文档库 最新最全的文档下载
当前位置:文档库 › 第11讲流体动力学1

第11讲流体动力学1

流体力学龙天渝课后答案第三章一元流体动力学基础

第三章 一元流体动力学基础 1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。 解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→// A Q v ρ= 得:s m v /57.1= 2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v = 由连续性方程知2211A v A v = 得:s m v /5.122= 3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求 (1)容积流量及质量流量;(2)1d 及2d 管段的流速 解:(1)由s m A v Q /0049.0333== 质量流量s kg Q /9.4=ρ (2)由连续性方程: 33223311,A v A v A v A v == 得:s m v s m v /5.2,/625.021== 4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。试确定管道直径,根据所选直径求流速。直径应是mm 50的倍数。 解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1= 5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。试设计直径,根据所定直径求流速。直径规定为50 mm 的倍数。 解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17= 6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。测点即位于等分此部分面积的圆周上,这样测得的流速代表相应断面的平均流速。(1)试计算各测点到管心的距离,表为直径的倍数。(2)若各点流速为54321u u u u u ,,,,,空气密度为ρ,求质量流量G 。

计算流体动力学分析-CFD软件原理与应用_王福军--阅读笔记

计算流体动力学(简称CFD)是建立在经典流体动力学与数值计算方法基础之上的一门新型独立学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点。 第一章节 流体流动现象大量存在于自然界及多种工程领域中,所有这些过程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。本章向读者介绍这些守恒定律的数学表达式,在此基础上提出数值求解这些基本方程的思想,阐述计算流体力学的任务及相关基础知识,最后简要介绍目前常用的计算流体动力学商用软件。 计算流体动力学((Computational Fluid Dynamics简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制卜对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 1.1.2计算流体动力学的工作步骤 采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤: (1)建立反映工程问题或物理问题本质的数学模型。具体地说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数值模拟的出发点。没有正确完善的数 学模型,数值模拟就毫无意义。流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。 (2}}寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。这里的计算方法不仅包括微分方程的离散化方法及求解方法,还包括贴体坐标的建立,边界条件的处理等。这些内容,可以说是c}}的核心。 (3})编制程序和进行计算。这部分工作包括计算网格划分、初始条件和边界条件的输入、控制参数的设定等。这是整个工作中花时间最多的部分。由于求解的问题比较复杂,比如Na}ier-Stakes方程就是一个讨,分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。正是从这个意义上讲.数值模拟又叫数值试验。应该指出,这部分工作不是轻而易举就可以完成的。 4})显示计算结果。计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要参考意义。 以上这些步骤构成了CFD数值模拟的全过程。其中数学模型的建立是理论

《计算流体动力学分析》学习报告

《计算流体动力学分析》学习报告 计算流体力学基础: 本章主要讲解流体动力学的核心思想以及流体动力学的控制方程。 1、计算流体动力学(Computational Fluid Dynamic )基本思想:把原来在时间和空间上的连续的物理量,用一系列离散点上的变量值来代替,通过一定的原则和方式建立变量之间的代数方程式,求解之后获得变量的近似值。 2、CFD 控制方程: 质量守恒方程 0)·=?+??u t ρρ( 动量守恒方程(Navier-Stokes 方程) Fz z y x z u w div t w F z y x y u v div t v F z y x x u u div t u zz zx zx y zy yy xy x zx yx xx +??+??+??+??-=+??+??+??+??+??-=+??+??+??+??+??-=+??τττρρρτττρρρτττρρρ)()()()()()( 能量守恒方程 T p S gradT c k div T u div t +=+??)()(T ( ρρ) S T 为粘性耗散项。 方程含有u ,v ,w ,p ,T 和ρ六个未知量,所以还需要一个方程组,才能使其封闭,而这个方程组就是联系P 和ρ的状态方程组:P=(ρ,T )。 组分质量守恒方程(在一个系统中,可能存在质的交换,或者存在化学组分时使用。) ()s s s s S c grad D div c u div t +=+??)()(c (s ρρρ ) 为便于对控制方程进行计算和分析,对CFD 控制方程写成通用格式: ()S z z y y x x z w y v x u t S grad div u div t +??Γ??+??Γ??+??Γ??=??+??+??+??+Γ=+??)()()()()()())()(φφφφρφρφρρφφφρρφ 依次为瞬态项,对流项,扩散项和源项。 3、湍流控制方程 三维的N-S 方程无论对于层流还是湍流都是是使用的,但由于直接求解三维瞬态的控制方程,对计算机的内存和速度要求很高,因此在工程上广为采用的方法是对瞬态的N-S 方程进行实践平均处理,同时补充反应湍流特性的其他方程,例如湍动能方程以及湍流耗散率方程

