文档库 最新最全的文档下载
当前位置:文档库 › 空调设计步骤及设备选型资料

空调设计步骤及设备选型资料

空调设计步骤及设备选型资料
空调设计步骤及设备选型资料

空调设计步骤(空气加水)

负荷:冷、热负荷;

选风盘和初选新风机组;

布置风管道和水管道并进行水力计算;

空调风系统确定风系统各管段管径及其各支路不平衡率,确定最不利管段的总阻力并校核新风机组是否满足风阻要求。(民用建筑空调205~213页)

空调水系统确定水管各管段管径及其各支路不平衡率,并计算最不利环路总阻力。(民用建筑空调237页)

凝水管路的设计(民用建筑空调262~263页)或参下表

管路系统的保温与防腐(民用建筑空调279表8-36页)

布置制冷机房(溴化锂制冷机、管线、分集水器等)

溴冷机(2台)

根据总负荷选择溴化锂制冷机组,(民用建筑空调340~345页)

分、集水器

根据各分支管径情况确定分水器、集水器的管径及长度;(民用建筑空调288页)

旁通阀通径选择表(民用建筑空调240页)

冷(冻)水泵:

流量:根据所选溴冷机组的冷水流量(乘以安全系数1.05~1.1);

扬程:及最不利环路阻力(7~10mH2O)、溴冷机冷水阻力(样本)、分水器(3mH2O)、集水器及过滤器阻力(3~5mH2O)的总阻力(全部阻力相加乘以安全系数1.05~1.1),确定冷水泵扬程。

膨胀水箱(民用建筑空调271页)或参考下文

冷却水泵

流量:根据锂吸收式制冷机所需的冷却水量(乘以安全系数1.1);

扬程:冷却塔的总阻力(包括喷水压力约2~3mH2O,水盘到喷嘴的高差约2~3mH2O)、管路阻力(5~8mH2O),过滤器阻力(3~5mH2O)及溴冷机冷凝器阻力(样本)确定冷却

水泵扬程。

冷水泵扬程一般为17~26mH2O,冷却水泵21~25mH2O。

补水泵(一般一备一用)

流量:闭式系统补水量为系统水容量的2.5~5倍。系统水容量,全空气系统0.40~0.55L /m2;空气-水0.70~1.3L/m2;开式系统补水量为循环水量的2%左右;

扬程:系统最高点局补水泵接管处的垂直距离和补水管路沿程阻力和局部阻力损失(一般3~5mH2O),选取补水泵的扬程时在此基础上附加3~5mH2O;

冷却塔

根据溴化锂吸收式制冷机所需的冷却水量(乘以安全系数1.1)、进出口水温、当地的湿球温度、冷幅高(出室温与湿球温度的差)选择冷却塔型号;(民用建筑空调244页)

电子水处理仪和过滤器

按设备所在管段的管径进行选择,冷却水时开式系统必须设水处理仪,冷冻水为闭式系统要求不很严格,可在冷冻水系统管路中或膨胀水箱进水管按一个电子水处理仪。

消声减震设计*(选自2003技术措施)

选自2003技术措施138页

绘制正式图纸。

常用中央空调设计程序步骤

常见中央空调设计程序 设计顺序:先末端,后主机 设计原则:合理、经济,最大限度节约运行成本 设计方案及适用范围: 一、末端部分: 1、风机盘管系统; 适用范围:一般办公、餐饮等场所 2、风机盘管加新风系统; 适用范围:要求较高的办公、酒店、餐饮娱乐等场所 3、全空气系统; 适用范围:商场超市、车间等大开间场所 二、主机部分: 1、螺杆式冷水机组制冷,市政或锅炉供热; 适用范围:有专用机房、电力充足、需专人值守 2、风冷机组制冷(制热),市政或锅炉供热; 适用范围:空调面积较小、没有机房、无专人值守 3、离心式冷水机组制冷,市政或锅炉供热; 适用范围:空调面积较大、有专用机房、电力充足、需专人值守 4、溴化锂机组制冷(制热),市政或锅炉供热; 适用范围:电力不足、有市政热源并经综合比较经济、有专用机房、需专人值守

三、其它: 1、一拖多系统; 适用范围:空调面积较小、无专用机房、无专人值守、空调面积较大但非同时使用且需独立计费等场所 2、风管机系统; 适用范围:大开间、无专用机房、无专人值守、控制灵活、初投资较低 设计程序: 一、末端部分: (一)设备选型: 1、计算实际空调面积; 2、根据使用场所确定冷负荷指标,计算出设计总负荷,根据设 备布置特点确定所需设备数量,确定设备型号; 冷负荷概算指标: 采用组合式空调器,循环次数商场6~7次,推荐8~9次 (二)水系统设计: 1、设备定位布置,确定立管位置,根据系统复杂程度确定采用 同程式或异程式(当立管与最末端设备距离超过30米时尽量采用同程式); 2、确定主管道走向,并与设备合理连接,当主管道有分支时应 设阀门以便于调节;

空调设计基本步骤

空调设计基本步骤 设计顺序:先末端,后主机设计原则:合理、经济,最大限度节约运行成本设计方案及适用范围: 一、末端部分: 1、风机盘管系统;适用范围:一般办公、餐饮等场所 2、风机盘管加新风系统;适用范围:要求较高的办公、酒店、餐饮娱乐等场所 3、全空气系统;适用范围:商场超市、车间等大开间场所 二、主机部分: 1、螺杆式冷水机组制冷,市政或锅炉供热;适用范围:有专用机房、电力充足、需专人值守 2、风冷机组制冷(制热),市政或锅炉供热;适用范围:空调面积较小、没有机房、无专人值守 3、离心式冷水机组制冷,市政或锅炉供热;适用范围:空调面积较大、有专用机房、电力充足、需专人值守 4、溴化锂机组制冷(制热),市政或锅炉供热;适用范围:电力不足、有市政热源并经综合比较经济、有专用机房、需专人值守 三、其它: 1、一拖多系统; 适用范围:空调面积较小、无专用机房、无专人值守、空调面积较大但非同时使用且需独立计费等场所 2、风管机系统;适用范围:大开间、无专用机房、无专人值守、控制灵活、初投资较低设计程序:

一、末端部分: (一)设备选型: 1、计算实际空调面积; 2、根据使用场所确定冷负荷指标,计算出设计总负荷,根据设备布置特点确定所需设备数量,确定设备型号; 冷负荷概算指标: 采用组合式空调器,循环次数商场6?7次,推荐8?9次 (二)水系统设计: 1、设备定位布置,确定立管位置,根据系统复杂程度确定采用同程式或异程式(当立管与最末端设备距离超过30 米时尽量采用同程式); 2、确定主管道走向,并与设备合理连接,当主管道有分支时应设阀门以便于调节; 3、根据设备流量确定每一管段的水流量,再根据设计水流速计算出管径; 4、空调水设计流速为0.9 -2.5m/s ,管径越大、流速越大,管道比摩阻应小于500; 5、水管与设备连接时,进水管上设软接、过滤器、阀门,出水管上设软接、阀门; 6、冷凝水管径设计: 当机组冷负荷QC 7KW, Dl^20; Q= 7.1 —17.6 , DN= 25; Q= 17.7 —100, DNk32; Q =101- 176, DN^40; Q= 177—598, DN^50; Q= 599—1055, DN^80; Q= 1056—1512, DN^ 100; Q= 1513—12462, DN^ 125; Q> 12462, DN^ 150 7、空调水管保温:

中央空调设计步骤

中央空调设计步骤简要说明 1、第一步得到建筑条件图后,熟悉图纸。没有建筑图纸的需要绘制建筑图纸。 2、第二步确定方案,冷热源型式,水系统形式,风系统形式。工程所在地的能 源情况应作为空调冷热源形式的主要依据。 3、第三步,做初步设计,在方案的基础上深化。空调机组及附属设备用房等条 件要与建筑专业或业主沟通明确。自动控制系统也要有一个初步的方案。4、第四步负荷计算,根据每个空调房间的使用功能和使用要求计算每个房间的 冷、热负荷。 (负荷计算分为估算和精算两种,精算常用谐波法进行计算)根据计算结果选择合适的未端及主机的具体型号。 5、第五步做施工图,(前面的步骤可以估算)施工图要详细计算。 1)绘制空调水路平面图,空调水路系统图(水系统根据设计情况分为空调供水、空调回水、空调冷凝水、及附属管道)。 A.确定空调系统水路形式,合理布置水管,并绘制水管系统轴测图,作为水力计算草图。 B.在计算草图上进行管段编号,并标注管段的长度和水量。 管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。 C.选定系统最不利环路,一般指最远或局部阻力最多得环路。 D.根据设计手册选择合理的水流速。根据经验总结,确定水管内的水流速。 E.根据给定水量和选定流速,逐段计算管道断面尺寸即管道规格,然后根据选定了的断面尺寸和水量,计算出水管内实际流速并和原假定流速进行校核。 F.计算水管的沿程阻力 根据沿程阻力计算公式:?Pm=R.L 查《冷水管道的摩擦阻力计算表》求出单位长度摩擦阻力损失?py,再根据管长L,计算出管段的摩擦阻力损失。 G.计算各管段局部阻力 根据局部阻力计算公式:?Pj=ζ×υ2ρ/2

过程设备设计第三版课后答案及重点

过程设备设计题解 1.压力容器导言 习题 1. 试应用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p ,壳体中面半径为R ,壳体厚度为t )。若壳体材料由 20R ( MPa MPa s b 245,400==σσ)改为16MnR ( MPa MPa s b 345,510==σσ)时,圆柱壳中的应力如何变化?为什么? 解:○ 1求解圆柱壳中的应力 应力分量表示的微体和区域平衡方程式: δ σσθ φ z p R R - =+ 2 1 φσππ φsin 220 t r dr rp F k r z k =-=? 圆筒壳体:R 1=∞,R 2=R ,p z =-p ,r k =R ,φ=π/2 t pR pr t pR k 2sin 2== = φδσσφθ ○ 2壳体材料由20R 改为16MnR ,圆柱壳中的应力不变化。因为无力矩理论是力学上的静定问题,其基本方程是平衡方程,而且仅通过求解平衡方程就能得到应力解,不受材料性能常数的影响,所以圆柱壳中的应力分布和大小不受材料变化的影响。 2. 对一标准椭圆形封头(如图所示)进行应力测试。该封头中面处的长轴D=1000mm ,厚度t=10mm ,测得E 点(x=0)处的周向应力为50MPa 。此时,压力表A 指示数为1MPa ,压力表B 的指示数为2MPa ,试问哪一个压力表已失灵,为什么? 解:○ 1根据标准椭圆形封头的应力计算式计算E 的内压力: 标准椭圆形封头的长轴与短轴半径之比为2,即a/b=2,a=D/2=500mm 。在x=0处的应力式为: MPa a bt p bt pa 1500250 102222 2 =???== = θθσσ ○ 2从上面计算结果可见,容器内压力与压力表A 的一致,压力表B 已失灵。 3. 有一球罐(如图所示),其内径为20m (可视为中面直径),厚度为20mm 。内贮有液氨,球罐上部尚有 3m 的气态氨。设气态氨的压力p=0.4MPa ,液氨密度为640kg/m 3 ,球罐沿平行圆A-A 支承,其对应中心角为120°,试确定该球壳中的薄膜应力。 解:○ 1球壳的气态氨部分壳体内应力分布: R 1=R 2=R ,p z =-p MPa t pR t pR pr t pR k 10020 210000 4.022sin 2=??===? = = = +θφφθφσσφδσσσ φ0 h

