文档库 最新最全的文档下载
当前位置:文档库 › SSIS原理与介绍

SSIS原理与介绍

SSIS原理与介绍
SSIS原理与介绍

理论介绍SSIS

一、概述

Integration Services 是用于生成高性能数据集成和工作流解决方案(包括针对数据仓库的提取、转换和加载 (ETL) 操作)的平台。

Integration Services 包括:

a)生成并调试包的图形工具和向导;

b)执行如 FTP 操作、SQL 语句执行和电子邮件消息传递等工作流功能的任务;

c)用于提取和加载数据的数据源和目标;

d)用于清理、聚合、合并和复制数据的转换;

e)管理服务,即用于管理 Integration Services 包的 Integration Ser vices 服务;

f)用于对 Integration Services 对象模型编程的应用程序接口 (API)。

二、SSIS体系结构

SSIS由四大部分组成:服务、对象模型、运行时和数据流。

下面这张大图显示了各部分之间的关系:

服务

在Configuration Manager中可以看到SSIS的服务:SQL Server Integration Servi ces。

提示:

1、设计和执行IS包不需要启动该服务,可以使用 SQL Server 导入和导出向导、SSIS 设计器、执行包实用工具以及 dtexec 命令提示实用工具运行包。

2、如果要通过SQL Server Management Studio监视包,则需要启动该服务。

使用SSMS监视时,可以看到两个顶级文件夹:“正在运行的包”和“已存储的包”。

在“正在运行的包”文件夹下可以停止某个运行的包。

对象模型

对象模型包括用于访问 Integration Services 工具、命令行实用工具以及自定义应用程序的本机和托管应用程序编程接口 (API)。

工具介绍:

Business Intelligence Development Studio(BIDS)

创建和调试包。

BIDS中的设计器

如下图:

命令

dtexec:运行现有的包;

如执行包:dtexec /f "c:\pkgOne.dtsx"

dtutil:可以对包进行访问,复制、删除、移动和签名等;

如复制包:dtutil /FILE c:\myTestedPackage\package.dtsx /DestServ er myserver /COPY SQL;newpackage

运行时

包的运行时,为日志记录、断点、配置、连接和事务提供支持。

数据流

数据流任务封装数据流引擎。数据流引擎提供将数据从源移动到目标的内存中的缓冲区,并且调用从文件和关系数据库中提取数据的源。

三、典型用途

合并来自异类数据存储区的数据

合并存储在不同数据存储系统中的数据,提取这些数据合并到单个一致的数据存储系统中。

填充数据仓库和数据集市

数据仓库和数据集市中的数据具有更新频繁和加载量大的特点,SSIS专门提供了一个从平面文件大容量加载到 SQL Server的任务。

清除数据和数据标准化

Integration Services 包含一些内置转换,可将其添加到包中以清理数据和将数据标准化、更改数据的大小写、将数据转换为不同类型或格式或者根据表达式创建新列值。

将商业智能置入数据转换过程

Integration Services 提供了用于将商业智能置入 SSIS 包的容器、任务和转换。

可能需要根据数据值对数据进行汇总、转换和分发,SSIS 包中的逻辑可能需要执行以下类型的任务:

a)合并来自多个数据源的数据。

b)计算数据并应用数据转换。

c)根据数据值将一个数据集拆分为多个数据集。

d)将不同的聚合应用到一个数据集的不同子集。

e)将数据的子集加载到不同目标或多个目标。

使管理功能和数据加载自动化

管理功能自动化,例如备份和还原数据库等,可以使用SQL Server 代理作业安排SSIS 包。

参考:ms-help://MS.SQLCC.v9/MS.SQLSVR.v9.zh-CHS/extran9/html/c4 398655-5657-4ae4-a690-a380790fe84f.htm

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质就是旧键的断裂与新建的形成,参与成键原子的电子壳层重新组合就是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似与关于分子波函数的方程形成计算量子化学的数学基础。 2、1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)就是各种计算方法的理论基础与核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。 2、1、1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献与教材中对这些方程已有系统的推导与阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构与性质,在非相对论近似下,须求解 R AB =R 图2-1分子体系的坐标

