文档库 最新最全的文档下载
当前位置:文档库 › Buffon投针实验的理论证明

Buffon投针实验的理论证明

Buffon投针实验的理论证明
Buffon投针实验的理论证明

Buffon投针实验的理论证明

我们知道,当正多边形的边数无限增多时,它的极限是圆。所以“圆”这种图形可以代表弯曲得最厉害的小针。现在假定圆形小针的直径恰好与纸上两条相邻的平行线间的距离相等,那末这个圆形小针投掷下来时,不是和一条直线相交两次,就是和两条相邻的平行线相切。不管怎样,它的相交次数是2。因此,当投掷的次数为n时,碰线的次数便是2n。

现在小针的长度只有两条相邻平行线间距离的一半,所以针的长度只有上述圆形小针长度(即圆周长)的。但是可能碰线的次数是与针的长度成正比的,因此小针的可能碰线的次数k就必须满足下面的比例式:

1:(1/2π) =2n: k

于是就得到π=n/k,也就是

π=投掷总次数/碰线次数

这就是上面“投针实验”的理论根据。它又叫莆丰氏实验,在概率论中是很出名的,也可以说是近代的“统计试验法”(又叫“蒙特卡罗法”)的滥觞。

蒲丰(Buffon)投针求π

蒲丰(Buffon)投针问题:在平面上画有等距离的一些平行线,平行线间的距离为a(a>0),向平面上随机投一长为l (l

一、实验目的

蒲丰实验是采用投针来计算π的值,历史上也有许多的学者曾亲自做过这个实验,如下表:

我们也可以来做这个实验,而且希望做更多次,但是投针又比较费时费力,于是,可以采用另一种设计随机实验的方法,随机模拟的办法来模拟蒲丰投针实验。从而求得π的近似值。

二、实验方法

可以采用MatLAB软件进行模拟实验,即用MATLAB编写程序来进行“蒲丰投针实验”。

1.基本原理:由于针投到纸上的时候,有各种不同的方向和位置(图a),但是,每一次投针时,其位置和方向都可以由两个量唯一确定,那就是针的中点和偏离水平的角度(图b)。

随机投针图

针的某一特定位置

于是,我们可以生成两个n*1随机矩阵,分别设为x和y,x 表示此时针的中点的位置,y表示此时针偏离水平方向的角度。如图b,当x< 0.5*l*sin(y)的时候,即可认为此时的针与横线相交;只要随机生成n对这样的x和y,就可以模拟n次的投针实验,然后统计满足x< 0.5*l*sin(y)的x的个数,就可以认为这是相交的次数。然后利用公式求得π值。

2.MATLAB编程

这是名字为P_Buffon的m文件:…………………………………………………………………………function PI=P_Buffon(a,l,n,p) %蒲丰投针实验求π,其中a 为横线间距,l为针的长度,n为投掷次数,p为有效位数

if l>a

error('针的长度不能超过横线间距,请确定l

return;end

x=unifrnd(0,a/2,[n,1]);

f=unifrnd(0,pi,[n,1]);

y=x<0.5*l*sin(f);

m=sum(y) %显示相交次数

PI=vpa(2*l*n/(a*m),p); …………………………………………………………………………

三、实验数据(见附表)

四、数据分析

1)由数据可以看出,当l和a为定值,而次数改变时,相交次数也会改变,相交次数与投掷次数有个近似的线性关系,这个关系就是P,即相交的概率,但是n越大,对结果只是变化减小,n越大,并不会使得结果越准确。

2)由上面的实验数据第二部分可知,当间距和n(投掷次数)不变时,针长越大或是越小,都会越偏离π的真实值,一般来说,a可能在[0.6*l,0.8*l]之间时,会接近真实结果一些。

基于MATLAB的布丰投针实验仿真

系统建模与仿真题目:Buffon实验的仿真 院系: 电子工程学院 专业:信息对抗技术 班级:021231 姓名:余颖智 学号:02123021 指导老师:刘洋 完成时间:2015年4月 西安电子科技大学

基于MATLAB的投针实验仿真 摘要 在求证圆周率的过程中经过割圆术后,出现的投针试验以求出圆周率,目前利用MATLAB数学建模的仿真实验,运用到计算机中,简化其随机实验的操作量大,运算慢等特点。不同针距相同实验量运算后得出不同的π,其针距与线间距离相等,所得值接近于π。

目录 摘要 (2) 二、实验内容 (4) 三、建模流程图 (5) 四、程序主要代码 (6) 五、运行结果 (6) 六、结论 (7)

一、实验原理 1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的布丰投针问题。该投针实验主要有如下三个步骤:(一)取一张白纸,在上面画许多条间距为a的平行线;(二)取一根长度为l(l