空调系统方案的确定

第三章空调系统方案的确定 3.1空调水系统的确定 冷水系统方案的确定及优缺点如下表: 表3-1 冷水系统优缺点

续 基于本建筑的特点,同时考虑到节能与管道内清洁等问题,因而采用了闭式系统,不与大气相接触,在机房设气体定压罐定压,不设膨胀水箱。这样不仅使管路不易产生污垢和腐蚀,不需要克服系统静水压头,且水泵耗电较小。水系统设为异程式两管制,节省投资。 3.2空调风系统的选取 3.2.1 空调风系统的划分原则 (1) 能保证室内要求的参数,即在设计条件下和运行条件下均能保证达到室内温度、相对湿度、净化等要求; (2) 初投资和运行费用综合起来较为经济; (3) 尽量减少一个系统内的各房间相互不利的影响; (4) 尽量减少风管长度和风管重叠,便于施工、管理和测试。 3.2.2 空调风系统方案的比较 由于各类空调房间对空气的要求各不相同,因此空调系统的种类也是多种多样。在工程设计中应按照空调对象的性质和用途,热湿负荷的特点,室内设计参数的要求,可能为空调机房及风管提供的建筑面积和空调间初投资和运行费用等许多方面的具体情况,经过技术经济的分析比较来选择合适的空调系统。

空调系统根据不同的分类方法可以分为多种类型,按负担室内空调负荷的介质可以分为全空气系统、全水系统、空气水系统、冷剂系统。各种系统的特征及适用性见表3-2。 表3-2空调系统的分类 全空气系统与空气-水系统方案比较表 表 3-2 全空气系统与空气-水系统方案比较 续表3-2

表 3-3 风机盘管+新风系统的特点 本设计为百货商场的空调系统设计,综上所诉,商场的大面积空气调节方案采用全空气系统,从而能够很好的调节控制大范围空间的温湿度。一层,二层,三层,四层的办公室,仓库采用风机盘管加新风系统供给室内新风即把新风处理到室内状态的等焓线,不承担室内冷负荷方案。这种方案既提高了该系统的调节和运转的灵活性,且进入风机盘管的供水温度可适当提高,水管结露现象可以得到改善。每层设一个新风机

风冷热泵空调系统的设计方法(一)

风冷热泵空调系统的设计方法(一) 空调负荷与容量的确定 空调负荷包括空调冷负荷和空调热负荷。空调冷(热)负荷指为将室内的空气参数维持在设计参数状态,单位时间内需向建筑提供的冷(热)量。这是一个受室内设计参数,室内人员、设备等散热和散湿量,围护结构性质,室外空气环境参数(包括温度、湿度、气流速度等),太阳辐射强度等诸多因素影响的变量。让空调系统恰如其分地提供冷(热)量,以满足设计计算状态下建筑物的需求,并随时适应建筑物空调冷(热)负荷及其变化的需要是空调设计的根本目的。 在空调系统设计过程中,空调负荷计算是第一步。空调负荷的计算应包括空调设计计算负荷的确定和各时段负荷的分析;其次,设备的容量必须满足空调设计计算冷(热)负荷的要求;另外设备的配置应适应空调负荷变化的特点。在以空气源热泵型冷热水机组为冷源的空调系统设计中,热泵机组的容量既要考虑到大楼各部分的同时使用系数,还应考虑到热泵的实际制冷量和实际供热量会因设备间距限制等原因造成通风不畅,部分气流短路(这部分的出力损失约占5%左右)而受到影响,和室外换热器表面积灰和表面结垢、设备衰减等因素的影响,故所选择的热泵机组应考虑安全系数。 由公式来表示:Q=β1?β2?QD. 式中:Q——热泵机组在设计工况下的制冷(供热)量,KW QD——设计计算负荷,KW β1——同时使用系数,由具体工程定,一般为0.75~1.0 β2——安全系数,一般取1.05~1.10 另外,热泵机组既要满足系统夏季的供冷要求,又要满足系统冬季的供暖要求。不同供应商的热泵机组的额定制冷量、额定供热量的参数不尽相同,与各地区空调室外设计参数不一定一致。对南京而言,一般供应商所提供的热泵机组额定制冷工况条件与实际一致或相近,一般空气干球温度为35℃,空调冷冻水进出水温度分别为12℃、7℃左右。而冬季制热的额定工况条件为室外空气温度7~8℃,进出水水温为50-55℃。这一条件与南京地区冬季空调设计计算温度相差甚远。南京气候特征为冬冷夏热。对于一般办公、酒店为主的综合楼,冬季空调供暖设计计算热负荷约为夏季空调设计计算冷负荷的70-85%.在热泵机组选择时,应查看热泵机组对应于当地设计计算气象参数条件的真实出力。如果热泵机组在设计计算室外参数条件下的制冷量大于设计计算冷负荷,而制热量等于热负荷,则应以热负荷为准选择热泵。反之,如果制冷量满足设计计算冷负荷要求,而供热量大于所需热量,则可考虑部分选用风冷型冷水机组,部分选用风冷型热泵机组,以减少投资。一般情况下,按夏季冷负荷选定的热泵,能满足冬季供暖的要求。 机组类型与台数的确定 风冷热泵型冷热水机组根据压缩机的不同可分为涡旋式热泵机组、活塞式热泵机组和螺杆式热泵机组;按机组结构大小、组合规模不同,热泵机组可分为整体式热泵机组和模块式热泵机组。整体式热泵机组与模块式热泵机组没有本质的区别,所谓模块式热泵就是指一台热泵机组由若干台热泵单元(有独立的制冷回路,独立的蒸发、冷凝,独立的框架,甚至有独立的控制板)并联而成,各单元增减组合灵活方便,任意一单元的故障不影响其余各单元的工作。 国内的热泵机组生产企业以生产模块式热泵机组为多,而整体式热泵机组从外观上看是一组合单元、一整体框架,虽然内部可有多台压缩机,甚至有两个以上的制冷回路,但它们之间一般不可再分解。模块式热泵机组的主要优点是噪音低、振动小,由于系统总的制冷回路多,冬季化霜时对系统水温影响小。系统互备性也好。另外,热泵机组一般置于屋顶,模块式热泵机组由于各单元组合灵活,各单元尺寸小、重量轻,故具有运输、吊装、安装方便等优点。