定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2、1) 其中分子波函数依赖于电子与原子核的坐标,Hamilton 算符包含了电子p 的动能与电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2、2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2、3) 与电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2、4) 式中Z A 与M A 就是原子核A 的电荷与质量,r pq =|r p -r q |,r pA =|r p -R A |与R AB =|R A -R B |分别就是电子p 与q 、核A 与电子p 及核A 与B 间的距离(均以原子单位表示之)。上述分子坐标系如图2、1所示。可以用V(R,r)代表(2、2)-(2、4)式中所有位能项之与 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2、5) 原子单位 上述的Schrodinger 方程与Hamilton 算符就是以原子单位表示的,这样表示的优点在于简化书写型式与避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位就是Bohr 半径

盾构机的工作原理 1

盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用: 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、

第一性原理简介

第一性原理是什么 第一性原理怎么用 1什么是第一性原理 根据原子核和电子互相作用的原理及其基本运动规律,运用,从具体要求出发,经过一些近似处理后直接求解的算法,称为第一性原理。广义 的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和 (DFT计算。 从定义可以看出第一性原理涉及到量子力学、、Hartree-Fock自洽场、等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。 2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的

物理现象和物理规律。密度泛函计算的一些结果能够与实验直接进行比较一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第 一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT及其计算已经快速发展成 为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用 目前我所学到的利用第一性原理的软件为Material Studio 、VASP软件。其中Materials Studio (简称MS是专门为材料科学领域研究者幵发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介 Materials Studio 采用了大家非常熟悉的Microsoft标准用户界面, 允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。 目前,Materials Studio 软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio 的其他产品。是Materials Studio 产品系列的核心模块。 Discover: Materials Studio 的分子力学计算引擎。使用多种分子力学和动力学 方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

盾构机液压系统原理

盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q m ax范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

真空泵用途及工作原理

真空泵用途及工作原理 一、真空泵产品用途: 1. 真空泵是用来对密封容器抽除气体的基本设备之一。它可单独作用,也可作为增压泵、扩散泵、分子泵等的前级泵,维持泵,钛泵的预抽泵用。可用于电真空器件制造、保温瓶制造、真空焊接、印刷、吸塑、制冷设备修理以及仪器仪表配套等。因为它具有体积小、质量轻、操声低等优点,所以更适宜于实验室里使用。 2. 真空泵在环境温度540范围内,进气口压强小于1.3X103帕的条件下允许长期连续运转,被抽气体相对湿度大于90%时,应开气镇阀。 3.泵进气口连续畅通大气运转不得超过一分种。 4.泵不适用于抽除对金属有腐蚀的,对泵油起化学反应的,含有颗粒尘埃的气体,以及含氧过高的,有爆炸性的,有毒的气体。 二、真空泵故障与排除: 1.极限真空不高及其消除 (1)油位太低,有较大排气声,可加入清洁的真空泵油。 (2)泵油为可凝性蒸汽所污染,可开气镇净化或更换新油。 (3)泵口外接管道、容器、测试仪表管道、接头等漏气。大漏时,有大排气声,排气口有气排出,应找出漏气部位,进行消除。 (4)进气咀或气镇阀橡胶密封图装配不当,损坏或老化,应调整或更换。 (5)进油咀油孔堵塞,可拔出进油咀,疏通油孔。 (6)真空系统严重污染,包括容器、管道等,应予清洗。 (7)旋片弹簧折断,应予调换。

(8)旋片、泵身或盖磨损,间隙过大,应进行检查,修整或调换。 (9)泵温过高,应改善通风和冷却。如所抽气体温度太高,应予先冷却后再进入泵内。 2.喷油 (1)油位过高,可入出多余油量。 (2)减雾器中有泵油或杂物,应清除。 3.漏油 放油螺塞,油箱垫片损坏或装配不当,螺钉拧紧; 油标未拧紧,有机玻璃过热变形; 泵身部件与支座的连接挚垫片未垫好; 油封装配不当或磨损;应予调整或更换。 4.噪声 (1)旋片弹簧折断,可调换弹簧。

