文档库 最新最全的文档下载
当前位置:文档库 › 静电除尘器的工作原理

静电除尘器的工作原理

静电除尘器的工作原理
静电除尘器的工作原理

一、静电除尘器的工作原理

一、静电除尘器的工作原理

1.气体电离和电晕放电

由于辐射摩擦等原因,空气中含有少量的自由离子,单靠这些自由离子是不可能使含尘空气中的尘粒充分荷电的。因此,要利用静电使粉尘分离须具备两个基本条件,一是存在使粉尘荷电的电场;二是存在使荷电粉尘颗粒分离的电场。一般的静电除尘器采用荷电电场和分离电场合一的方法,如图5-7-1所示的高压电场,放电极接高压直流电源的负极,集尘极接地为正极,集尘极可以采用平板,也可以采用圆管。

图5-7-1静电除尘器的工作原理

在电场作用下,空气中的自由离子要向两极移动,电压愈高、电场强度愈高,离子的运动速度愈快。由于离子的运动,极间形成了电流。开始时,空气中的自由离子少,电流较少。电压升高到一定数值后,放电极附近的离子获得了较高的能量和速度,它们撞击空气中的中性原子时,中性原子会分解成正、负离子,这种现象称为空气电离。空气电离后,由于联锁反应,在极间运动的离子数大大增加,表现为极间的电流(称之为电晕电流)急剧增加,空气成了导体。放电极周围的空气全部电离后,在放电极周围可以看见一圈淡蓝色的光环,这个光环称为电晕。因此,这个放电的导线被称为电晕极。

在离电晕极较远的地方,电场强度小,离子的运动速度也较小,那里的空气还没有被电离。如果进一步提高电压,空气电离(电晕)的范围逐渐扩大,最后极间空气全部电离,这种现象称为电场击穿。电场击穿时,发生火花放电,电话短路,电除尘器停止工作。为了保证电除尘器的正常运动,电晕的范围不宜过大,一般应局限于电晕极附近。

如果电场内各点的电场强度是不相等的,这个电场称为不均匀电场。电场内各点的电场强度都是相等的电场称为均匀电场。例如,用两块平板组成的电场就是均匀电场,在均匀电场内,只要某一点的空气被电离,极间空气便会部电离,电除尘器发生击穿。因此电除尘器内必须设置非均匀电场。

开始产生电晕放电的电压称为起晕电压。对于集尘极为圆管的管式电除尘器在放电极表面上的起晕电压按下式计算:

V

(5-7-1)

式中m——放电线表面粗糙度系数,对于光滑表面m=1,对于实际的放电线,表面较为粗糙,m=0.5~0.9;

R1——放电导线半径,m;

R2——集尘圆管的半径,m;

δ——相对空气密度。

T0、P——标准状态下气体的绝对温度和压力;

T、P——实际状态下气体的绝对温度和压力。

从公式(5-7-1)可以看出,起晕电压可以通过调整放电极的几何尺寸来实现。电晕线越细,起晕电压越低。

电除尘器达到火花击穿的电压称为击穿电压。击穿电压除与放电极的形式有关外,还取决于正、负电极间的距离和放电极的极性。

图(5-7-2)是在电晕极上分别施加正电压和负电压时的电晕电流—电压曲线。从图(5-7-1)可以看出,由于负离子的运动速度要比正离子大,在同样的电压下,负电晕能产生较高的电晕电流,而且它的击穿电压也高得多。因此,在工业气体净化用的电除尘器中,通常采用稳定性强、可以得到较高操作电压和电流的负电晕极。用于通风空调进气净化的电除尘器,一般采用正电晕极。其优点是,产生的臭氧和氮氧化物量较少。

图5-7-2 正、负电极下电晕电流—电压曲线

2.尘粒的荷电

电除尘器的电晕范围(也称电晕区)通常局限于电晕线周围几毫米处,电晕区以外的空间称之为电晕外区。电晕区内的空气电离后,正离子很快向负(电晕)极移动,只有负离子才会进入电晕外区,向阳极移动。含尘空气通过电除尘器时,由于电晕区的范围很小,只有少量的尘粒在电晕区通过,获得正电荷,沉积在电晕极上。大多数尘粒在电晕外区通过,获得负电荷,最后沉积在阳极板上,这就是阳极板称为集尘极的原因。