三、建模流程图

四、程序主要代码 str(handles.edit1,'string'); %取得变量,定义变量,变量初始化 n = str2double(str); str = get(handles.edit2,'string'); l = str2double(str); str = get(handles.edit3,'string'); a = str2double(str); counter = 0; %变量初始化 phi = 0; frequency = 0; Pi = 0; x = unifrnd(0,a/2,1,n);%产生n个(0,a/2)之间均匀分布的随机数,这里a/2是投针的中点到最近的平行线的距离 phi = unifrnd(0,pi,1,n);% 产生n个(0,pi)之间均匀分布的随机数,这里pi是投针与最近平行线的角度 for i=1:n if x(i)

布丰投针实验模拟

系统建模与仿真 基于MATLAB的布丰实验模拟 姓名:石星宇 学号: 02123010 指导教师:刘洋 2015年4月9日

目录 基于MATLAB的布丰实验模拟 .................................................................... - 1 - 一、实验原理......................................................................................... - 1 - 二、编程模拟......................................................................................... - 1 - 1、程序流程图............................................................................... - 1 - 2、程序代码................................................................................... - 2 - 三、实验结果......................................................................................... - 2 -

基于MATLAB 的布丰实验模拟 一、实验原理 找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离a 。可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n 次,那么相交的交点总数必为n 2。现在设想把圆圈拉直,变成一条长为a π的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点,3个交点,2个交点,1个交点,甚至于都不相交。由于圆圈和直线的长度同为a π,根据机会均等的原理(即等概率事件),当它们投掷次数较多,且相等时,两者与平行线组交点的总数期望也是一样的。这就是说,当长为a π的铁丝扔下n 次时,与平行线相交的交点总数应大致为n 2。现在转而讨论铁丝长为l 的情形。当投掷次数n 增大的时候,这种铁丝跟平行线相交的交点总数k 应当与长度l 成正比,因而有:l k λ=,式中λ是比例系数。为了求出λ来,只需注意到,对于a l π=的特殊情形,有n k 2=。于是求得a n πλ2=。代入前式就有:a m πln 2≈从而ak nl 2≈π。 二、编程模拟 1、程序流程图 参数初始化 产生位置随机数; 产生角度随机数 判断相交 1+=k k 1+=n n 是 否 判断结束

蒲丰投针实验模拟

概率论与数理统计实验 蒲丰投针与蒙特卡罗法 班级应数12级01班 学号2012444086 姓名张旭东

蒲丰投针与蒙特卡罗法 张旭东2012444086 (重庆科技学院数学与应用数学,重庆沙坪坝) 【摘要】通过设计一个投针实验使这个事件的概率和未知量π有关,然后通过重复实验,以频率估计概率,即可求得未知参数π的近似解。这种方法称为随机模拟法,也称为蒙特卡罗法。一般来说,实验次数越多所得的近似值就越接近真值。可以利用MATLAB来大量重复地模拟所设计的随机实验。 【关键词】随机模拟;投针实验;重复实验

1 引言 蒲丰投针问题是由法国科学家蒲丰(Buffon)在1777年提出的,它是概率中非常有代表性的问题,它是第一个用几何形式表达概率问题的例子,其结论具有很强的理论与实际意义。蒲丰针问题的解决不仅较典型的反应了集合概率的特征及处理方法,而且还可以由此领略到从“概率土壤”上开出的一朵瑰丽的鲜花——蒙特卡洛(Monte-Carlo)方法。 蒙特卡罗(Monte Carlo)方法,也称计算机模拟方法,是一种基于“随机数”的计算方法,大数定律为近年来发展迅速的随机计算机和随机模拟方法提供了理论基础。 MATLAB是一个适合多学科,具有多种工作平台的功能强大的大型软件。MATLAB已经成为线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的进本教学工具,Matlab随机数发生器的种类丰富且用法简便。 本文介绍了利用随机模拟方法和大数定律的相关理论解决蒲丰投针问题计算π的近似值。

2 有关数学实验的有关基础 定理(贝努力大数定律) 设n μ是n 重贝努力实验中事件A 出现的次数,P 是事件A 每次实验中出现的概率,即P(A)=p,则对任意的 ε>0,有 3 实验 蒲丰投针问题 在平面上画有等距离的一些平行线,平行线间的距离为a(a>0),向平面上随机投一长为l(l