三流体动力学基础作业题

第三章流体动力学基础复习题 一、概念部分 1、描述流体运动的方法有和;前者以为研究对象,而后者以为研究对象。 2、流体运动的几何描述有:,,和。 3、流线有什么特点?流线、脉线和迹线有什么区别和联系? 4、流体微团基本运动形式有,和变形运动等, 而变形运动又包括和两种。 5、描述有旋运动几何要素有、和。 6、判断正误:理想流体不存在有旋运动是否正确?为什么?试举例说明。 7、表征涡流的强弱的参数有和。 8、在无涡流空间画出的封闭周线上的速度环量为。 9、简述汤姆孙定理的内容 10、速度势函数?存在的条件是什么?流函数存在的条件是什么? 11、简述流函数的物理意义的内容,并证明。 12、流网存在的条件是什么?简述流网的性质所包含的内容? 13、无环量圆柱绕流运动由流、流和流叠加而成,有环量的圆柱绕流运动是无环量的圆柱绕流运动与流叠加而成。 14、是驻点。通过驻点的流线一定是零流线,是否正确?为什么?零流线是。轮廓线是。 15、描述流体运动的微分方程有、和。 写出它们的表达式。 16、纳维-斯托克斯方程中的速度只能是平均速度,是否正确?为什么? 17、写出总水头和测压管水头的表达式,并说明各项的物理意义。 18、写出总压、全压和势压得表达式,并说明各项的物理意义。 19、简述系统和控制体的定义和特点 二、计算部分 1、已知拉格朗日描述:求速度与加速度的欧拉描述 2、试判断下列流场的描述方式:并转换成另一种描述方式 3、已知用欧拉法表示的流场速度分布规律为: 试求在t=0时刻位于点(a,b)的流体质点的运动轨迹及拉格朗日法表示的速度场 4、粘性流体在半径为R 的直圆管内做定常流动。设圆管截面(指垂直管轴的平面截面)上?????==-t t be y ae x ()()?????+-=+-=-t y t x e b u e a u 1111???+=+=t y u t x u y x

CFD—计算流体动力学软件介绍

CFD 流体动力学软件介绍 CFD—计算流体动力学,因历史原因,国一直称之为计算流体力学。其结构为: 提出问题—流动性质(流、外流;层流、湍流;单相流、多相流;可压、不可压等等),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 分析问题—建模—N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 解决问题—差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 成果说明—形成文字,提交报告,赚取应得的回报。 CFD实现过程: 1.建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: CATIA:航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! UG:总觉得EDS脑袋进水了,收了I-deas这么久了,也才发布个几百M的UG NX 2.0,还被大家争论来争论去说它如何的不好用!其实,软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

CFD计算流体动力学入门教程选择

非流体、热动专业CFD新手入门 首先掌握流体力学基本原理,丁祖荣主编的流体力学这本教材,仔细看两天,这样就会知道gambit中为什么会有边界层设置,边界层厚度如何设置;雷诺系数如何确定来判断层流与湍流;马赫数如何确定来判断流体是可压还是不可压,这样就能解决Fluent,是基于压力还是基于密度求解。能够对实际中一些看似简单的流体现象有深刻的认识,能够准确判断是定常流还是非定常流。 CFD网格划分 网格划分对于初学者所接触案例,其实非常简单。但实际工程中,大项目,特别涉及到整套工程,如环保,飞机,网格质量与数量都要求非常高,往往服务器类的PC才能解决问题,所谓的内存128G,CPU四核主频3.0以上。初学者,简单的管道,一般的机器还是没问题。有机械三维软件基础的,对于gambit建模就非常容易了。往往大项目,复杂的结构gambit 建模显得力不从心,所以对于流体工作者来说,学习三维软件对于建模有莫大的帮助,如Proe。 1.1Gambit介绍 网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit,文件名如果已经存在,要加上参数-old。 一.Gambit的操作界面 图1 Gambit操作界面 如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。 文件栏 文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。这些命令的使用和一般的软件一样。Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件