尘粒荷电是电除尘过程的第一步。在电除器内存在两种不同的荷电机理。一种是离子在静电力作用下做定向运动,与尘粒碰撞(点击观看flash模拟动画—碰撞作用荷电),使其荷电,称为电场荷电。另一种是离子的扩散现象导致尘粒荷电,称为扩散荷电。对dc>0.5μm的尘粒,以电场荷电为主;对dc<0.2μm的尘粒,则以扩散荷电为主;dc介于0.2~0.5μ的尘粒则两者兼而有之。在工业电除尘器中,通常以电场荷电为主。

在电场荷电时,通过离子与尘粒的碰撞使其荷电,随尘粒上电荷的增加,在尘粒周围形成一个与外加电场相反的电场,其场强越来越强,最后导致离子无法到达尘粒表面。此时,尘粒上的电荷已达到饱和。

在饱和状态下尘粒的荷电量按下式计算:

C(5-7-2)

式中ε0——真空介电常数,ε0=8.85×10-12C/N·m2;

d c——粒径,m;

E f——放电极周围的电场强度,V/m;

εp——尘粒的相对介电常数。

εP与粉尘的导电性能有关。对导电材料εP=∞;绝缘材料εP=1;金属氧化物εP=12~18;石英εP=4.0。

从上式可以看出,影响尘粒荷电的主要因素是尘粒直径d c、相对介电数εP和电场强度。

二、静电除尘器的主要性能参数计算

对电除尘器内粒的运动和捕集进行理论分析,依赖于气体流动模型。最简单的情况是假设含尘气体在电除尘器内作层流运动。在这种情况下尘粒的移动根据经典力学和电学定律求得。

1.驱进速度

荷电后的尘粒在电场内由于受到静电力的作用将向集尘极运动(点击观看flash模拟动画——尘粒在电场内运动)。

荷电尘粒在电场内受到静电力

F=qE j N

(5-7-3)

式中E j——集尘极周围电场强度,V/m。

尘粒在电场内作横向运动时,要受到空气的阻力,当Rec≤1时,

空气阻力P=3πμd c

ωN(5-7-4)

式中ω——尘粒与气流在横向的相对运动速度,m/s。

当静电力等于空气阻力时,作用在尘粒上的外力之和等于零,尘粒在横向作等速运动。这时尘粒的运动速度称为驱进速度。

驱进速

度m/s

(5-7-5)

把公式(5-7-2)代入上式,

m/s(5-7-6)

对dc≤5μm的尘粒,上式应进行修正:

m/s(5 -7-7)

式中K c——库宁汉滑动修系数。

为简化计算,可近似认为,

E f=E j=U/B=E p

V/m

式中U——电除尘器工作电压,V;

B——电晕极至集尘极的间距,m;

E P——电晕尘器的平均电场强度,V/m。

因此,

m/s

(5-7-8)

从公式(5-7-8)可以看出,由除尘器的工作电压U愈高,电晕极至集尘极的距离B愈小,电场强度E愈大,尘粒的驱使进度ω也愈大。因此,在不发生发击穿的前提下,应尽量采用较高的工作电压。影响电除尘器工作的另一个因素是气体的动力粘度μ,μ值是随温度的增加而增加的,因此烟气温度增加时,尘粒的驱进速度和除尘效率都会下降。

公式(5-7-5)是在Re c≤1、尘粒的运动只受静电力的影响这两上假设下得出的。实际的电除尘器内都有不同程度的紊流存在,它们的影响有时要比静电力要大得多。另外还有许多其它的因素没有包括在公式(5-7-8)中,因此,仅作定性分析用。

2.除尘效率

要求出电除尘器的除尘效率需建立微分方程。但由于电除尘器的除尘效率与粉尘性质、电场强度、气流速度、气体性抟及除尘器结构等因素有关,要严格地从理论上推导除尘效率方程式是困难的,因此在推导过程中作以下假设:

①电除尘器横断面上有两上区域,集尘极附近的层流边界层和几乎占有整个断面的紊流区。

②尘粒运动受紊流的控制,整个断面上的浓度分布是均匀的。

③在边界层尘粒具有垂直于避面的分速度ω。

④忽略电风、气流分布不均匀、二次扬尘等因素的影响。

图5-7-3 静电除尘器除尘效率分析模型图

建立微分方程首先需要抽象模型如图5-7-3所示。设气体和粉尘在水平方向的流速为υ(m/s);除尘器内某一断面上气体含尘浓度为y(g/m3);气流运动方向上每单位长度集尘面积为a(m2/m);气流运动方向上除尘器的横断面积为F(m2);电场长度为l(m);尘粒的驱进度为气流运动方向上除尘器的横断面积为F(m2);电场长度为l(m);尘粒的驱进速度为ω(m/s)。

在dτ时间内,在dχ空间捕集的粉尘量

dm=α(dχ)ωdτy= -F(dx)

dy(5-7-9)

把dχ=υdτ代入上式,则

对上式两边进行积分,

(5-7-1 0)

式中y1——除尘器进口处含尘浓度,g/m3;

y2——除尘器出口处含尘浓度,g/m3。

将Fυ=L、αι=A上式,则

式中L——除尘器处理风量,m3/s;

A——集尘极总的集尘面积,m2。

则除尘效率为

(5-7-11)

表5-7-1不同()值下的除尘效率

0 1.0 2.0 2.3 3.0 3.91 4.61 6.91

η(%)0 63.2 86.5 90 95 98 99 99.9

公式(5-7-11)是在一系列假设的前提下得出的,和实际情况并不完全相符。但是它给我们提供了分析、估计和比较电除尘器效率的基础。从该式可以看出,在除尘效率一定的情况下,除尘器尺寸和尘粒驱进速度成反比,和处理风量成正比;在除尘器尺寸一定的情况下,除尘效率和气流速度成反比。

3.有效驱进速度

公式(5-7-11)在推导过程中忽略了气流分布不均匀、粉尘性质、振打清灰时的二次扬尘因素的影响,因此理论效率值要比实际值高。为了解决这一矛盾,提出有效驱进速度的概念。

所谓有效驱进速度就是根据某一除尘器实际测定的除尘效率和它的集尘极总面积A、气体流量L,利用公式(5-7-11)倒算出驱进速度。我们把这个速度称为有效驱进速度。在有效驱进速度中包含了粒径、气流速度、气体温度、粉尘比电组、粉尘层厚度、电极型式、振打清灰时的二次扬尘等因素。因此有效驱时速度要通过大量的经验积累,它的数值与理论驱进速度相差较大。表5-7-2是某部门实测的有效驱进速度ωe值。

表5-7-2某些粉尘的有效驱进速度ωe

粉尘种类ωe(cm/s)粉尘种类ωe(cm/s)

锅炉飞灰

水泥

铁矿烧结粉尘氧化亚铁

焦油

平炉

8-12.2

9.5

6-20

7-22

8-23

5.7

镁砂

氧化锌、氧化铅

石膏

氧化铝熟料

氧化铝

4.7

4

19.5

13

6.4

三、静电除尘器的主要结构部件与装置

图5-7-4为静电除尘器结构图。在工业电除尘器中,最广泛采用的是卧式的板式电除尘器,见图5-7-5。它是由本体和供电原源两部分组成。本体包括除尘器壳体、灰斗、放电极、集尘极、气流分布装置、振打清灰装置、绝缘子及保温箱等等。下面介绍除尘器的主要部件。

图5-7-4静电除尘器结构图

图5-7-5板式静电除尘器组成结构图

1.集尘极

(1)对集尘极板的基本要求

对集尘极板的基本要求是:

①板面场强分布和板面电流分布要尽可能均匀;

②防止二次场尘的性能好。在气流速度较高或振打清灰时产生的二次场尘少;

③振打性能好。在较小的振打力作用下,在板面各点能获得足够的振打加速度,且分布较均匀;

④机械强度好(主要是刚度)、耐高温和耐腐蚀。具有足够的刚度才能保证极板间距及极板与极线的间距的准确性;