盾构机构造及工作原理简介分析

盾构机构造及工作原理简介第二部分 四、盾构机的主控系统及工作原理 下图是天地重工生产的土压平衡盾构机示意图,通过这台土压平衡盾构来简单介绍盾构机的构造及工作原理。 盾构法隧道的基本原理是用一件有形的钢质组件沿隧道设计轴线开挖土体而向前推进。这个钢组件在初步或最终隧道衬砌建成前,主要起防护开挖出的土体、保证作业人员和机械设备安全的作用,同时还能够承受来自地层的压力,防止地下水或流沙的入侵,这个钢质组件被称为盾构。而盾构的主要组成部分即为盾体。 1. 盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状筒体。前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推进油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有推进油缸。中盾的后边是尾盾, 尾盾末端装有密封用的盾前盾 中盾 后盾

尾刷。 2. 刀盘和刀盘驱动 刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体,刀盘通过安装在前盾承压隔板上的法兰上的刀盘电机来驱动。它可以使刀盘在顺时针和逆时针两个方向上实现无级变速。刀盘电机的变速齿轮箱内需设置制动装置,用于制动刀盘。电机的防护等级需大于IP55。 为了适用于不同的土质条件,刀盘上安装了多种类型和功能的刀具,所有刀具都由螺栓连接,可以从刀盘后面的泥土仓中进行更换。 刀盘(中交天和14.93米泥水气压平衡复合式盾构机) 铲刀:铲刀可以双向进行开挖,主要用于保证开挖直径的稳定不变。 铲刀

水环式真空泵的工作原理说明

水环式真空泵的工作原理说明 关键词:水环真空泵、水环真空泵工作原理、水环真空泵工作原理图示。 水环式真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限压力,对于单级泵为2.66~9.31kPa;对于双级泵为0.133~0.665kPa。水环泵也可用作压缩机,它属于低压的压缩机,其压力范围为(1~2)X105Pa表压力(在特定的条件下)。水环泵在石油、化工、机械、矿山、轻工、造纸、动力、冶金、医药和食品等工业及市政与农业等部门的许多工艺过程中,如真空过滤、真空送料、真空脱气、真空蒸发、真空浓缩和真空回潮等,得到了广泛的应用,由于水环泵压缩气体的过程是等温的,故可抽除易燃、易爆的气体,此外还可抽除含尘,含水的气体,因此,水环泵的应用日益增大。 如图为水环泵的工作原理示意图,水环泵是由叶轮、泵体、吸排气盘、水在泵体内壁形成的水环、吸气口、排气口、辅助排气阀等组成的。 叶轮被偏心的安装在泵体中,当叶轮按图示方向旋转时,进入水环泵泵体的水被叶轮抛向四周,由于离心力的作用,水形成了一个与泵腔形状相似的等厚度的封闭的水环。水环的上部内表面恰好与叶轮轮毂相切(如Ⅰ-Ⅰ断面),水环的下部内表面刚好与叶片顶端接触(实际上,叶片在水环内有一定的插入深度)。此时,叶轮轮毂与水环之间形成了一个月牙形空间,而这一空间又被叶轮分成与叶片数目相等的若干个小腔。如果以叶轮的上部0°为起点,那么叶轮在旋转前180°时,小腔的容积逐渐由小变大(即从断面Ⅰ-Ⅰ到Ⅱ-Ⅱ),压强不断的降低,且与吸排气盘上的吸气口相通,当小腔空间内的压强低于被抽容器内的压强,根据气体压强平衡的原理,被抽的气体不断地被抽进小腔,此时正处于吸气过程。当吸气完成时与吸气口隔绝,从Ⅱ-Ⅱ到Ⅲ-Ⅲ断面,小腔的容积正逐渐减小,压力不断地增大,此时正处于压缩过程,当压缩的气体提前达到排气压力时,从辅助排气阀提前排气。从断面Ⅲ-Ⅲ到Ⅰ-Ⅰ,而与排气口相通的小腔的容积进一步地减小压强进一步的升高,当气体的压强大于排气压强时,被压缩的气体从排气口被排出,在泵的连续运转过程中,不断地进行着吸气、压缩、排气过程,从而达到连续抽气的目的。

第一性原理计算方法讲义

第一性原理计算方法讲 义 标准化管理部编码-[99968T-6889628-J68568-1689N]