第三章 流体动力学基础

第三章 流体动力学基础 习 题 一、单选题 1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是 ( ) A .加速运动 B .减速运动 C .匀速运动 D .不能确定 2、血管中血液流动的流量受血管内径影响很大。如果血管内径减少一半,其血液的流量将变为原来的( )倍。 A .21 B .41 C .81 D .161 3、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2 m ,已知血液的粘度η =×10-3 Pa·S,密度ρ=×103 kg/m 3 ,则此时主动脉中血液的流动形态处于( )状态。 A .层流 B .湍流 C .层流或湍流 D .无法确定 4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。 A .30 B .40 C .45 D .60 5、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2 ,B 处的横截面积为 S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。 A .1m/s B .2m/s C .3 m/s D .4 m/s 6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2 ,B 处的横截面积为S B =5cm 2 ,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。 A .1×10-3 m 3 /s B .2×10-3 m 3 /s C .1×10-4 m 3 /s D .2×10-4 m 3 /s 7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。 A .4 B .3 C .2 D .1 8、正常情况下,人的血液密度为×103 kg/m 3 ,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差( )Pa 。 二、判断题

最新流体力学龙天渝课后答案第三章一元流体动力学基础

第三章 一元流体动力学基础 1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。 解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→// A Q v ρ= 得:s m v /57.1= 2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v = 由连续性方程知2211A v A v = 得:s m v /5.122= 3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求 (1)容积流量及质量流量;(2)1d 及2d 管段的流速 解:(1)由s m A v Q /0049.0333== 质量流量s kg Q /9.4=ρ (2)由连续性方程: 33223311,A v A v A v A v == 得:s m v s m v /5.2,/625.021== 4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。试确定管道直径,根据所选直径求流速。直径应是mm 50的倍数。 解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1= 5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。试设计直径,根据所定直径求流速。直径规定为50 mm 的倍数。 解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17= 6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。测点即位于等分此部分面积的圆周上,这样测得的流速代表相应断面的平均流速。(1)试计算各测点到管心的距离,表为直径的倍数。(2)若各点流速为54321u u u u u ,,,,,空气密度为ρ,求质量流量G 。

流体主要计算公式

1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。 理想势流伯努利方程 (3-14) 或(3-15) 物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。 (应用条件:“”所示) 符号说明 二、沿流线的积分

1.只有重力作用的不可压缩恒定流,有 2.恒定流中流线与迹线重合: 沿流线(或元流)的能量方程: (3-16) 注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。 (应用条件:“”所示,可以是有旋流) 流速势函数(势函数)观看录像>> ?存在条件:不可压缩无旋流,即或 必要条件存在全微分d 直角坐标 (3-19) 式中:——无旋运动的流速势函数,简称势函数。 ?势函数的拉普拉斯方程形式 对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有: 或(3-20) 适用条件:不可压缩流体的有势流动。 点击这里练习一下 极坐标 (3-21) 流函数

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

第三章流体动力学基础

第三章流体动力学基础 描述流体运动的两种方法: 拉格朗日法和欧拉法。除个别质点的运动问题外,都应用欧拉法。 拉格朗日法:是以个别质点为研究对象,观察该质点在空间的运动,然后将每个质点的运动情况汇总,得到整个流体的运动。质点的运动参数是起始坐标和时间变量t的连续函数。 欧拉法:是以整个流动空间为研究对象,观察不同时刻各空间点上流体质点的运动,然后将每个时刻的情况汇总起来,描述整个运动。空间点的物理量是空间坐标)和时间变量t的连续函数。 恒定流:各空间点上的运动参数都不随时间变化的流动。 非恒定流:各空间点上的运动参数随时间变化的流动。 一(二、三)元流:流体流动时各空间点上的运动参数是一(二、三)个空间坐标和时间变量的连续函数。 均匀流:流线是平行直线的流动。 非均匀流:流线不是平行直线的流动。 流线:表示某时刻流动方向的曲线,曲线上各质点的速度矢量都与该曲线相切。迹线:流体质点在一段时间内的运动轨迹。 流管:某时刻,在流场内任意做一封闭曲线,过曲线上各点做流线,所构成的管状曲面。 流束:充满流体的流管。 过流断面:与所有流线正交的横断面。 元流:过流断面无限小的流束,断面上各点的运动参数均相同。