⑤容纳粉尘量大,消耗钢材少,加工及安装精度高。

(2)集尘极板的结构形式

极板用厚度为1.2~2.0mm的钢板在专用轧机上轧制而成,为了增大容纳粉尘量大,通常将集尘极做成各种断面形状。,常用的断面形状如图5-7-6所示。

图5-7-6 集尘极板的结构形式

极板高度一般为2~15m。每个电场的有效电场长度一般为3~4.5m,由多块极板拼装而成。

常规电除尘器的集尘极板的间距通常采用300mm。国内、外研究结果表明,加大极板间间距,增大了绝缘距离,可以抑止电场火花放电;同时可以提高电除法器的工作电压,增大粉尘的驱进速度;另外还可使电极板面积也会相应减小。由于这种除尘器的工作电压比常规的高,故称为宽间距超高压电除尘器。宽间距电除尘器的极板间距一般为400~600mm。根据目前的试验研究,采用400mm为好,其工作电压为120~80kV。这种除尘器目前已在电站、水泥等行业应用。

2.电晕极(放电极)

(1)对放电极的基本要求

对放电极的基本要求为:

①放电性能好(起晕电压低、击穿电压高、电晕电流强);

②机械强度高、耐腐蚀、耐高温、不易断线;

③清灰性能好。振打时,粉尘易于脱落,不产生结瘤和肥大现象。

(2)电晕极的结构形式

放电极的形式很多,常见的形式如图5-7-7所示。

图5-7-7常见的电晕极结构形式

①圆形

采用直径1.5~2.5mm的高度镍铬合金制作,上部悬挂在框架上,下部用重锤保持其垂直位置。圆线也可作成螺旋弹簧形,上、下部都固定在框架上(如图5-7-8所示),由于导线保持一定的张力,放电线处于绷紧状态。

图5-7-8圆形电晕极固定方式

②星形

它是用4~6mm的圆钢冷拉成星形断面的导线。它利用极线全长的四个尖角放电,放电效果比光线式好。星形线容易粘灰,适用于含尘浓度低的烟气。

③锯齿形

用薄钢条(厚约1.5mm)制作,在其两侧冲出锯齿,形成锯齿形电极。锯齿形的放电强度高,是应用较多的一种放电极。

④芒刺式

芒刺型电晕线是依靠芒刺的尖端进行放电。形成芒刺的方式很多,R—S是目前采用较多的一种(见图5-7-9),它是以直径为20mm的圆管作支撑,两侧伸出交叉的芒刺。这种线的机械强度高,放电强。芒刺式采用点放电代替极线全长的放电,试验表明,在同样的工作电压下,芒刺式的电晕电流要比星形线大,有利于捕集高浓度的微小尘粒。芒刺式电晕极的刺尖会产生强烈的离子流,增大了电除尘器的电风(由于离子流对气体分子的作用,气体向集尘极的运动称为电风),有利于减少电晕闭塞。

芒刺式电晕极适用于含尘浓度高的烟气,因此,有的电除尘器在第一、二电场采用芒刺式,在第三电场采用光线或星形线。芒刺式电晕极尖端应避免积尘,以免影响放电。

极线间距通常取0.50~0.65倍的通道宽度,对常规电除尘器可取160~200mm。芒刺式的间距一般为50~100mm。

集尘极和电晕极的制作、安装质量对电除尘器的性能有很大影响,安装前极板和极线必须调直,安装时要严格控制极距,偏差不得大于5mm。如果个别地点极距偏小,会首先发生击穿。

图5-7-9R—S芒刺式电晕极

3.振打清灰装置

沉积在电晕极和集尘极上的粉尘必须通过振打及时清除,电晕极上积灰过多,会影响放电。集尘极上积灰过多,会影响尘粒的驱进速度,对于高比电阻粉尘还会引起反电晕。及时清灰是防止电晕的措施之一。常用的振打方式是锤击振打(如图5-7-10所示)。