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有~1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的密度泛函理论(Density Functional Theory, DFT)。它建立在非均匀电子气理论基础之上,以粒子数密度()r 作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA)、广义梯度近似(GGA)等的提出,以及以密度泛函理论为基础的计算方法(赝

旋片式真空泵工作原理简介

旋片式真空泵结构原理与工作原理 旋片式真空泵是机械容积泵,是利用转子旋转,叶片在转子槽中随离心力和定子内表面形状出进产生容积变化,使油液获得压力能的一种液泵。该泵不仅容易获得2.5~7.0 MPa的压力,而且各密封容腔在旋转的每一瞬间所排出的油液是基本相同的,所以供油脉冲较小,排量和压力较均匀。旋片式真空泵的结构有许多种,最常的是中低压定量单级双作用泵,旋片式真空泵型即属此种。和单作旋片式真空泵相比,双作泵的转子,工作时能使所受的液体径向压力得到平衡。不仅轴承的载荷减到最小,延长了使寿命;而且工作较稳定。叶片是靠旋转离心力甩出的,因此,为使叶片(b)定子很好的接触,一般要求最低转速不得低于600 r/min,否则,便会内漏多、效率低;由此也产生一个启动扭矩低的优点。旋片式真空泵结构比齿轮泵稍复杂,成本稍高,价位比柱塞泵便宜。 因此,目前在中低压供油系统和液压系统中,旋片式真空泵得到了十分广泛的应用。除广泛应用于喷油泵试验台燃油供给系统外;还广泛应用于组合机床、液压磨床、液压车床、液压刨床和注塑机等液压系统。 1、主要技术参数与性能指标(见表1) 2、结构特点与工作原理 2.1结构特点(如图1) 该泵由法兰、泵轴5,泵体1.配油盘6、转子4、叶片3、定子2、压力侧板、泵盖以及滚动轴承、骨架油封、O形橡胶密封圈(以下简称O形圈)、螺栓(共3种9个全是圆柱头内六角螺栓,均简称螺栓)和

挡圈等组成。 泵轴由装在泵体和泵盖座孔中的轴承支承,转子(b)轴用花键联接,转子上开有倾角为10°~14°(有的无倾角)的径向均布狭槽,槽内装有可沿槽径向滑动的叶片,叶片外套装着转子同心的定子(也称腰形套或内凸轮),转子前有配油盘,后有压力侧板,最后由泵盖封闭。 配油盘上对称的开有:2个进油口相通的吸油窗和2个出油口相通的压油窗;压力侧板(兼配油盘)上只对称的开有2个配油盘吸油窗相对、也进油口相通的吸油窗。 通过键动力源联接的泵轴带着转子旋转时,叶片受到离心力的作用,其端部便顶在定子即内凸轮表面上(油压建立后,叶片底部还受到油液压力的作用,这样会使其端部X加紧贴内凸轮表面),叶片在离心力和内凸轮推力的共同作用下,便在槽中刹复运动。 其他零件无有运动。配油盘(b)泵体装成一体,前边有法兰封闭;定子和压力侧板用两只螺栓固定在配油盘上;侧板上固定螺栓圆柱头(兼定位销)(b)泵盖上定位孔对正并进入定位孔后,用 4只螺栓7固定在泵体上。 2.2 工作原理(如图2) (1)吸油压油。定子内表面、转子外表面和两侧配油盘压力侧板端面之间形成一个密封容积。在图2A中,叶片1,4,4,7,和7,10,10,1等把这个容积分为abcd,cdef和efgh,ghab 4部分。当转子按图示箭头方向旋转时,叶片1,4和7,10各组成一个吸油腔;4,7和10,1各组成一个压油腔(在1~4和4~7间的叶片2,3和5,6都不能互成独立的工作腔)。从图2B中。可以看出,转子旋转某一角度后,cdd o c o(ghh o g o)大于abb o a o(eff o e o),表明叶片从小半径圆弧面过渡到大半径圆弧面,叶片从槽内甩出,吸油腔容积不断增大,形成局部真空,油箱内的油液在大气压力作用下,经泵盖进油口(大)、配油盘和压力侧板吸油窗,吸入吸油腔;这便是泵的进油过程。eff o e o(abb o a o)小于cdd o c o(ghh o g o),表明叶片从大半径圆弧面过渡到小半径圆弧面,叶片被内凸轮推进槽内,压油腔容积不断减小,压迫油液,使其获得压力能,经配油盘压油窗,泵体出油口(小),将压油腔的油液排出;这便是泵的排油过程。 (2)双作用力平衡。因为泵轴每旋转一转,叶片在转子槽中刹返运动2次,每个由叶片构成的容积完成2次吸油和排油过程。所以,这种泵称双作用泵。又因为这种泵的吸油(低压)和压油(高压)区是分别对称分布的;所以这种泵转子受到的液体径向压力是平衡的。因此,双作用泵输出压力比单作用泵要高。目前一般可达到7.0~10.5 MPa。 (3)内漏困油(如图3)