苏科版-数学-九年级上册-知识拓展 布丰的投针试验

公元1777年的一天,法国科学家D·布丰(D·buffon,1707~1788)的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的. 试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先画好了一条条等距离的平行线.接着他又抓出一大把原先准备好的小针,这些小针的长度都是平行线间距离的一半.然后布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必把扔下的针是否与纸上的平行线相交告诉我.” 客人们不知布丰先生要干什么,只好客随主意,一个个加入了试验的行列.一把小针扔完了,把它捡起来又扔.而布丰先生本人则不停地在一旁数着、记着,如此这般地忙碌了将近一个钟头.最后,布丰先生高声宣布:“先生们,我这里记录了诸位刚才的投针结果,共投针2212次,其中与平行线相交的有704次.总数2212与相交数704的比值为3.142.”说到这里,布丰先生故意停了停,并对大家报以神秘的一笑,接着有意提高声调说:“先生们,这就是圆周率π的近似值!” 众宾哗然,一时议论纷纷,个个感到莫名其妙;“圆周率π?这可是与圆半点也不沾边的呀!” 布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π的更精确的近似值.不过,要想弄清其间的道理,只好请大家去看敝人的新作了.”随着布丰先生扬了扬自己手上的一本《或然算术试验》的书. π在这种纷纭杂乱的场合出现,实在是出乎人们的意料,然而它却是千真万确的事实.由于投针试验的问题,是布丰先生最先提出的,所以数学史上就称它为布丰问题.布丰得出的一般结果是:如果纸上两平行线间相距为d,小针长为l,投针的次数为n,所投的 针当中与平行线相交的次数是m,那么当n相当大时有:π≈2ln dm .在上面故事中,针长l 等于平行线距离d的一半,可以代入上面公式简化.我想,喜欢思考的读者一定想知道布丰先生投针试验的原理,下面就是一个简单而巧妙的证明. 找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d.可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点.因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n. 现在设想把圆圈拉直,变成一条长为πd的铁丝.显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点,3个交点,2个交点,1个交点,甚至于都不相交. 由于圆圈和直线的长度同为πd,根据机会均等的原理,当它们投掷次数较多且相等时,两者与平行线组交点的总数可望是一样的.这就是说,当长为πd的铁丝扔下n次时,与平

Buffon投针实验的理论证明

Buffon投针实验的理论证明 我们知道,当正多边形的边数无限增多时,它的极限是圆。所以“圆”这种图形可以代表弯曲得最厉害的小针。现在假定圆形小针的直径恰好与纸上两条相邻的平行线间的距离相等,那末这个圆形小针投掷下来时,不是和一条直线相交两次,就是和两条相邻的平行线相切。不管怎样,它的相交次数是2。因此,当投掷的次数为n时,碰线的次数便是2n。 现在小针的长度只有两条相邻平行线间距离的一半,所以针的长度只有上述圆形小针长度(即圆周长)的。但是可能碰线的次数是与针的长度成正比的,因此小针的可能碰线的次数k就必须满足下面的比例式: 1:(1/2π) =2n: k 于是就得到π=n/k,也就是 π=投掷总次数/碰线次数 这就是上面“投针实验”的理论根据。它又叫莆丰氏实验,在概率论中是很出名的,也可以说是近代的“统计试验法”(又叫“蒙特卡罗法”)的滥觞。 蒲丰(Buffon)投针求π 蒲丰(Buffon)投针问题:在平面上画有等距离的一些平行线,平行线间的距离为a(a>0),向平面上随机投一长为l (l

我们也可以来做这个实验,而且希望做更多次,但是投针又比较费时费力,于是,可以采用另一种设计随机实验的方法,随机模拟的办法来模拟蒲丰投针实验。从而求得π的近似值。 二、实验方法 可以采用MatLAB软件进行模拟实验,即用MATLAB编写程序来进行“蒲丰投针实验”。 1.基本原理:由于针投到纸上的时候,有各种不同的方向和位置(图a),但是,每一次投针时,其位置和方向都可以由两个量唯一确定,那就是针的中点和偏离水平的角度(图b)。 随机投针图

蒲丰氏投针问题的模拟过程

蒲丰氏投针问题的模拟过程,随机数发生器也是自编的,以供大家参考和提出建议。谢谢。(seed1和seed2最好选择3和5,为了使投针次数达到1000000,CVF进行如下设置Project->settings->link-> output,将stack allocations reserve:设为1000000000) program getpi implicit none real,parameter::a=5,L=4,pi=3.14159 integer::n1,i,counter=0 real,allocatable::R1(:),R2(:) real::theta,x,pi1 write(*,*) 'input the size of the array:' read(*,*) n1 allocate(R1(n1)) allocate(R2(n1)) call random(n1,R1,R2) do i=1,n1 x=a*(2*R1(i)-1) theta=pi*R2(i) if(abs(x)

投针实验详解

一、问题的提出 在人类数学文化史中,对圆周率π精确值的追求吸引了许多学者的研究兴趣。在众多的圆周率计算方法中,最为奇妙的是法国物理学家布丰(Boffon)在1777年提出的“投针实验”。与传统的“割圆术”等几何计算方法不同的是,“投针实验”是利用概率统计的方法计算圆周率的值,进而为圆周率计算开辟了新的研究途径,也使其成为概率论中很有影响力的一个实验。 本节我们将借助于MATLAB仿真软件,对“投针实验”进行系统仿真,以此来研究类比的系统建模方法和离散事件系统仿真。 二、系统建模 “投针实验”的具体做法是:在一个水平面上画上一些平行线,使它们相邻两条直线之间的距离都为a;然后把一枚长为l(0