振打频率和振打强度必须在运行过程中调整。振打频率高、强度大,积聚在极板上的粉尘层薄,振打后粉尘会以粉末状下落,容易产生二次飞扬。振打频率低、强度弱,

极板上积聚的粉尘层较厚,大块粉尖会因自重高速下落,也会造成二次飞扬。振打强度还与粉尘的比电阻有关,高比电阻粉尘应采用较高的振打强度。

为了防止比电阻小的粉尘产生二次飞扬,有的电除尘器专门在集尘极的表面淋水,形成一层水膜,用水膜把粉尘带走,这种电除尘器自然称为湿式电除尘器。用湿法清灰虽解决了粉尘的二次飞扬问题,但是也带来了泥浆和废水的处理问题,因此目前应用较少。

图5-7-10锤击振打方式

4.气流分布装置

电除尘器中气流分布的均匀性对除尘效率有较大影响。除尘效率与气流速度成反比,当气流速度分布不均匀时,流速低处增加的除尘效率远不足以弥补流速高处效率的下降,因而总的效率是下降的。

气流分布的均匀程度与除尘器进出口的管道形式及气流分布装置的结构有密切关系。在电除尘器的安装位置不受限制时,气流经渐扩管进入除尘器,然后再经1~2块平行的气流分布板进入除尘器电场。在这种情况下,气流分布的均匀程度取决于扩散角和分布板结构。除尘器安装位置受到限制,需要采用直角入口时,可在气流转弯处加设导流叶片,然后再经分布板进入除尘器。

气流分布板有多种型式,常用的是圆孔形气流分布板,采用3~5mm钢板制作,孔径约为40~60mm,开孔率为50%~65%。

5.电除尘器的供电装置

供电装置包括三部分:

(1)升压变压器

如图5-7-11所示,它是将工频380V或220V交流电压升到除尘器所需的高电压,通常工作电压为50~60kV。增大极板间距,要求的电压也相应增高。

(2)整流器

它将高压交流电变为直流电,目前都采用半导体硅整流器。

(3)控制装置

如图5-7-12所示,电除尘器中烟气的温度、湿度、烟气量、烟气成份及含尘浓度等工况条件是经常变化的,这些变化直接影响到电压、电流的稳定性。因而要求供电装置随着烟气工况的改变而自动调整电压的高、低(称之为自动调压),使工作电压始终在接近于击穿电压下工作,从而保证除尘器的高效稳定运行。

目前采用的自动调压的方式有:火花频率控制,火花积分值控制,平均电压控制,定电流控制等。

图5-7-11 静电除尘器升压变压器

图5-7-12 静电除尘器控制装置

四、影响静电除尘器除尘效果的因素

主要影响因素有:粉尘比电阻、气体含尘浓度、气流速度等。

1.粉尘的比电阻

如图5-7-13所示,比电阻在104~1011Ω·cm之间的粉尘,电除尘效果好。当粉尘比电阻小于104Ω·cm时,由于粉尘导电性能好,到达集尘极后,释放负电荷的时间快,容易感应出与集尘极同性的正电荷,由于同性相斥而使"粉尘形成沿极板表面跳动前进",降低除尘效率。当粉尘比电阻大于1011Ω·cm时,粉尘释放负电荷慢,粉尘层内形成较强的电场强度而使粉尘空隙中的空气电离,出现反电晕现象。正离子向负极运动过程中与负离子中和,而使除尘效率下降。

比电阻低于104Ω·cm称为低阻型。这类粉尘有较好的导电能力,荷电尘粒到达集尘极后,会很快放出所带的负电荷,同时由于静电感应获得与集尘极同性的正电荷。如果正电荷形成的斥力大于粉尘的粘附力,沉积的尘粒将离开集尘重返气流。尘粒在空间受到负离子碰撞后又重新获得负电荷,再向集尘极移动。这样很多粉尘沿极板表面跳动前进,最后被气流带出除尘器。用电除尘器处理金属粉尘、炭墨粉尘,石墨粉尘都可以看到这一现象。

粉尘比电阻位于104~1011Ω·cm的称为正常型。这类粉尘到达集尘极后,会以正常速度放出电荷。对这类粉尘(如锅炉飞灰、水泥尘、平炉粉尘、石灰石粉尘等)电除尘器一般都能获得较好的效果。

