-v张纸牌从第I堆移动到第I+1堆; ⑵若a[i]

贪心算法详解

第16章贪心算法 理解贪心算法的概念 z z掌握贪心算法的基本要素 z理解贪心算法与动态规划算法的差异 z通过范例学习贪心算法设计策略

161 16.1 活动安排问题 z当一个问题具有最优子结构性质时,可用动态规划法求解,但有时用贪心算法求解会更加的简单有效。 z顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。单源最短路经问题,最小生成树问题等。在些情解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。

161z 设有n个活动的集合E={1,2,…,n},其中每个活动都要求使16.1 活动安排问题用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源和个结束时间f 且s 如果选择了活动i 的起始时间s i 和一个结束时间f i ,且s i

16.1 活动安排问题 161 (用动态规划方法) z步骤1:分析最优解的结构特征 —构造子问题空间: S ij={ a k∈S: f i≤s k

贪心算法经典例题

贪心算法经典例题 所谓贪心算法指的是为了解决在不回溯的前提之下,找出整体最优或者接近最优解的这样一种类型的问题而设计出来的算法。贪心算法的基本思想是找出整体当中每个小的局部的最优解,并且将所有的这些局部最优解合起来形成整体上的一个最优解。因此能够使用贪心算法的问题必须满足下面的两个性质:1.整体的最优解可以通过局部的最优解来求出;2.一个整体能够被分为多个局部,并且这些局部都能够求出最优解。使用贪心算法当中的两个典型问题是活动安排问题和背包问题。 利用贪心算法解题,需要解决两个问题: 一是问题是否适合用贪心法求解。我们看一个找币的例子,如果一个货币系统有3种币值,面值分别为一角、五分和一分,求最小找币数时,可以用贪心法求解;如果将这三种币值改为一角一分、五分和一分,就不能使用贪心法求解。用贪心法解题很方便,但它的适用范围很小,判断一个问题是否适合用贪心法求解,目前还没有一个通用的方法,在信息学竞赛中,需要凭个人的经验来判断何时该使用贪心算法。 二是确定了可以用贪心算法之后,如何选择一个贪心标准,才能保证得到问题的最优解。在选择贪心标准时,我们要对所选的贪心标准进行验证才能使用,不要被表面上看似正确的贪心标准所迷惑,如下面的例子。

例2 (NOIP1998tg)设有n个正整数,将他们连接成一排,组成一个最大的多位整数。例如:n=3时,3个整数13,312,343,连成的最大整数为:34331213 又如:n=4时,4个整数7,13,4,246连接成的最大整数为7424613 输入:N N个数 输出:连接成的多位数 算法分析:此题很容易想到使用贪心法,在考试时有很多同学把整数按从大到小的顺序连接起来,测试题目的例子也都符合,但最后测试的结果却不全对。按这种贪心标准,我们很容易找到反例:12,121 应该组成12121而非12112,那么是不是相互包含的时候就从小到大呢?也不一定,如:12,123 就是12312而非12112,这样情况就有很多种了。是不是此题不能用贪心法呢? 其实此题是可以用贪心法来求解,只是刚才的贪心标准不对,正确的贪心标准是:先把整数化成字符串,然后再比较a+b和b+a,如果a+b>b+a,就把a排在b的前面,反之则把a排在b的后面。 源程序: var s:array[1..20] of string; t:string;i,j,k,n:longint; begin

第三讲 贪心法

第三讲贪心法 1.贪心法的基本思想 贪心法是从问题的某一个初始解出发,向给定的目标推进。但不同的是,推进的每一步不是依据某一固定的递推式,而是做出一个在当前看来是最佳的贪心选择,不断地将问题实例归纳为更小的相似的子问题,并期望通过所做的局部最优选择产生出一个全局最优解。 2.使用贪心法求解问题时要具备的条件 (1)所求解的问题应当具有贪心选择性质。即所求解的问题的整体最优解可以通过 一系列的局部最优解得到。所以局部最优解是指在当前的状态下做出的最好选择。 (2)所求解的问题应当具有最优子结构性质。当一个问题的最优解包含着它的子问 题的最优解时,称此问题具有最优子结构。 3.使用贪心法的注意事项 (1)要判断一个问题是否可以通过贪心算法得到最优解,是一件比较困难的的事 情。这需要比较复杂而严格的数学证明。 (2)贪心算法不是对所有问题都能得到整体的最优解,但是实际应用中的许多问题 都可以使用贪心算算得到最优解。 (3)即使使用贪心算法不能得到问题的最优解,但是最终结果也是最优解的很好的 近似解。因此,在解决一般性问题时,使用贪心算法是一种不错的选择。 4.贪心法的优点与不足 优点:算法思想简单,易于实现,效率高。 不足:使用贪心算法之前必须对问题本身进行深入而透彻地分析和证明,以保证使用贪心法得到最优解,而对问题进行分析与证明是比较困难的。 5.贪心法在经典算法中的体现 (1)哈夫曼(Huffman)编码问题:编码最短 (2)求解最小生成树的克鲁斯卡尔(Kruskal)算法和普里姆(Prim)算法:代价最小 (3)求解图的最短路径的迪克斯特拉(Dijkstra)算法:路径最短 6.举例 例1:找零钱问题。假设有3种硬币,面值分别为1元、五角、1角。这3种硬币各自的数量不限,现在要找给顾客2元7角钱,请问怎样找钱才能使得找给顾客的硬币数量最少呢? 分析:为了找给顾客的硬币数量最少,在选择硬币的面值时,当然是尽可地选择面值大的硬币。因此要找给顾客2元7角钱,且使得硬币数量最少,应该按照以下步骤: (1)首先找出一个面值不超过2元7角的最大硬币,即1元硬币。 (2)然后从2元7角中减去1元,得到1元7角,再找出一个面值不超过1元7角的 最大硬币,即1元硬币。 (3)然后从1元7角中减去1元,得到7角,再找出一个面值不超过2角的最大硬币, 即5角硬币。

贪心算法详解(C++版)

【例3-1】删数问题 【问题描述】 键盘输入一个高精度的正整数n(n<=240位),去掉其中任意s个数字后剩下的数字按原左右顺序将组成一个新的正整数。编程对给定的n和s,寻找一种方案,使得剩下的数字组成的数最小。 输入: N S 输出: 最后剩下的最小数。 【样例输入】 178543 4 【样例输出】 13 【题解】 由于正整数n的有效位数为240位,所以很自然地采用字符串类型存储n。那么如何解决哪s位被删呢?是不是最大的s个数字呢?为了尽可能的逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下数最小的数字删去。即按高位到低位的顺序搜索,若各位数字递增,则删去最后一个数字;否则删去第一个递减区间的首字符,这样删一位便形成了一个新数字串。然后回到串首,按上述规则再删下一个数字。重复以上过程s次为止,剩下的字串便是问题的解了。 【标程】 #include #include #include using namespace std; char a[100001]; int main() { int n,i,j,l,k; gets(a); cin>>n; l=strlen(a); for(i=1;i<=n;i++) { for(j=0;ja[j+1]) {

for(k=j;k

相关文档