第一性原理

第二章 第一性原理计算方法与软件介绍 19世纪末,科学家们发现经典力学和经典电动力学在描述物质的微观系统时存在明显不足,对实验中的许多现象不能做出真正合理的解释。鉴于此,20世纪初物理学家们在旧量子论的基础上建立了量子力学,主要研究原子、分子、凝聚态物质等内部微观粒子的结构、运动规律等性质,目前已广泛应用于物理、化学、材料等学科领域。随着量子力学理论的不断完善,并结合日趋成熟的计算机技术,量子计算模拟成为了现代科学中必不可少的研究手段之一。第一性原理计算(First-principles calculation),亦称为从头算(Ab-initio calculation)。该计算方法可根据量子力学基本原理,基于密度泛函理论对材料微观体系的状态和性质进行理论上的预测,且计算过程中不需要使用任何经验参数,只需要一些基本物理量(电子电荷质量e 、电子静止质量m 0、光速c 、普朗克常数h 、波尔兹曼常数k B )。本工作所选用的计算程序为Materials Studio 软件中的CASTEP 量子力学模块,该模块是基于密度泛函理论的从头算量子力学程序。本章节将简要的介绍密度泛函理论和CASTEP 计算模块。 2.1密度泛函理论概述 第一性原理主要的研究对象是多原子体系。它依据量子力学原理,且在无任何实验参数引入的情况下,将多原子体系当作由自由电子和原子核组成的多粒子体系进行处理。然而,关于量子力学中多粒子体系处理的出发点则为著名的薛定谔方程(Schr?dinger Equation)。Schr?dinger 方程是量子力学的一个基本方程,也是第一性原理计算方法的核心,它是由奥地利物理学家薛定谔(Schr?dinger)于1926年提出的。该方程可用于描述微观粒子的运动规律,故亦被称为薛定谔波动方程(Schr?dinger Wave Equation),其定态方程描述如下: 2 2[()]()(,)2V r r,t i r t t ψψμ?-?+=? (2-1) 式中?为约化普朗克(Plank)常数;μ和V(r)分别表示粒子质量和势场;r 和t 则为体系中所有电子与原子核的位置坐标;Ψ(r,t)是系统波函数,即运动的微观粒子

第一性原理简介

第一性原理是什么? 第一性原理有什么用? 第一性原理怎么用? 怎样将第一性原理与实 践结合起来? 什么是第一性原理?1原理,量子力学根据原子核和电子互相作用的原理及 其基本运动规律,运用第一性称为经过一些近似处理后直接求解薛定谔方程的算法,从具体要求出发,计算为基础的从头算。广义的第一原理包括两大类,以