另一个是如何判断钢针与平行线的位置关系。这里,设O 为钢针中点,y 为O 点与最近平行线之间的距离,θ为钢针与平行线之间的夹角(0180θ≤<)。 首先,由于人的投掷动作是随机的,钢针落下后的具体位置也是随机的,因此可用按照均匀分布的两个随机变量y 和θ来模拟钢针投掷结果。 其次,人工实验时可以用眼睛直接判断出钢针是否与平行线相交,而计算机仿真实验则需要用数学的方法来判别。如下图所示,如果y 、l 和θ满足关系式 1sin 2 y l θ≤,那么钢针就与平行线相交,否则反之,进而可以判断钢针与平行线的位置关系。 三、 基于MATLAB/SIMULNIK 的仿真实验 在系统模型基础上,我们可以绘制出程序的流程图如下所示。 根据流程图,在MATLAB 环境下可编写程序完成计算机系统仿真实验,在这

蒲丰投针问题

蒲丰投针问题 1.蒲丰简介 蒲丰有的时候翻译成布丰,是18世纪法国著名 的博物学家。他喜欢研究数学和生物学。主要的贡献 有:(1)翻译了牛顿的《流数法》,流数法按现在的 说法就叫微积分。(2)写了一本巨著,这部巨著的名 字叫《自然史》,因为他特别喜欢研究生物。这个自 然史一共有44卷,其中他生前写了36卷,后来他学 生又完成了。这本书对后来的世界有很大的影响,尤 其影响到一个人叫达尔文,所以蒲丰这个人其实是很 厉害的。 2.蒲丰投针 1777年,在蒲丰晚年的时候,他有一次举行了一 个家庭宴会。邀请了一大堆他的朋友来帮他做实验。 做什么实验呢,就“投针”。那朋友来了之后发现,就 是桌子上有很多根间距相等的平行线。然后蒲丰就说 了,给你们同样大的针,你把这些针随机扔到这个桌子上。然后宾客就随便扔吗,有可能这样,有可能 这样……,随便扔是吧,这都有可能,什么情况都 有可能。有的针就没有跟平行线相交,比如这个, 这个,这个,就没有相交,也有相交的,比如这个, 这个,这个,这是相交的,对吧,然后他就数,他 说这个针一共投了多少个呢?一共投了n =2212个。 其中与这个平行线相交的针有多少 个,数了一下有m =704个。然后他说, 我现在可以计算圆周率了,别人都不 信,他说你看我圆周率怎么算,我只 要把这两个数相除就行了。我用n 除 以m ,这个数除完了大概是3.142,这个就是圆周率了。别人说好神奇,这怎么回事儿,蒲丰说我给你解释解释这个原理是什么?其实这个原理并不复杂,我们来看一下它的原理是什么。 3. 蒲丰投针原理 (1)首先,它这个平行线是严格平行的,那平行线之间的距离是固定的,是a 。然后我随意地把一根针投上去,也许相交,也许不相交,这不一定。比如说这个针投上去了,投上去了之后,针的总长是b ,针有一个中点叫M ,对吧,这个M 到它比较近的平行线之间的距离我们设为x ,大家注意,这个是针的中点到比较近的平行线的距离是x ,所以我们应该知道x 的范围。x 的最小值就是这个终点正好落在平行线上,那最小值是0,对吧。最大值就 是针的中点正好在两条平行线中间,那最大值是a 2 ,不会再大了。因为我这个x 的定义是针的终点到比较近的平行线的距离,对吧!所以x ∈[0,a 2 ]。 (2)其次就是我想知道这个针与这个平行线的夹角是多少?令夹角为α,α的范围是什么呢,如果你完全跟这个平行线平行的话,那么这个夹角是00,对吧。如果你往上竖过来,