总流:过流断面为有限大小的流束,断面上各点的运动参数不相同。流量:单位时间内通过某一过流断面的流体量。以体积计为体积流量,简称流量;以质量计为质量流量;以重量计为重量流量 非均匀渐变流:在非均匀流中流线近似于平行直线的流动。 水头线:总流或元流沿程能量变化的几何图示。 水力坡度:单位流程内的水头损失。 (简答)流线有哪些主要性质?流线和迹线有无重合的情况?答:流线性质:(1)在恒定流中,流线的形状和位置不随时间变化;(2)在同一时刻,一般情况下流线不能相交或转折。在恒定流中流线与迹线重合,非恒定流中一般情况下两者不重合,但当速度方向不随时间变化只是速度大小随时间变化时,两者仍重合。 试述流动分类:(1)根据运动参数是否随时间变化,分为恒定流和非恒定流;(2)根据运动参数与空间坐标的关系,分为一元流、二元流和三元流;(3)根据流线是否平行,分为均匀流和非均匀流。 不可压缩流体的连续性微分方程:不可压缩流体运动必须满足该方程。

计算流体动力学概述

计算流体动力学概述 作者:王福军 1 什么是计算流体动力学 计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。CFD方法与传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系,图1给出了表征三者之间关系的“三维”流体力学示意图理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证新的数值计算方法的理论基础。但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。对于非线性情况,只有少数流动才能给出解析结果。 “三维”流体力学示意图 实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过试验力一法得到结果。此外,实验还会遇到经费投入、人力和物力的巨大耗费及周期长等许多困难。 而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算。就好像在

一元流体动力学基础

一元流体动力学基础 1.直径为150mm 的给水管道,输水量为h kg /7.980,试求断面平均流速。 解:由流量公式vA Q ρ= 注意:()vA Q s kg h kg ρ=?→// A Q v ρ= 得:s m v /0154.0= 2.断面为300mm ×400mm 的矩形风道,风量为2700m 3 /h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v = 由连续性方程知2211A v A v = 得:s m v /5.122= 3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速 解 : (1) 由 s m A v Q /0049.0333== 质量流量s kg Q /9.4=ρ (2)由连续性方程: 33223311,A v A v A v A v == 得:s m v s m v /5.2,/625.021== 4.设计输水量为h kg /1.2942的给水管道,流速限制在9.0∽s m /4.1之间。试确定管道直径,根据所选直径求流速。直径应是mm 50

的倍数。 解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1= 5.圆形风道,流量是10000m 3 /h,,流速不超过20 m/s 。试设计直径,根据所定直径求流速。直径规定为50 mm 的倍数。 解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17= 6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。测点即位于等分此部分面积的圆周上,这样测得的流速代表相应断面的平均流速。(1)试计算各测点到管心的距离,表为直径的倍数。(2)若各点流速为54321u u u u u ,,,,,空气密度为ρ,求质量流量G 。 解:(1)由题设得测点到管心的距离依次为1r ……5r ∵ 10 310222 1S r S r = = ππ 4 2 d S π= ∴ d r d r 10 2310221= = 同理d r 10 253= d r 10 274= d r 10 295= (2)) (5125 14 u u d v S G ????????+==πρρ 7.某蒸汽管干管的始端蒸汽流速为25 m/s ,密度为2.62 kg/

第4章 流体动力学基础

第4章 流体动力学基础 4.1 重度γoil =8.82kN/m 3的重油,沿直径d =150mm 输油管路流动,现测得其重量流量Q G =490kN/h ,问它的体积流量Q V 及平均流速v 各为若干? 解:体积流量33 490kN/h 55.56m /h 8.82kN/m G v Q Q γ = = =, 平均流速2 2155.561 0.873m/s 36000.15/43600 4 v Q v d ππ= ? =?= 4.2 如图所示,水流过长直圆管的A 、B 两断面,A 处的压头比B 处大45m ,试问:(1)水的流动方向?(2)水头损失f h ?设流动不可压,一维定常流,H =50m 。(压头为p /γ) 解:(1)假定流体从A 到B ,伯努利方程22 1 122 1222f p u p u z z h g g γγ++=+++ 流动不可压缩,一维定常流,则1 2 12f p p z z h γ γ + =+ + 水头损失1 2 125m<0f p p h z z γ γ =-+- =-,则表明流体的流动是从B 到A (2)水头损失f h =5m 4.3 水银压差计连接在水平放置的汾丘里流量计上,如图。今测得其中水银高差h =80mm,已知D =10厘米,d =5厘米,汾丘里流量计的流量系数μ=0.98。问水通过流量计的实际流量为若干? 题4.2图 题4.3图 解:由文丘流量计流量公式2 111 2 1 2(1)1d g h Q Au A γαγ?==--得 2 3 2212 2 11 22(1)(1)0.0201m /s 14 1d d g h D g h Q A γγπαγαγ??=-=-=-- 其中2 212()4d A D A d α= ==,22211113.613.61 g g γρργρρ====