Hartree-Fock自洽场原理DFT)计算。密度泛函理论和(自从定义可以看出第一性原理涉及到量子力学、薛定谔方程、Hartree-Fock因此我通过向师兄密度泛函理论等许多对我来说很陌生的物理化学定义。洽场、请教和上网查资料一点点 的了解并学习这些知识。 2第一性原理的作用为基础以及在此基础上发展起 来的简单而具有一定精(DFT)以密度泛函理论,的第一性原理电子结构计算方法 和广义梯度近似(GGA)度的局域密度近似(LDA)不但能够给出描述体系微观电子特性的物理量如波函与传统的解析方法一样,以及在此基础上所得到的体现体系宏,数、态密度、费米面、电子间互作用势等,穆斯堡尔谱等等比热、电导、观物理特性的参量如结合能、电离能、光电子谱、密度泛函计算的一些而且它还可以帮助人们预言许多新的物理现象和物理规律。. 导致了,结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布基于密度泛函理论的第一原理计算方法的广泛应用。为第一性原理中的一类,在物理系、化学、材料科学以(DFT)密度泛函理论)及其计算已经快速发展成为材料建模DFT及其他工程领域中,密度泛函理论(模拟的一种“标准工具”。密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS)、 光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用?其中ASP、软件。V目前我所学到的利用第一性原理的软件为Material Studio)是专门为材料科学领域研究者开发的一款可运行在MSMaterials Studio(简称使化学及材料科学的研究者们能更方便地建立三维结构模型,上的模拟软件。PC模拟无定型以及高分子材料的性质及相关过程进行深入的研究。并对各种晶体、的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。模块简介Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Materials Studio软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio产品系列的核心模块。 Discover: Materials Studio的分子力学计算引擎。使用多种分子力学和动力学方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。. COMPASS: 支持对凝聚态材料进行原子水平模拟的功能强大的力场。是第一个由凝聚态性质以及孤立分子的各种从头算和经验数据等参数化并经验证的从头算力场。可以在很大的温度、压力范围内精确地预测孤立体系或凝聚态体系中各种分子的结构、构象、振动以及热物理性质。 Amorphous Cell: 允许对复杂的无定型系统建立有代表性的模型,并对主要性质进行预测。通过观察系统结构和性质之间的关系,可以对分子的一些重要性质有更深入的了解,从

各种真空泵的工作原理

各种真空泵的工作原理 水环式真空泵/液环真空泵工作原理 水环真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限真空为2000~4000Pa,串联大气喷射器可达270~670Pa。水环泵也可用作压缩机,称为水环式压缩机,是属于低压的压缩机,其压力范围为1~2×105Pa表压力。 水环泵初用作自吸水泵,而后逐渐用于石油、化工、机械、矿山、轻工、医药及食品等许多工业部门。在工业生产的许多工艺过程中,如真空过滤、真空引水、真空送料、真空蒸发、真空浓缩、真空回潮和真空脱气等,水环泵得到广泛的应用。由于真空应用技术的飞跃发展,水环泵在粗真空获得方面一直被人们所重视。由于水环泵中气体压缩是等温的,故可抽除易燃、易爆的气体,此外还可抽除含尘、含水的气体,因此,水环泵应用日益增多。 在泵体中装有适量的水作为工作液。当叶轮按图中顺时针方向旋转时,水被叶轮抛向四周,由于离心力的作用,水形成了一个决定于泵腔形状的近似于等厚度的封闭圆环。水环的下部分内表面恰好与叶轮轮毂相切,水环的上部内表面刚好与叶片顶端接触(实际上叶片在水环内有一定的插入深度)。此时叶轮轮毂与水环之间形成一个月牙形空间,而这一空间又被叶轮分成和叶片数目相等的若干个小腔。如果以叶轮的下部0°为起点,那么叶轮在旋转前180°时小腔的容积由小变大,且与端面上的吸气口相通,此时气体被吸入,当吸气终了时小腔则与吸气口隔绝;当叶轮继续旋转时,小腔由大变小,使气体被压缩;当小腔与排气口相通时,气体便被排出泵外。 综上所述,水环泵是靠泵腔容积的变化来实现吸气、压缩和排气的,因此它属于变容式真空泵。 泵的工作原理