空调设计工作指南

空调设计工作指南 一、设计输入 1、勘察施工项目现场:项目的使用功能要求内容。建筑楼高、层数、层高、房 间布局、楼外围场地。地下管线布局。水电设施情况。土建、消防等其他专业工程施工现状。 2、收集技术文件、技术资料:建筑图、装修图、水电、消防图、招标文件(技 术要求部分)设计院空调设计图(根据具体项目情况)。 3、设计与现场相结合,设计时应考虑梁和吊顶的高度,以便使所布置的风管和 设备能满足安装和使用要求。 二、设计过程 1、负荷计算:室内负荷,根据使用用途可参考负荷。写字楼100-120W;宾馆饭 店150-200 W;外网地源热泵土壤40-45 W。 2、设备选型: 机房设备;风冷系列机组、水冷系列机组、地源热泵系列机组。 循环水泵及配套设备、朴水配套设备。在选型时不仅要依据设计手册、设备样本、使用说明书还要充分调研实际情况。主机进出水管路要加旁通便于清洗水系统。补水箱进水管一般要≧DN40,补水泵流量、扬程要满足在4小时内整体系统注满水;主要设备要有≧800的维修空间。 末端设备:风盘系列、组空系列、柜空系列。在选型时不仅要依据设计手册、设备样本、使用说明书还要充分调研实际情况。风盘下吹风空间一般在≦4米,大于4米要考虑高静压型号。吊顶设备安装空间≧350。 水管路:要同程设计,考虑施工难度,一般甲方准许情况下,管经≦40采用渡锌管。管经﹥40采用焊接钢管。(按规范要对截门、过滤器、排气阀、电动阀、减压阀作出明确的要求) 阀件:选择阀件要充分考虑水压力、流量、开启频次、介质、介质温度、使用环境。并认真查阅产品说明书的使用要求。 阀门分类:对不同的阀门进行分类汇总,方便设计过程中选择最适合的阀门。准确掌握阀门作用:设计时应准确标注各种风阀、水阀名称,掌握各种冷门的作用,哪些阀门具有调节作用,哪些阀门只具有开、关作用,避免出现所用阀门

(完整word版)设备设计与选型

设备设计与选型 7.1全厂设备概况及主要特点 全厂主要设备包括反应器6台,塔设备3台,储罐设备8台,泵设备36台,热交换器19台,压缩机2台,闪蒸器2台,倾析器1台,结晶器2台,离心机1台,共计80个设备。 本厂重型机器多,如反应器、脱甲苯塔、脱重烃塔,设备安装时多采用现场组焊的方式。 在此,对反应器、脱甲苯塔等进行详细的计算,编制了计算说明书。对全厂其它所有设备进行了选型,编制了各类设备一览表(见附录)。 7.2反应器设计 7.2.1概述 反应是化工生产流程中的中心环节,反应器的设计在化工设计中占有重要的地位。 7.2.2反应器选型 反应器的形式是由反应过程的基本特征决定的,本反应的的原料以气象进入反应器,在高温低压下进行反应,故属于气固相反应过程。气固相反应过程使用的反应器,根据催化剂床层的形式分为固定床反应器、流化床反应器和移动床反应器。 1、固定床反应器 固定床反应器又称填充床反应器,催化剂颗粒填装在反应器中,呈静止状态,是化工生产中最重要的气固反应器之一。

固定床反应器的优点有: ①反混小 ②催化剂机械损耗小 ③便于控制 固定床反应器的缺点如下: ①传热差,容易飞温 ②催化剂更换困难 2、流化床反应器 流化床反应器,又称沸腾床反应器。反应器中气相原料以一定的速度通过催化剂颗粒层,使颗粒处于悬浮状态,并进行气固相反应。流态化技术在工业上最早应用于化学反应过程。 流化床反应的优点有: ①传热效果好 ②可实现固体物料的连续进出 ③压降低 流化床反应器的缺点入下: ①返混严重 ②对催化剂颗粒要求严格 ③易造成催化剂损失 3、移动床反应器 移动床反应器是一种新型的固定床反应器,其中催化剂从反应器顶部连续加入,并在反应过程中缓慢下降,最后从反应器底部卸出。反应原料气则从反应器底部进入,反应产物由反应器顶部输出,在移动床反应器中,催化剂颗粒之间没有相对移动,但是整体缓慢下降,是一种移动着的固定床,固得名。 本项目反应属于低放热反应,而且催化剂在小试的时候曾连续运行1000

空调设计设备选型指南

内容: 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等) 2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。 同一机房内可采用不同 类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比 进行选择。 2.3.2冷水机组机型选择

电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规 定。 2.3.3冷水机组的制冷量和耗功率 冷水机组铭牌上的制冷量和耗功率,或样本技术性能表中的制冷量和耗功率是机组名义工况下的制冷量和耗功率,只能作冷水机组初选时参考。冷水机组在设计工况或使用工况下的制冷量和耗功率应根据设计工况或使用工况(主要指冷水出水温度、冷却水进水温度)按机组变工况性能表、变工况性能曲线或变工况性能修正系数来确定。 2.4热源设备 2.4.1热源设备类型 提供空调热水的锅炉按其使用能源的不同,主要分为两大类:(1)电热水锅炉(2)燃气、燃油热水锅炉 电热水锅炉 电热水锅炉的优点是使用方便,清洁卫生,无排放物,安全,无燃烧爆炸危险,自动控制水温,可无人值守。 《公共建筑节能设计标准》(GB50189-2005)规定:除了符合下列情况之一外,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源:电力充足、供电政策支持和电价优惠地区的建筑; 以供冷为主,采暖负荷较小且无法利用热泵提供热源的建筑; 无集中供热与燃气源,用煤、油等燃料受到环保或消防严格限制的建筑; 夜间可利用低谷电进行蓄热、且蓄热电锅炉不在日间用电高峰和平段时间启用的建筑; 利用可再生能源发电地区的建筑; 内、外区合一的变风量系统中需要对局部外区进行加热的建筑.