“投针实验 ”求圆周率的方法

教材提到了“投针实验”求圆周率的方法。1777年,法国数学家蒲丰取一根针,量出它的长度,然后在纸上画上一组间距相等的平行线,这根针的长度是这些平行线的距离是的一半。把这根针随机地往画满了平行线的纸面上投去。小针有的与直线相交,有的落在两条平行直线之间,不与直线相交。这次实验共投针2212次,与直线相交的有704次,2212÷704≈3.142。得数竟然是π的近似值。这就是著名的蒲丰投针问题。后来他把这个试验写进了他的论文《或然性算术尝试》中。 蒲丰证明了针与任意平行线相交的概率为 p = 2l/πd 。这个公式中l为小针的长,d为平行线的间距。由这个公式,可以用概率方法得到圆周率的近似值。当实验中投的次数相当多时,就可以得到π的更精确的值。 蒲丰实验的重要性并非仅仅是为了求得比其它方法更精确的π值。而在于它是第一个用几何形式表达概率问题的例子。计算π的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。 找一根粗细均匀,长度为d 的细针,并在一张白纸上画上一组间距为l 的平行线(方便起见,常取l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数, 布丰(Comte de Buffon)设计出他的著名的投针问题(needle problem)。依靠它,可以用概率方法得到π的近似值。假定在水平面上画上许多距离为a的平行线,并且,假定把一根长为l<a的同质均匀的针随意地掷在此平面上。布丰证明:该针与此平面上的平行线之一相交的概率为:p=2l/(api) 把这一试验重复进行多次,并记下成功的次数,从而得到P的一个经验值,然后用上述公式计算出π的近似值,用这种方法得到的最好结果是意大利人拉泽里尼(Lazzerini)于1901年给出的。他只掷了3408次针,就得到了准确到6位小数的π的值。他的试验结果比其他试验者得到的结果准确多了,甚至准确到使人们对它有点怀疑。还有别的计算π的概率方法。例如,1904年,查尔特勒斯(R·Chartres)就写出了应用下列实例的报告:如果写下任意两个整数测它们互素的概率为6/π2。

投针实验计算圆周率的数学分析

投针实验计算圆周率的数学分析 王向东 投针实验计算圆周率的数学证明方法,初中一般是采取假设针弯成直径等于平行线距离的方法巧妙证明。这个方法是基于不管针弯成什么形状,针上的每一个部位与平行线相交的概率相同,但这是感观上的认识,要把其中原因解释清楚不是很容易。笔者从纯数学的角度来推导这个公式。 一、投针问题的由来 1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。 这一方法的步骤是: 1) 取一张白纸,在上面画上许多条间距为d 的平行线。 2) 取一根长度为()l l d <的针,随机地向画有平行直线的纸上掷n 次,观察针与直线相交的次数,记为m 3)计算针与直线相交的概率. 18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d 的平行线,将一根长度为()l l d <的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。”布丰本人证明了,这个概率是: 2l p d π=,π为圆周率。 二、投针实验的数学证明 投针这个动作是由两个事件构成的。 事件1:针投下后与平行线构成一定的夹角。 我们来分析一下针投下后与平行线之间的成某一特定夹角时的概率。 设针投下后与平行线之间的夹角为θ,则θ在0与π之间。针与平行线之间的夹角在θ到θ+θ?之间的概率为1p θ π?=,当0θ?→时,可看作针投下后与平行线之 间成某一特定夹角为θ的概率。 事件2:针投下后会在平行线垂直的方向形成一个投影,针与平行线相交等于它的垂直投影与平行线相交。这个投影的长度'l 在0到l 之间。

蒲丰投针及蒙特卡罗模拟电子教案模拟

概率模型的随机模拟与蒲丰投针实验 第1章模拟 1.1 模拟的概念 每一个现实系统外部环境之间都存在着一定的数学的或者逻辑的关系,这些关系在系统内部的各个组成部分之间也存在。对数学、逻辑关系并不复杂的模型,人们一般都可用解析论证和数值计算求解。但是,许多现实系统的这种数学、逻辑模型十分复杂,例如大多数具有随机因素的复杂系统。这些系统中的随机性因素很多,一些因素很难甚至不可以用准确的数学公式表述,从而无法对整个系统采用数学解析法求解。这类实际问题往往可以用模拟的方法解决。 模拟主要针对随机系统进行。当然,也可以用于确定性系统。本文讨论的重点是其中的随机模拟。采用模拟技术求解随机模型,往往需要处理大批量的数据。因此,为了加速模拟过程,减少模拟误差,通常借助于计算机进行模拟,因此又称为计算机模拟。 计算机模拟就是在已经建立起的数学、逻辑模型的基础之上,通过计算机试验,对一个系统按照一定的决策原则或作业规则,由一个状态变换为另一个状态的行为进行描述和分析。 1.2 模拟的步骤 整个模拟过程可以划分为一定的阶段,分步骤进行。 (1)明确问题,建立模型。 在进行模拟之前,首先必须正确地描述待研究的问题,明确规定模拟的目的和任务。确定衡量系统性能或模拟输出结果的目标函数,然后根据系统的结构及作业规则,分析系统各状态变量之间的关系,以此为基础建立所研究的系统模型。为了能够正确反映实际问题的本质,可先以影响系统状态发生变化的主要因素建立较为简单的模型,以后再逐步补充和完善。 (2)收集和整理数据资料。 模拟技术的正确运用,往往要大量的输入数据。在随机模拟中,随机数据仅靠一些观察值是不够的。应当对具体收集到的随机性数据资料进行认真分析。确定系统中随机性因素的概率分布特性,以此为依据产生模拟过程所必需的抽样数