第一性原理计算

实验一、第一性原理计算 1. 实验目的 (1) 掌握第一性原理和密度泛涵的计算方法; (2) 学会使用Visualizer 的各种建模和可视化工具; (3) 熟悉CASTEP 模块的功能。 2. 实验原理 CASTEP 是基于密度泛涵理论平面波赝势基础上的量子力学计算。 密度泛涵理论的基本思想是原子、分子和固体的基本物理性质可以用粒子密度函数进行描述。可以归纳为两个基本定理: 定理1:粒子数密度函数是一个决定系统基态物理性质的基本参量。 定理2:在粒子数不变的条件下能量对密度函数变分得到系统基态的能量。不计自旋的全同费米子的哈密顿量为:H T U V =++ 其中动能项为:()()T dr r r ψψ+=??? 库仑作用项为:11'()(')()(')2 ' U drdr r r r r r r ψψψψ++=-? V 为对所有粒子均相同的局域势u(r)表示的外场影响:()()()V dru r r r ψψ+=?粒子数密度函数为: ()()()r r r ρψψ+=ΦΦ 对于给定的()r υ,能量泛函[]E ρ定义为: []()()E dr r r T U ρυρ=+Φ+Φ ?;[]F T U ρ=Φ+Φ系统基态的能量: ' ''''[]''''[][]()()[][]()()[] E T U V G E F dr r r E G G F dr r r E G ρρυρφρυρρΦ=Φ+Φ+ΦΦ==+>?=+=? 3. 实验内容 材料的电子结构计算; 4. 实验设备和仪器 (1) 硬件:多台PC 机和一台高性能计算服务器。 软件:主要利用Materials studio 软件包里的Materials Visualizer 和CASTEP 模块 5. 实验步骤

盾构机的结构工作原理

1 盾构机的工作原理 1.1盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 1.2掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 1.3管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 2 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 2.1盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、c、D四组,掘进过程中,在操作室中可单独控制每一组油缸的压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。 中盾的后边是尾盾,尾盾通过14个被动跟随的铰接油缸和中盾相连。这种铰接连接可以使盾构机易于转向。

真空泵的结构及原理

幻灯片1 真空泵的结构及原理 河南第一火电建设公司 检修公司信阳项目部汽机专业 幻灯片2 泵型号简介 ●一期真空泵型号:2BE1353-OMY4-Z ●真空泵外观(又称平圆盘式真空泵): 幻灯片3 两侧的平圆盘 幻灯片4 平圆盘式真空泵转子 幻灯片5 被汽蚀的真空泵转子

真空泵的典型结构和工作原理

工作原理

● 该型号真空泵,叶轮上偏心安装,外侧带一对圆盘,侧盖上开有吸气口和排气口,工作时泵内充以 ●一定数量的工作水。 ●当叶轮旋转时,水形成一紧贴壳 ●壁的水环 ●水环内表面与叶轮轮毂表面 ●及两侧盖端面之间形成一个 ●月牙形的工作空间 ●该空间被叶片分隔成若干个 腔室,腔室容积随叶轮回转不断地改变。 幻灯片8 工作过程

● 1.吸入过程 ●右半转,叶间腔室的V增大, ●气体通过吸入口被吸入。 ● 2. 压缩过程 ●左半转,叶间腔室的V缩小, ●气体受到压缩。 ● 3. 排出过程 ●当叶间转到与排出口相通时, ●气体被排出。 ●总结:主要是靠工作腔室的容 ●积的变化来产生吸排汽。 幻灯片9 水环和汽水分离器的作用 ●水环 ●传递能量 ●密封工作腔室 ●吸收气体压缩热

●泵出口常设汽水分离器 ●压缩和水力损失转换成的热量会使部分工作水汽化 ●水通过轴封和排气会流失 ●需连续地向泵内补水 ●补水量应大于损失水量 ● 幻灯片10 动画演绎 幻灯片11 安装过程中各参数 部件名称质量标准 铸件外观检查无铸砂、毛刺、气孔、裂纹, 结合面光洁,无伤痕 泵体结合面检查平整,无毛刺,凹坑轴承与轴承座检查轴承座无裂纹、夹渣、铸砂、气孔等, 油漆清理干净(耐油漆可不清 理) 水平结合面无损伤,紧螺 栓后局部间隙<0.05;油路, 水路疏油孔清洁畅通无泄漏 滚动轴承外观清洁、无锈蚀、无损伤、 内外圈转动灵活,不松旷。 对轮找中心径向、端面≤0.08mm 真空泵检修组装泵轴径向晃度≤0.05 mm 叶轮、轴套端面光洁,无毛刺,与轴线垂直 叶轮与轴套端面接触严密 密封环外观光洁,无变形、裂纹 ≤0.05 mm 叶轮密封环处和轴套外园处 径向晃度 轴与轴套间隙0.03~0.06 mm 密封环与泵壳径向总间隙0.00~0.03 mm 密封环定位销钉锁紧 转子与泵体顶部间隙≥0.50 mm 轴承与轴承室轴向间隙传动侧0.10-0.20自由端,0 固定叶轮的锁母装置完好,紧固可靠 结合面定位销紧密、接触良好 结合面垫料厚度应保证有关部件的紧力 结合面紧固均匀,牢固