空调系统设备选型汇总

空调系统设备选型 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等)2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。同一机房内可采用不同类型、不同容

量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比进行选择。 冷水机组机型冷量范围(kW)参考价格(元/kcal/h) 往复活塞式≤700 0.5~0.6 螺杆式116~1758 0.6~0.7 离心式≥1758 0.5~0.6 2.3.2冷水机组机型选择 电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规定。 水冷冷水机组机型额定制冷量(kW)性能系数(W/W)活塞式/涡旋式<528 3.8 528~1163 4.0 >1163 4.2 螺杆式<528 4.10 528~1163 4.30

暖通空调设计全过程

设计全过程 为保证设计工作得严谨,保证设计得质量 (一)标准要求及相关单位换算 1、室内需要达到得设计参数: 夏季:温度:26℃±2,湿度:40-65%,风速:不大于0、3m/s 冬季:温度:20℃±2,湿度:40-60%,风速:不大于0、2m/s 2、单位换算常识 1HP=0、735KW HP:匹、马力 1kcal/h=1、163 kcal/h:大卡 1KW=860 kcal/h KW:千瓦 1USRT=3、516KW USRT:美国冷吨 (二)空调负荷及主机选型 1、空调冷负荷(包含) 建筑围护结构传入室内热量形成得冷负荷 人体散热形成得冷负荷 灯光散热形成得冷负荷 设备散热形成得冷负荷 食物散热形成得冷负荷 空气渗透带入室内得冷负荷 2、空调湿负荷 空调房间得湿负荷有人体散湿、敞开水面蒸发散湿等形成得湿负荷。

3、冷热负荷得估算 ①、住宅、办公、娱乐类(140-200w/㎡) 客房、住宅、普通办公取下限 办公(有发热设备)、病房、KTV取上限 ②、超市、商业类(220-250 w/㎡) 首层取上限;二层及以上取下限 ③、餐饮类(250-400 w/㎡) 普通餐厅(无大量发热)取下限 火锅、烧烤类(大量发热)取上限 ④、其她类型根据具体情况确定 4、主机得选择 ①、根据建筑得空调与房间使用功能进行空调冷负荷计算 ②、统计建筑空调总冷负荷 ③、大部分建筑需要考虑房间得同时使用率,一般建筑得同时使 用率为70-80%,特殊情况需根据建筑功能与使用情况确定。 ④、空调机组得冷负荷为建筑空调总冷负荷与同时使用系数得 乘积。 (三)、中央空调工程系统设计 1、末端系统分类(常用形式)

空调系统设计开题报告--

华北电力大学 毕业设计(论文)开题报告 学生姓名:班级: 所在院系:所在专业: 设计(论文)题目:北京市某体育中心空调系统设计指导教师: 2010年 3 月 30 日

毕业设计(论文)开题报告

北京市某体育中心空调系统设计 1.课题的背景与意义 随着我国人民生活水平的不断提高,购买力增强。近年来修建了不少体育运动建筑,并且向多元化方向发展,建筑规模越来越大。装饰豪华、设施全面、多维服务,集商贸、娱乐、运动、比赛为一体的高级体育运动建筑也层出不穷。 体育建筑的一个流动人口众多的公共场所,室内空气的温湿度、洁净度和新鲜空气量等,对观众和运动员的身体健康影响很大[1]。因此,体育建筑设施的空气环境越来越被卫生部门所重视。我国卫生防疫部门对体育建筑提出了卫生要求,对较大的重点体育馆还进行过监测,对一些已建的大中运动地点要求进行改造,增设通风设施或加建空气调节装置。 体育建筑不断的增多,以及人们对室内空气的温湿度、洁净度和空气品质问题越来越重视[2]。由于能源的紧缺,节能问题越来越引起人们的重视。因此迫切需要为体育活动场所安装配置节能、健康、舒适的中央空调系统来满足人们对高生活水平的追求。 2.空调系统发展 中央空调系统的分类 一.按负担室内热湿负荷所用的介质可分为: 1.全空气系统 2.全水系统 3.空气-水系统 4.冷剂系统((1)(2)) 二.按空气处理设备的集中程度可分为: 1.集中式 2.半集中式 三.按被处理空气的来源可分为: 1.封闭式 2.直流式 3. 混合式(一次回风二次回风) 主要组成设备有空调主机(冷热源) 风柜风机盘管等等[3] . 中央空调系统优点 经济节能:主机由微电脑控制,每个区间末端风机盘管可自行调节温度,区间无人时可关闭,系统根据实际负荷做自动化运行,开机计费,不开机不计费,有效节约能源和运行费用。 环保:主机采用水源热泵型机组,电制冷,没有燃烧过程,避免了排污;整个系统为密闭式管路系统,可避免霉菌灰尘等杂质对系统的污染,使环境清新优美,特别适于高档别墅、高级公寓与写字楼的使用。 节约空间:主机体积小巧,不设机房,无需占用设备层,减少公用设施和

中央空调设计选型 精讲

中央空调设计选型精讲 一总则 1.1为保证特灵家用中央空调设计的质量,使设计符合安全、适用、经济、卫生和保护环境的基本要求,特制定本规范。 1.2特灵家用中央空调设计时,除执行本规范外,还应符合现行有关标准、规范的规定。 二负荷计算 2.1基本概念 冷负荷:为了保持房间一定的温度,需要向房间供应的冷量。 热负荷:为了补偿房间失去的热量,需要向房间供应的热量。 湿负荷:为了维持房间内相对湿度,需要由房间除去或增加的湿量。 2.2负荷估算 房间的冷负荷通常包括:经过维护结构的太阳辐射负荷和人、用电器等散发的负荷,等等。房间负荷的组成如图1所示。在民用建筑中,尤其是住宅,空调房间内人员数量、照明功率、家用电器类型和功率,以及房间的使用时间均难以准确确定,而且维护结构的冷负荷计算复杂,所以在家用中央空调的设计中,一般按照空调使用面积,估算房间的冷负荷。就全国而言,通常取80~230W/m2,确定具体的负荷估算值时,应该主要考虑以下因素: 1)气候条件;图1 屋顶 灯光 用电器 玻璃渗透风 人