粉尘比电阻超过1011~1012Ω·cm的称为高阻型。高比电阻粉尘到达集尘极后,电荷释放很慢,这样集尘极表面逐渐积聚了一层荷负电的粉尘层。由于同性相斥,使随后尘粒的驱进速度减慢。另外随粉尘层厚度的增加,在粉尘层和极板之间形成了很大的电压降ΔU。

在粉尘层内部包含着许多松散的空隙,形成了许多微电场。随ΔU的增大,局部地点微电场击穿,空隙中的空气被电离,产生正、负离子。ΔU继续增高,这种现象会从粉尘层内部空隙发展到粉尘层表面,大量正离子被排斥,穿透粉层流向电晕极。在电场内它们与负离子或荷负电的尘粒接触,产生电生中和。大量中性尘粒由气流带出除尘器,使除尘器效果急剧恶化,这种现象称为反电晕。

克服高比电阻影响的方法有:加强振打,使极板表面可能保持清洁;改进供电系统,包括采用脉冲供电和有效的自控系统;增加烟气湿度,或向烟气中加入SO3、NH3及

Na2CO3等化合物,使尘粒导电性增加,这种方法称为烟气调质。

图5-7-13粉尘比电阻与除尘效率之间的关系

烟气的温度和湿度是影响粉法比电阻的两个重要因素。图5-7-14是不同温度和含湿量下,烧结机铅烟的比电阻。从该图可以看出,温度较低时,粉尘的比电阻是随温度升高而增加的,比电阻达到某一最大值后,又随温度的增加而下降。这是因为在低温的范围内,粉尘的导电是在表面进行的,电子沿尘粒表面的吸附层(如水蒸汽或其它吸附层)传送。温度低,尘粒表面吸附的水蒸汽多,因此,表面导电性好,比电阻低。随着温度的升高,尘粒表面吸附的水蒸汽因受热蒸发,比电阻逐渐增加。在低温的范围内,如果在烟气中加入SO3、NH3等,它们也会吸附在尘粒表面,使比电阻下降,这些物质称为比电阻调节剂。温度较高时,粉尘的导电是在内部进行的,随温度升高,尘粒内部会发生电子热激发作用,使比电阻下降。

从图5-7-14还可以看出,在低温的范围内,粉尘的比电阻是随烟气含湿量的增加而下降的,温度较高时,烟气的含湿量对比电阻基本上没有影响。

从以上的分析可以看出,可以通过一下途径降低粉尘比电阻:

①选择适当的操作温度;

②增加烟气的含湿量;

③在烟气中加入调节剂(SO2、NH3等)。

图5-7-14烟尘比电阻与温度的关系

2.气体含尘浓度

粉尘浓度过高,粉尘阻挡离子运动,电晕电流降低,严重时为零,出现电晕闭塞,除尘效果急剧恶化。

电除尘器内同时存在着两种电荷,一种是离子的电荷,一种是带电尘粒的电荷。离子的运动速度较高,约为60~100m/s,而带电尘粒的运动速度却是较低的,一般在

60cm/s以下。因此含尘气体通过电除尘器时,单位时间转移的电荷量要比通过清洁空气时少,即这时的电晕电流小。如果气体的含尘浓度很高,电场内悬浮大量的微小尘粒,会使电除尘器担忧晕电流急剧下降,严重时可能会趋近于零,这种情况称为电晕闭塞。为了防止电晕闭塞的产生,处理含尘浓度较高的气体时,必须采取措施,如提高工作电压,采用放电强烈的电晕极,增设预净化设备等。气体的含尘浓度超过30g/m3时,必须设预净化设备。