九年级数学上册第六章《2.投针实验》拓展资料布丰的投针试验

公元1777年的一天,法国科学家布丰(D.Buffon1707-1788)的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的。 试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先画好了一条条等距离的平行线。接着他又抓出一大把原先准备好的小针,这些小针的长度都是平行线间距离的一半。然后布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必把扔下的针是否与纸上的平行线相交告诉我。” 众宾哗然,一时议论纷纷,个个感到莫名其妙。“圆周率π?这可是与圆半点也不沾边的呀!” 布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π的更精确的近似值。不过,要想弄清其间的道理,只好请大家去看敝人的新作了。”说着布丰先生扬了扬自己手上的一本《或然算术试验》的书。 π在这种纷纭杂乱的场合出现,实在是出乎人们的意料,然而它却是千真万确的事实。由于投针试验的问题,是布丰先生最先提出的,所以数学史上就称它为布丰问题。布丰得出的一般结果是:如果纸上两平行线间相距为d,小针长为,投针的次数为n,所投的针当中与平行线相交的次数是m,那么当n相当大时有: 在上面故事中,针长等于平行线距离d的一半,所以代入上面公式简化 我想,喜欢思考的读者,一定想知道布丰先生投针试验的原理,下面就是一个简单而巧妙的证明。 找一根铁丝弯成一个圆圈,使其直径恰好等于平行线间的距离d。可以想象,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n。

现在设想把圆圈拉直,变成一条长为πd的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点、3个交点、2个交点、1个交点,甚至于都不相交。 由于圆圈和直线的长度同为πd,根据机会均等的原理,当它们投掷次数较多,且相等时,两者与平行线组交点的总数可望是一样的。这就是说,当长为πd的铁丝扔下n次时,与平行线相交的交点总数应大致为2n。 现在再来讨论铁丝长为的情形。当投掷次数n增大的时候,这种铁丝跟平行线相交的交点总数m应当与长 度成正比,因而有: m=k 式中k是比例系数。

布丰投针实验原理

布丰投针实验原理 在张远南先生的著作《偶然中的必然》里,有关于“布丰投针实验”的故事。为了增加阅读的趣味性,我稍微做了一点改动。 1777 年的一天,法国科学家布丰的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的。 试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先 画好了一条条等距离的平行线。接着他又抓出一大把原先准备好的小针。然后 布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必 把扔下的针是否与纸上的平行线相交,以及相交的次数告诉我。 客人们不知布丰先生要玩什么把戏,只好客随主意,一个个加入了试验的 行列。一把小针扔完了,把它捡起来再扔。而布丰先生本人则不停地在一旁数着、记着,如此这般地忙碌了将近一个钟头。最后,布丰先生高声宣布:“先 生们,我这里记录了诸位刚才的投针结果,共投针 2212 次,其中与平行线相交的有 704 次。总次数 2212 与相交次数 704 的比值为 3.142。”说到这里,布丰先生故意停了停,并对大家报以神秘的一笑,接着有意提高声调说:“先生们,这就是圆周率π的近似值!” 客人们一片哗然,议论纷纷,大家全都感到莫名其妙:“圆周率π?这可跟投针半点也不沾边呀!” 布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π 的更精确的近似值呢。” 那么,“布丰投针实验”的依据究竟是什么呢?下面就是书中简单而巧妙 的证明。为了便于理解,我把证明过程说得稍微详细一点。 假设那组平行线的间距等于 d。如果把一个直径为 d 的铁丝圆圈,扔到平行线组上,因为它的周长等于πd,所以,不论怎样扔,每个圆圈都会与平行线有两个交点。因此,如果扔下的次数为 n,交点的总数为 m,必定有 m=2n。 还用那组平行线,不过这回把圆圈剪开拉直,变成长度为πd的直铁丝。显然,直铁丝与平行线相交的情形要比圆圈复杂,最多可能有 4 个交点,也可能有 3 个、2 个、1 个交点,也可能不相交,没有交点。不过,由于圆圈和直铁

投针实验计算圆周率的数学分析

投针实验计算圆周率的数学分析 投针实验计算圆周率的数学证明方法,初中一般是采取假设针弯成直径等于平行线距离的方法巧妙证明。这个方法是基于不管针弯成什么形状,针上的每一个部位与平行线相交的概率相同,但这是感观上的认识,要把其中原因解释清楚不是很容易。笔者从纯数学的角度来推导这个公式。 一、投针问题的由来 1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。 这一方法的步骤是: 1) 取一张白纸,在上面画上许多条间距为d的平行线。 2) 取一根长度为的针,随机地向画有平行直线的纸上掷n次,观察针与直线相交的次数,记为m 3)计算针与直线相交的概率. 18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年 出版的著作中:“在平面上画有一组间距为d的平行线,将一根长度为的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。”布丰本人证明了,这个概率是: ,π为圆周率。 二、投针实验的数学证明 投针这个动作是由两个事件构成的。 事件1:针投下后与平行线构成一定的夹角。 我们来分析一下针投下后与平行线之间的成某一特定夹角时的概率。 设针投下后与平行线之间的夹角为,则在0与之间。针与平行线之间的夹 角在到+之间的概率为,当时,可看作针投下后与平行线之 间成某一特定夹角为的概率。 事件2:针投下后会在平行线垂直的方向形成一个投影,针与平行线相交等于它 的垂直投影与平行线相交。这个投影的长度在0到之间。 此时针在水平方向的投影为。再分析与平行线相交的概率。等于我们将 问题转化成长度为的针,并且只允许它处在与平行线垂直的方向上,这时它与平行线相交的概率显然为:

投针实验详解

一、 问题的提出 在人类数学文化史中,对圆周率π精确值的追求吸引了许多学者的研究兴趣。在众多的圆周率计算方法中,最为奇妙的是法国物理学家布丰(Boffon )在1777年提出的“投针实验”。与传统的“割圆术”等几何计算方法不同的是,“投针实验”是利用概率统计的方法计算圆周率的值,进而为圆周率计算开辟了新的研究途径,也使其成为概率论中很有影响力的一个实验。 本节我们将借助于MATLAB 仿真软件,对“投针实验”进行系统仿真,以此来研究类比的系统建模方法和离散事件系统仿真。 二、 系统建模 “投针实验”的具体做法是:在一个水平面上画上一些平行线,使它们相邻两条直线之间的距离都为a ;然后把一枚长为l (0

蒲丰投针――MonteCarlo算法

蒲丰投针――Monte Carlo 算法 背景: 蒙特卡罗方法(Monte Carlo),也称统计模拟方法,是在二次世界大战期间随着科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的一类非常重要的数值计算方法。蒙特卡罗方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。 蒙特卡罗方法的名字来源于世界著名的赌城——摩纳哥的蒙特卡罗。其历史起源可追溯到1777年法国科学家蒲丰提出的一种计算圆周的方法——随机投针法,即著名的蒲丰投针问题。 问题: 设在平面上有一组平行线,间距为d,把一 根长L的针随机投上去,则这根针和平行线相交 的概率是多少?(其中L < d ) 分析:由于L < d,所以这根针至多只能与一条平行线相交。设针的中点与最近的平行线之间的距离为y,针与平行线的夹角为θ (0 ≤θ≤π)。 相交情形不相交情形 易知针与平行线相交的充要条件是: sin 2 L y xθ ≤= 由于 1 [0,],[0,] 2 y dθπ ∈∈,且它们的取值均 满足平均分布。建立直角坐标系,则针与平行线 的相交条件在坐标系下就是曲线所围成的曲边梯 形区域(见右图)。所以有几何概率可知针与平行 线相交的概率是 sin d2 2 1 2 L L p d d π θθ π π == ?

Monte Carlo 方法: 随机产生满足平均分布的 y 和 θ,其中1 [0, ], [0, ]2 y d θπ∈∈,判断 y 是否在曲边梯形内。重复上述试验,并统计 y 在曲边梯形内的次数 m ,其与试验次数 n 的比值即为针与平行线相交的概率的近似值。 clear; n = 100000; L = 1; d = 2; m = 0; for k = 1 : n theta = rand(1)*pi; y = rand(1)*d/2; if y < sin(theta)*L/2 m = m + 1; end end fprintf('针与平行线相交的概率大约为 %f\n', m/n) 计算π的近似值 利用该方法可以计算 π 的近似值: sin d 22 2 2 1n L L m p d m d L d n π θθπππ?≈= =≈? 下面是一些通过蒲丰投针实验计算出来的 π 的近似值: 蒲丰投针问题的重要性并非是为了求得比其它方法更精确的π值,而是在于它是第一个用几何形式表达概率问题的例子。计算π的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。

布丰投针实验

1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。 投针步骤 这一方法的步骤是: 1) 取一张白纸,在上面画上许多条间距为d的平行线。 2) 取一根长度为l(lz,x²+y²﹤z²,容易证明这两个式子即为以这3个正数为边长可以围成一个钝角三角形的充要条件,用线性规划可知满足题设的可行域为直线x+y=z与圆x²+y²=z²围成的弓形,总的可行域为一个边长为z的正方形,则可

投针试验教学设计 (优质)

第六章频率与概率 2.投针试验 河南省第二试验中学胡亚丽 一、学生知识状况分析 通过第6.1节的学习,学生已认识到当试验次数较大时试验频率稳定于理论概率,并可据此估计某一事件发生的概率,已会用树状图或列表计算两步试验的事件的概率. 本节课讨论的问题, 虽然存在理论概率,但其理论计算已经超出了义务教育阶段学生的认知水平,学生将借助试验模拟获得其估计值。 二、教学任务分析 本节选取了一个历史上较为著名的投针试验为题材.力图让学生通过亲身的试验、统计过程获得用试验的方法估计复杂事件发生的概率的体验. 教学目标 1. 知识与技能目标 借助大量重复试验去感悟试验频率稳定于理论概率.能用试验的方法估计一些复杂的随机事件发生的概率; 2.方法与过程目标 ①结合具体情境,初步感受统计推断的合理性,进一步体会概率与统计之间的关系。 ②经历试验、统计等活动过程,在活动中在活动中促进他们对知识的学习,进一步发展学生合作交流的意识和能力.