进行负荷估算时,地区之间差异很大。例如,上海的卧室大约为150~180 W/m2,北京的卧室大约为90~120 W/m2。 2)使用房间的层高; 一般来讲,层高越高负荷越大。 3)房间的用途; 进行负荷估算时,房间类型不同,其值也有不同。例如,在上海,卧室大约为150~180 W/m2,而客厅大约为180~210 W/m2。 4)外墙的朝向; 如果某一房间的朝南、朝西的外墙较多,那么负荷就越大。 5)窗户的面积及朝向; 如果某一房间的窗户是朝南、朝西,或者窗户的面积较大,那么在负荷估算时,应取较大的值。 6)房间内的人数; 7)用电器; 8)墙的隔热因素; 现在,在很多城市的住宅楼中,墙体使用了隔热层,那么通过维护结构的太阳辐射热将减少。所以在为这类建筑进行负荷估算时,取值应该取较小值。 三机组选型及系统设计 3.1基本概念 名义制冷量:在额定工况和规定条件下(ILLUSION为:室外环境温度35℃干球,室内温度27℃干球/19℃湿球和名义风量;Mini-KOOLMAN为:室外环境温度35℃干球,出水温度7℃,回水温度12℃),机组制冷时,单位时间内从房间、密闭空间或者区域内除去的热量总和,单位――KW; 名义制热量:在额定工况和规定条件下(ILLUSION为:室外环境温度7℃干球/6℃湿球,室内温度20℃干球和名义风量;Mini-KOOLMAN为:室外环境温度7℃干球/6℃湿球,出水温度45℃,回水温度40℃),机组制热时,单位时间内向房间、密闭空间或者区域内泵入的热量总和,单位――KW; 消耗功率:机组制冷/制热时,单位时间内所耗的总功,单位――KW; 能效比(EER):在额定工况和规定条件下(同上),机组制冷时,制冷量和消耗功率之比,其值用W/W表示; 性能系数(COP):在额定工况和规定条件下(同上),机组制热时,制热量和消耗功率之比,其值用W/W表示; 名义风量:指室内风机在高速档,机外余压为0Pa时的风量; 3.2影响机组选型的因素 1)气候条件; 结合产品使用地区的地理位置选择合适的产品。如在北方地区,选用风冷冷水机组时,要充分考虑冬天机组结冰被冻坏的问题,而这一点在南方地区就不用考虑。 2)用户的经济条件; 在同等冷量的条件下,风冷冷水机组(KOOLMAN)的总造价(包含设备价和工程施工费用)远大于风冷风管机(ILLUSION),所以在为用户选择机组时,务必要考虑经济条件。

如何设计中央空调安装方案

中央空调安装设计流程 第一步:空调负荷估算 a)空调冷负荷估算(1)冷负荷估算面军 A.空调冷负荷法估算冷指标。 空调冷负荷法估算冷指标(W/m2空调面积)见下表

B:按建筑面积冷指标进行估算 建筑面积冷指标 取上限;大于l0000平米,取下限值。 2、按上述指标确定的冷负荷,即是制冷机的容量,不必再加系数。 3、由于地区差异较大,上述指标以北京地区为准。南方地区可按上限采取。 热负荷估算 (l)按建筑面积热指标进行估算 注:总建筑面积、大外围结构热工性能好、窗户面积小,采用较小的指标;反之采用较大的指标。 (2)窗墙比公式法: q=(7a+1.7)W/F(tn-tw)W/m2; 说明:q—建筑物的供热指标,W/m22。 a —外窗面积与外墙面积(包括窗之比); W一外墙总面积(包括窗),m22

F一总建筑面积,m2 tn一室内供暖设计温度,℃ tw一室外供暖设计温度,℃ (3)冷热负荷说明 A.以上估算的冷热负荷指标,是按2000年10月1日以前执行的《民用建筑节能设计标准》进行估算的。 B.新的《民用建筑节能设计标准》,自2000年10月1实施执行,其冷热负荷指标,应参照有关的标准。 第二步:机组选型 机组选型步骤: A.估算或计算冷负荷 通过3.2.2节的估算法进行估算总冷负荷,或通过有关的负荷计算法进行计算。 B.估算或计算热负荷 通过3.2.2节的估算法进行估算总热负荷,或通过有关的负荷计算法进行计算。 C.初定机组型号 根据总冷负荷,初次选定机组型号及台数 D、确定机组型号 根据总热负荷,校核初定的机组型号及台数。并确定机组型号。 2.机组选型案例 例:建筑情况:北京市某办公楼建筑面积为11000 m22,空调面积为10000 m2其中大会议室面积500 m2,小会议室面积为1500 m2,办公楼建筑面积为8000 m2含有新风。