一元流体动力学基础

一元流体动力学基础 1.直径为150mm 的给水管道,输水量为h kg /7.980,试求断面平均流速。 解:由流量公式vA Q ρ= 注意:()vA Q s kg h kg ρ=?→// A Q v ρ= 得:s m v /0154.0= 2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v = 由连续性方程知2211A v A v = 得:s m v /5.122= 3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速 解:(1)由s m A v Q /0049.03 33== 质量流量s kg Q /9.4=ρ (2)由连续性方程: 33223311,A v A v A v A v == 得:s m v s m v /5.2,/625.021== 4.设计输水量为h kg /1.2942的给水管道,流速限制在9.0∽s m /4.1之间。试确定管道直径,根据所选直径求流速。直径应是mm 50的倍数。

解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1= 5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。试设计直径,根据所定直径求流速。直径规定为50 mm 的倍数。 解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17= 6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。测点即位于等分此部分面积的圆周上,这样测得的流速代表相应断面的平均流速。(1)试计算各测点到管心的距离,表为直径的倍数。(2)若各点流速为54321u u u u u ,,,,,空气密度为ρ,求质量流量G 。 解:(1)由题设得测点到管心的距离依次为1r ……5r ∵ 10 310 222 1S r S r = = ππ 4 2 d S π= ∴ d r d r 10 2310221= = 同理d r 10 253= d r 10 274= d r 10 295= (2)) (5125 14 u u d v S G ????????+==πρρ 7.某蒸汽管干管的始端蒸汽流速为25 m/s ,密度为2.62 kg/ m 3.

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础 本章是流体动力学的基础。主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。 第一节流体流动的基本概念 1.流线 (1)流线的定义 流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。图3-1为流线谱中显示的流线形状。 (2)流线的作法: 在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。 流线是欧拉法分析流动的重要概念。 图3-1 图3-2 (3)流线的性质(图3-3) a.同一时刻的不同流线,不能相交。图3-3 因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。 b.流线不能是折线,而是一条光滑的曲线。 因为流体是连续介质,各运动要素是空间的连续函数。 c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。 因为对不可压缩流体,元流的流速与其过水断面面积成反比。 (4)流线的方程(图3-4) 根据流线的定义,可以求得流线的微分方程:图3-4

设d s为流线上A处的一微元弧长: u为流体质点在A点的流速: 因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。 所以即 展开后得到:——流线方程(3-1) (或用它们余弦相等推得) 2.迹线 (1)迹线的定义 迹线(path line)某一质点在某一时段内的运动轨迹线。 图3-5中烟火的轨迹为迹线。 (2)迹线的微分方程 (3-2) 式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。图3-5 注意:流线和迹线微分方程的异同点。 ——流线方程 3.色线(colouring line) 又称脉线,是源于一点的很多流体质点在同一瞬时的连线。 例如:为显示流动在同一点投放示踪染色体的线,以及香烟线都是色线。图3-6 考考你:在恒定流中,流线、迹线与色线重合。 流线、迹线、色线的比较: 概念名 流线是表示流体流动趋势的一条曲线,在同一瞬时线上各质点的速度向量都与其相切,它描述了流场中不同质点在同一时刻的运动情况。

《计算流体力学》结课作业要点

2012~2013学年第1学期 12级研究生《计算流体力学》结课作业 适用专业:供热供燃气通风及空调工程 一、结合某一具体学科,阐述纯理论方法、实验方法及数值方法在科学研究中的各自优缺点,在此基础上论述数值模拟方法的发展前景。(不少于4千字)。 流体力学是力学的一个重要分支, 是研究流体(液体和气体)的力学运动规律及其应用的学科, 主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。在人们的生活和生产活动中随时随地都可遇到流体,流体力学与人类的日常生活和生产事业密切相关。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程的诸多领域流体力学都起着十分重要的作用。如气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了流体力学自身的不断发展。1950年后,计算机的发展给予流体力学以极大的推动作用。 目前,解决流体力学问题的方法主要有实验方法、理论分析方法和数值方法三种。 实验方法 同物理学、化学等学科一样,流体力学的研究离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。流体力学实验研究方法有实物实验、比拟研究和模型研究三类:实物实验是用仪器实测原型系统的流动参数,适用于较小的原型;比拟实验是利用电场和磁场来模拟流场,实施起来限制条件较多;模型研究是实验流体力学最常用的研究方法。 实验研究的一般过程是:在相似理论的指导下建立实验模型,用流体测量技术测量流动参数,处理和分析实验数据。建立实验模型要求模型与原型满足相似理论,即满足两个流场