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT软件包。 1.1 第一性原理 第一性原理计算( 简称从头计算,the abinitio calculation) ,指 从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即( m o.e.h.c.k b ) 和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT。 1.2量子力学与Born-Oppenheimer 近似固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: H (r,R) E H(r ,R) (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子( 原子核和电子) 的动能和粒子之间的相互作用能,即 H H e H N H e N (1-2) 其中,以是电子部分的哈密顿量,形式为: 22 1 e2 H e(r) r2i 1 e(1-3)

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似, 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122 ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??? ?????-++?-?-∑∑∑∑∑∑≠≠ (2.1) 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p

与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A M H 2? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2.5) 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 质量则以电子制单位表示之,即定义m e =1 。

盾构机构造及工作原理简介(一)

盾构机构造及工作原理简介(一) 伴随着2012年我司在新行业拓展上的力度不断加大,轨道交通这个名词也越来越多的出现在公司会议及公告中。而盾构机作为我司进入轨道交通行业的切入点,在我司的发展战略中占据着重要地位。那么盾构机究竟是一种什么样的设备呢?盾构机是如何工作的呢?而我们港迪电气的产品在盾构机这样一个大型设备中又起到了什么作用呢? 下面,本文会通过盾构机的起源及发展史、盾构机在中国的发展历程、盾构机概述、盾构机的构造及工作原理、盾构机上的电力系统,中国盾构机的现状及发展前景六个方面来介绍盾构机的产生与发展,并逐渐解答上述问题。 一、盾构机的起源和发展史 盾构发明于19世纪初期,首先应用于开挖英国伦敦泰晤士河水底隧道。1818年,法国的布鲁诺尔(M.I.Brune1)从蛀虫钻孔得到启示,最早提出了用盾构法建设隧道的设想,并在英国取得专利。下图为布鲁诺尔注册专利的盾构。 布鲁诺尔构想的盾构机机械内部结构由不同的单元格组成,每一个单元格可容纳一个工人独立工作并对工人起到保护作用。采用的方法是将所有的单元格牢靠地装在盾壳上。当时布鲁诺尔设计了两种方法,一种是当一段隧道挖完后,整个盾壳由液压千斤顶借助后靠向前推进;另一种方法是每一个单元格能单独地向

前推进。(第一种方法后来被采用,并得到了推广应用,演变为成熟的盾构法)。此后,布鲁诺尔逐步完善了盾构结构的机械系统,设计成用全断面螺旋式开挖的封闭式盾壳,衬彻紧随其后的方式。 1825年,他第一次在伦敦泰晤土河下开始用一个断面高6.8m、宽11.4m,并由12个邻接的框架组成的矩形盾构修建隧道。如下图,第一台用于隧道施工的盾构机,其每一个框架分成3个舱,每一个舱里有一个工人,共有36个工人。 泰晤士河下的隧道工程施工期间遇到了许多困难,在经历了五次以上的特大洪水后,直到1843年,经过18年施工,才完成了全长458m的第一条盾构法隧道。 1830年,英国的罗德发明“气压法”辅助解决隧道涌水。 1865年,英国的布朗首次采用圆形盾构和铸铁管片,1869年用圆形盾构在泰吾士河下修建外径2.2m的隧道。 1866年,莫尔顿申请“盾构”专利。盾构最初称为小筒(cell)或圆筒(cylinder),在莫尔顿专利中第一次使用了“盾构” ( shield )这一术语。 1874年,工程师格瑞海德发现在强渗水性的地层中很难用压缩空气支撑隧

相关文档