空调设计步骤与案例分析

1.引言随着科技的进步和产品技术的不断提升以及中国对外开放的深入,大批的外资 企业在中国设立其制造基地,特别是近年来半导体行业的大举进入,其全新的生产工艺及生产过程中对环境温、湿度、洁净度的较高要求,需要我们提供一个比较有效且比较低能耗的空调系统,特别需要有低湿度的空调环境保证。目前,空气除湿主要有四种方式,通风除湿、冷却除湿、液体吸湿剂除湿和固体吸附剂除湿。在空调除湿系统中,冷却除湿和固体吸附剂除湿是主要手段。冷却除湿在环境对湿度要求不是很高(RH≯60~65%)的条件下,效果还是比较好,性能稳定且能耗也比较低,目前应用比较广泛。但在生产环境对湿度要求较高(RH=45±5%)的地方,采用冷却除湿就明显是不经济的。采用转轮除湿机,将不受空气露点影响,且除湿量大,特别适用于低湿条件下,但如果全部除湿仅采用固态吸附原理的转轮除湿机进行,由于其再生耗能量也比较大,此种方案也不是最经济的。由于转轮除湿和冷却除湿各有所长,将其优化组合,各取所长,互补所短,会更好的发挥其效能。2.湿度在半导体行业中的要求半导体的生产工厂要在全年四季的气候条件下,生产车间内部要求维持稳定的环境,特别是对于生产环境的温度、湿度、空气洁净度、气流组织,压力平衡等多个空调参数都提出了严格的要求。有别于其他的恒温恒湿环境系统的要求,由于电子产品对静电的敏感性和高湿度环境对其品质的影响,其对湿度的精度提出了严格要求,对于空调系统的配置,则要求系统同时具备夏季除湿的功能和冬季加湿的功能。一般的,半导体生产行业的温湿度条件为:T=22±2°C,RH=45±5%;而对于这个温湿度要求,传统上经常采用冷冻除湿+后加热(再热)方式进行处理,并取得了一定成果。但这种方式却存在着一个致命问题,冷热的抵消和能耗的巨大浪费,特别是由于半导体行业的大新风,大排风系统、生产环境为大空间洁净环境以及目前许多厂主要集中分布在华南和华东地区的特殊情况,使得这个问题十分突出。因此,在最新的许多半导体厂房的空调系统开始使用新风通过新风机组(冷却除湿)和转轮除湿机联合处理湿度、温度而后通过后空调机组处理的组合方式,达到室内送风温、湿度要求,并取得了显著收益。3.工程实例一、设计条件及要求:a、室内要求:T= 22±2℃;RH= 50±5%;TL=11.5℃;d= 8 g/kg;b、洁净级别:10K(10000级);c、体积:S=2000 m2;H=2.8 m;d、工作人员:30 名,车间无工艺湿负荷;e、新风量:9500 m3/h;f、送风量:120000 m3/h,正压5~10 PA;g、室外环境条件:T= 35 ℃;RH= 70%;d=25 g/kg;二、空调系统设计方案及优缺点:a、方案A:新风机组(MAHU)+组合式空气处理机组(AHU),其空气处理过程如下:新风过滤经表冷处理后与房间回风混合,再经表冷器处理到机器露点(TL=12℃)后再加热至送风温度(T= 18.5℃)后,统一送风到车间。分析如下:由于车间内部的露点温度为11.5℃,并且设计条件中车间内无其他工艺湿负荷。根据这种条件,我们假定车间内部没有任何产湿量,则需要送风露点和车间相同为11.5℃,这时对于新风和回风达到11.5℃露点所需要的冷量为:新风冷负荷:9500*1.2*(101.2-32.2)/3600 =162 Kw;(新风预冷至18℃,95%)回风冷负荷:120000*1.2*(44-33)/3600 = 440 Kw 总计:162+440 = 602 Kw;而在处理空气露点温度达到车间露点温度后,需要进行加热补偿,以保证送风温度的要求,这时所需要的再热量为:再热负荷:120000*1.2* (39.8-33)/3600=272 Kw 总能耗为:冷:602 Kw. 热:272 Kw. 从上述分析和计算可得出,能耗抵消为:272 Kw 但实际上,车间内部由于人员的工作,维护结构的内外的水蒸汽分压力差以及车间门的开启等因素,车间内不可避免的存在湿负荷,这就要求送风露点温度应略低于车间内部露点温度,这会

设备设计与选型

设备设计与选型 6.1设备设计依据 《钢制压力容器》 GB150《压力容器用钢板》 GB6654《奥氏体不锈钢焊接钢管选用规定》 HG20537.1《化工装置用不锈钢大口径焊接钢管技术要求》 HG20537.4《安全阀的设置和选用》 HG/T20570.2《爆破片的设置和选用》 HG/T20570.3《设备进、出管口压力损失计算》 HG/T20570.9《钢制化工容器设计基础规定》 HG20580《钢制化工容器材料选用规定》 HG20581《钢制化工容器强度计算规定》 HG20582《钢制化工容器结构设计规定》 HG20583《钢制化工容器制造技术规定》 HG20584《化工设备设计基础规定》 HG/T20643《压力容器无损检测》 JB4730《钢制压力容器焊接工艺评定》 JB4708《钢制压力容器焊接规程》 JB/T4709《钢制压力容器产品焊接试板的力学性能检验》 JB4744《压力容器用钢锻件》 JB4726-472

6.2典型塔器设计计算与选型 6.2.1概述 塔设备是化工、石油化工和炼油等生产中最重要的设备之一,塔可以使气液相或者液液相之间进行紧密接触,达到较为良好的相际传质及传热的目的。 在塔设备中常见的单元操作有:吸收、精馏、解吸和萃取等。此外工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿和减湿等效果。 6.2.2设计依据 《化工容器设计》王志文蔡仁良第三版化学工业出版社《化工设计概论》李国庭等著化学工业出版社《化工工艺设计手册》第二版化学工业出版社6.2.3设计原则 作为主要用于传质过程的塔设备,首先必须使气液两相能充分接触,以获得较高的传质效率。此外,为满足工业生产的需要,塔设备还得考虑下列各项要求: (1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液、或液泛等破坏正常操作的现象; (2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期稳定操作; (3)流体流动的阻力小,即流体通过塔设备的压降小。这将大大节省生产中的动力消耗,以降低正常操作费用。对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度; (4)结构简单、材料耗用量小,制造和安装容易。这可以减少基建过程中