3.情感态度价值观 培养学生实事求是的科学态度,提高自身的数学交流水平,增强与人合作的精神和解决实际问题的能力,激发学生学习数学的兴趣.发展辩证思维能力. 教学重点:能用试验方法估计一些复杂的随机事件发生的概率. 教学难点:借助大量的重复试验去感悟试验频率稳定于理论概率. 三、教学过程分析 本节设计五个教学环节 第一环节创设问题情境,引入新课; 第二环节小组活动探究; 第三环节阅读拓展 第四环节课堂小结; 第五环节布置作业. 第一环节创设问题情境,引入新课 教具准备:大头针,图钉,多媒体演示 通过问题串的形式引入新课: 问题: (1)抛图钉时,图钉落地有两种情况,一种是针尖向下(如图一所示)一种是钉帽向下(如图二所示),能借助书状图或列表分别算出它们的概率吗?

初中数学知识点精讲精析 投针试验

6·2 投针试验 1.投针试验 活动步骤: ①分组,两人一组。②取一张白纸,在上面画一组平行线,它们之间的距离约为2cm,另外备一根1cm长的针,在纸的下面垫一层柔软的东西,便针落在纸面上时不会弹跳。③每组至少完成100次试验,分别记录下其中相交和不相交的次数。④统计全班试验数据,估计针与平行线相交的概率。 2.求等可能事件发生的概率常有下列两种法:画树状图法、列表法。在求可能事件的概率用列表法和树状图法时,应注意各种情况出现的可能性务必相同。 3.注意的问题: (1)列表法和树状图法适用于各种情况出现的总次数不是很大时求概率的问题; (2)在求可能事件的概率用列表法和树状图法时,应注意各种情况出现的可能性务必相同; (3)在列表或画树状图求概率的过程中,各种情况的可能性不能重复,也不能遗漏。 例1.中考前夕,某校为了了解初三年级480名学生的数学学习情况,特组织了一次检测。教师随机抽取了一部分学生的检测成绩进行统计分析,绘制成下表: 注:72分(含72分)以上为“及格”;96分(含96分)以上为“优秀”;36分(不含36分)以下为“后进”,全距是“最高分”与“最低分”之差。 (1)仔细观察上表,填出表中空格处的相应数据; (2)估计这480名学生本次检测成绩的中位数落在哪个分数段内; (3)根据表中相关统计量及相应数据,结合你所学的统计知识,选择两个方面对这次检测的总体情况作出合理分析。

解:(1)样本容量:50。优秀率:3400。频数:4。频率:0.18。 (2)中位数落在85~95.5这一分数段内 (3)略。评分说明:只要选择了两个方面作答,分析合理 叙述准确,用语精炼,体现用样本估计总体的思想. 例2.你喜欢玩游戏吗?现请你玩一个转盘游戏。如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积。 请你:⑴列举(用列表或画树状图)所有可能得到的数字之积 ⑵求出数字之积为奇数的概率。 解:⑴ 用列表法来表示所有得到的数字之积 ⑵ 由上表可知,两数之积的情况有24种 所以P (数字之积为奇数)=4 1246

Buffon投针实验报告

Buffon投针实验 一、实验目的: 在计算机上用试验方法求圆周率的近似值。 二、实验原理: 假设平面上有无数条距离为1的等距平行线,现向该平面随机投掷长度为L(L≤1)的针,则针与平行线相交的概率 P=。 设针的中心M与最近一条平行线的距离为x,则x~U(0,1); 针与平行线的夹角为(不管相交与否),则~U(0,) 如图: ()在矩阵上均匀分布,且针与平行线相交的充要条件为 x≤=;P=P{ x=}。 记录≤成立的次数,记为

由-大数定理:≈,则=2。 在计算机上产生 则=~U(0,),i=1,2,…,n; 再产生,则 , i=1,2,…,n 三、实验方法及代码: 在计算机上进行模拟实验,求出的实验值。给定L,在计算机上利用MFC独立随机产生x和,然后判断≤是否成立. 代码如下: #include "stdafx.h" #include "buffon.h" #include "ChildView.h" #include "ChoiceDlg.h" #include #include #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif // CChildView CChildView::CChildView() { Trynum=1000; } CChildView::~CChildView() { } BEGIN_MESSAGE_MAP(CChildView,CWnd ) //{{AFX_MSG_MAP(CChildView)

相关文档