工程流体力学基本概念复习

▲连续介质模型:将流体作为无穷多稠密、没有间隙的流体质点构成的连续介质 ▲压缩性质和膨胀性质:流体在一定的温度下压强增大,体积减小;压强一定,温度变化,体积相应变化。所有流体都具有这种特性。 ▲流体黏性:流体流动时产生的内摩擦力的性质,是物体固有属性,但只有在运动状态下才能显现。 ▲影响粘性的因素:①压强:压强改变对气体和液体的粘性的影响有所不同。由于压强变化,对分子的动量交换影响非常小,所以气体的粘性随压强的变化很小。压强增大时对分子的间距影响明显,故液体的粘性受压强变化的影响较气体大。②温度:温度升高时气体的分子热运动加剧,气体的粘性增大,分子距增大对气体粘性的影响可以忽略不计。对于液体,由于温度升高体积膨胀,分子距增大,分子间的引力减小,故液体的粘性随温度的升高而减小。而液体温度升高引起的液体分子热运动的变化对粘性的影响可以忽略不计。 ▲理想流体:为了处理工程实际问题方便起见建立一个没有黏性的理想流体模型,即把假想没有黏性的流体作为理想流体。 ▲牛顿流体:剪切应力和流体微团角变形速度成正比的流体即符合牛顿内摩擦定律的流体 ▲非牛顿流体:剪切应力和角变形之间不符合牛顿内摩擦定律的流体称为非牛顿流体 ▲表面张力:自由液体分子间引力引起的,其作用结果使得液面好像一张紧的弹性膜 ▲毛细现象:由于内聚力和附着力的差别使得微笑间隙的液面上升和下降的现象 ▲绝对压强:以绝对真空为基准度量的压强 ▲相对压强/计示压强:以大气压为基准的度量 ▲真空:当被测流体的绝对压强低于大气压时,测得的计示压强为负值,负的表压强 ▲流体静压强:当流体处于平衡或相对平衡状态时,作用在流体上的应力只有法向应力而没有切向应力;此时,流体作用面上的法向应力就是静压强p ,nn n p dA dF p -=-(单位Pa ) ▲流体静压强特性:①流体静压强的作用方向沿作用面的内法线方向。②静止流体中任一点的流体静压强与作用面在空间的方位无关,只是坐标点的连续可微函数。 ▲欧拉平衡方程物理意义:在静止流体内部的任一点上,作用在单位质量流体上的质量力和流体静压强相平衡。 ▲流体平衡条件:只有在有势的质量力作用下,不可压缩流体才能处于平衡状态 ▲定常流动:将流场中流动参量均不随时间发生变化的流动;否则称为非定常流动 ▲迹线:流体质点在流场中运动时,由一点到另一点所描绘的运动轨迹。 ▲流线:流场中某一瞬时的光滑曲线,该曲线上的流体质点的运动方向均和该曲线相切 ▲系统:由确定的流体质点组成的流体团或流体体积V(t);控制体:相对于坐标系固定不变的空间体积V 。是为了研究方便而取定的 ▲相似准则:在几何相似的条件下,两种物理现象保证相似的条件或准则 ▲两个流场完全相似的重要特征和条件:模型与原流场的几何相似运动相似动力相似 ▲处于XX 场下的两个相似流场,xx 必然相似 ▲重力相似准则(弗劳德准则):重力之比:g l F C C C Vg g V W W C 3ρρρ='''='= ▲粘性力相似准则(雷诺准则):黏性力之比:v l x x F C C C A dy dv A y d v d F F C μμμ μμ=''''='=)/()/( ▲压力相似准则(欧拉准则):总压力之比:2l p F C C pA A p F F C =''='=

相关文档
相关文档 最新文档