空调设计步骤与案例分析

1. 引言随着科技的进步和产品技术的不断提升以及中国对外开放的深入,大批的外资企业在中国设立其制造基地,特别是近年来半导体行业的大举进入,其全新的生产工艺及生产过程中对环境温、湿度、洁净度的较高要求,需要我们提供一个比较有效且比较低能耗的空调系统,特别需要有低湿度的空调环境保证。目前,空气除湿主要有四种方式,通风除湿、冷却除湿、液体吸湿剂除湿和固体吸附剂除湿。在空调除湿系统中,冷却除湿和固体吸附剂除湿是主要手段。冷却除湿在环境对湿度要求不是很高(RH≯60~65%)的条件下,效果还是比较好,性能稳定且能耗也比较低,目前应用比较广泛。但在生产环境对湿度要求较高(RH=45±5%)的地方,采用冷却除湿就明显是不经济的。采用转轮除湿机,将不受空气露点影响,且除湿量大,特别适用于低湿条件下,但如果全部除湿仅采用固态吸附原理的转轮除湿机进行,由于其再生耗能量也比较大,此种方案也不是最经济的。由于转轮除湿和冷却除湿各有所长,将其优化组合,各取所长,互补所短,会更好的发挥其效能。2.湿度在半导体行业中的要求半导体的生产工厂要在全年四季的气候条件下,生产车间内部要求维持稳定的环境,特别是对于生产环境的温度、湿度、空气洁净度、气流组织,压力平衡等多个空调参数都提出了严格的要求。有别于其他的恒温恒湿环境系统的要求,由于电子产品对静电的敏感性和高湿度环境对其品质的影响,其对湿度的精度提出了严格要求,对于空调系统的配置,则要求系统同时具备夏季除湿的功能和冬季加湿的功能。一般的,半导体生产行业的温湿度条件为:T=22±2°C,RH=45±5%;而对于这个温湿度要求,传统上经常采用冷冻除湿+后加热(再热)方式进行处理,并取得了一定成果。但这种方式却存在着一个致命问题,冷热的抵消和能耗的巨大浪费,特别是由于半导体行业的大新风,大排风系统、生产环境为大空间洁净环境以及目前许多厂主要集中分布在华南和华东地区的特殊情况,使得这个问题十分突出。因此,在最新的许多半导体厂房的空调系统开始使用新风通过新风机组(冷却除湿)和转轮除湿机联合处理湿度、温度而后通过后空调机组处理的组合方式,达到室内送风温、湿度要求,并取得了显著收益。3.工程实例一、设计条件及要求:a、室内要求:T= 22±2℃;RH= 50±5%;TL=11.5℃;d= 8 g/kg;b、洁净级别:10K (10000级);c、体积:S=2000 m2;H=2.8 m;d、工作人员:30 名,车间无工艺湿负荷;e、新风量:9500 m3/h;f、送风量:120000 m3/h,正压5~10 PA;g、室外环境条件:T= 35 ℃;RH= 70%;d=25 g/kg;二、空调系统设计方案及优缺点:a、方案A:新风机组(MAHU)+组合式空气处理机组(AHU),其空气处理过程如下:新风过滤经表冷处理后与房间回风混合,再经表冷器处理到机器露点(TL=12℃)后再加热至送风温度(T= 18.5℃)后,统一送风到车间。分析如下:由于车间内部的露点温度为11.5℃,并且设计条件中车间内无其他工艺湿负荷。根据这种条件,我们假定车间内部没有任何产湿量,则需要送风露点和车间相同为11.5℃,这时对于新风和回风达到11.5℃露点所需要的冷量为:新风冷负荷:9500*1.2*(101.2-32.2)/3600 =162 Kw;(新风预冷至18℃,95%)回风冷负荷:120000*1.2*(44-33)/3600 = 440 Kw 总计:162+440 = 602 Kw;而在处理空气露点温度达到车间露点温度后,需要进行加热补偿,以保证送风温度的要求,这时所需要的再热量为:再热负荷:120000*1.2* (39.8-33)/3600=272 Kw 总能耗为:冷:602 Kw. 热:272 Kw. 从上述分析和计算可得出,能耗抵消为:272 Kw 但实际上,车间内部由于人员的工作,维护结构的内外的水蒸汽分压力差以及车间门的开启等因素,车间内不可避免的存在湿负荷,这就要求送风露点温度应略低于车间内部露点温度,这会导致更大的冷热能耗抵消。一般的,由于新风的焓值非常高,无法通过新风表冷器直接将新风冷却到11℃露点温度。所以经常采用新风和回风混合后,再表冷器处理的方法进行操作。同时,这种空调系统不仅要求在夏季可以同时满足制冷(控温和除湿)和供热(满足湿度要求)功能;并要求在某些过

空调系统施工组织设计

空调系统施工方案 1通风空调施工组织流程 1.1通风空调工程特点及施工流程说明 空调工程施工流程说明: (1)按照招标文件给定本工程的工作范围和进度要求,确定各关键节点的开工/完成时间。 (2)空调施工顺序按照结构施工的先后顺序分区域独立施工,安装完善后进行系统压力试验、漏风量检测。 (3)地上各楼层需要吊装的空调设备材料尽量集中分批吊装,主要采用汽车吊吊装的方式完成垂直运输。 (4)由于空调系统的调试工作量很大,在供电系统完成后及时开展空调系统调试工作。 (5)大管径的空调水系统试压及冲洗的用水量很大,与此同时也要求给排水专业在第一时间完成地下室压力排水系统的安装工作。 2通风空调设备安装 2.1通风空调系统设备安装通则 1)通风空调设备安装流程: 图1-1通风空调设备安装流程图 2)设备安装前准备工作 通风空调设备安装前准备工作 表1-1

设备安装形式及基础验收要求表 表1-2 AHU的安装 (1)AHU安装流程 AHU安装流程图 (2)AHU安装事项详见下表。 表1-3

a)设备就位的先后顺序,应由里向外。 b)设备的减震形式及位置正确。 c)设备进出口与风管软连接形式正确。 d)设备不得承担外接管道的重量,所有进出风管应设支承和固定。

e)固定时地脚螺栓稳固,承受荷载范围应满足规范要求,并有防松动措施。 f)应根据样本要求排布功能段箱体,按顺序放置于基础上。 g)AHU机组各段连接时应按厂家要求进行连接,保证组装好的机组整体平直、表面平整,连接严密、牢固。 h)AHU机组出风口到连接弯曲管之间,应保持一定长度的直管段。 j)AHU机组安装时应保持过滤器和交换器翅片清洁、完好。 k)AHU机组顶部安装或操作时,要用跳板保护机组,不可站在机组顶板上。 l)AHU机组安装完后,应把风机底座上压紧弹簧减震器的固定件拆卸下来;机箱内杂物清理干净。 5)风机安装 (1)风机安装流程 图6-2风机安装流程图 (2)各类风机安装方法,见下表。 表1-4

相关文档