3.气流速度

随气流速度的增大,除尘效率降低,其原因是,风速增大,粉尘在除尘器内停留的时间缩短,荷电的机会降低。同时,风速增大二次扬尘量也增大。

电场风速的大小对除尘效率有较大影响,风速过大,容易产生二次扬尘,除尘效率下降。但是风速过低,电除尘器体积大,投资增加。根据经验,电场风速最高不宜超过

1.5~

2.0m/s,除尘效率要求高的除尘器不宜超过1.0~1.5m/s。

五、静电除尘器的类型及应用

1.静电除尘器的类型

静电除尘器按集尘极形式不同,通常分为板式静电除尘器(如图5-7-15)和管式静电除尘器(如图5-7-16)。

图5-7-15 板式静电除尘器

图5-7-16 管式静电除尘器

按内部荷电区和分离区布置分单区电除尘器(荷电与分离在同一区内完成)和双压电除尘器(荷电与分离分别在两个区完成)。

按气流流动分卧式电除尘器(气流水平运动)和立式电除尘器(气流垂直运动)。

按清灰方式分干式电除尘器(振打清灰)和湿式电除尘器(集尘极上的粉尘靠水流排出)。

根据电除尘器的结构形式和电压,可分为常规电除尘器和新型电除尘器。常规电除尘器的基本结构形式为线板式或线管式,极间距为200~300mm,电压为50~

60KV。

而新型电除尘器在结构形式和供电方式方面都有所改变。较具有代表性的新型电除尘器类型有:新型结构的电除尘器,联合作用的电除尘器和脉冲供电电除尘器。

新型结构的电除尘器的结构形式与常规电除尘器有所不同,如超高压宽间距电除尘器,其极间距达400~1000mm,电压提高到80~200KV以上。该类电除尘器在水泥,电站,烧结机等工业中得到了应用,在皮带运输机尘源控制方面也得到了应用。还有一种新型结构的电除尘器是横向极板电除尘器。常规电除尘器中,气方向与集尘板的设置是平行的,这样气流的流动方向与由电场作用的粉尘驱进方向互相垂直,从而影响除尘效果。而横向极板电除尘器的电极板布置与气流方向垂直,这样由电场作用的粉尘驱进方向与气流方向一致。据试验表明,它比常规电除尘器效率高。

联合作用的电除尘器是在同一除尘器中利用电的作用和其它除尘机理联合作用,以提高除尘器的性能。

脉冲供电可提高电压和电晕电流,因而可改善电除尘器的性能,粉尘穿透率可减少50~60%。

2.静电除尘器的应用

电除尘器是利用电场产生的电力使尘粒从气流中分离的设备。电除尘器是一种干式高效除尘器,它的优点是:

①适用于微粒控制,对粒径1~2μm的尘粒,效率可达98%~99%;

②在电除尘器内,尘粒从气流中分离的能量,不是供给气流,而是直接供给尘粒的,因此,和其它的高效除尘器相比。电除尘器的阻力较低,仅为100—200Pa;

③可以处理高温(在400℃以下)的气体,

④适用于大型的工程,处理的气体量愈大,它的经济效果愈明显。

电除尘器的缺点是:

①设备庞大,占地面积大;

②耗用钢材多,一次投资大;

③结构较复杂,制造、安装的精度要求高;

④对粉尘的比电阻有一定要求。

目前电除尘器已广泛应用于火力发电、冶金、化学和水泥等工业部门的烟气除尘和物料回收。如图5-7-17、5-7-18、5-7-19所示。

图5-7-17 静电除尘器的应用

图5-7-18 铁厂动力车间应用的静电除尘器

图5-7-19静电除尘器收尘系统

静电除尘器在实际应用中通常有以下几种应用方式。

(1)高压静电尘源控制

高压静电尘源控制是应用静电除尘的原理对分散产尘点进行粉尘控制的一种方法,可以用于皮带转运点、破碎机、振动筛等产尘点。

高压静电不但应用于局间地点的尘源控制,也可把晕线架设在车间内,应用静电场对难于密闭的开放性尘源抑止粉尘的飞扬。对电晕线施加足够的负高压,在电晕线与“地”这间形成强大的静电场。尘源及其附近的物体如物料、砂、砖、木板、结构物等均起着集尘极的作用。在静电场作用下,带电尘粒将直接返回尘源,实现粉尘的就地抑制。采用静电进行尘源控制,可以不设排风系统,节省能源,消除了风机噪声。在寒冷地区冬季不需对车间进行补风,有利于节能。

(2)静电强化的除尘器

即将静电除尘机理的应用其它类型的除尘器,形成复合机理的除尘器,如静电袋式除尘器、静电湿式除尘器、静电旋风除尘器、静电颗粒层除尘器等,其中有的已经在生产中应用。

1)静电袋式除尘器

利用静电强化袋式除尘器,可降低除尘器阻力、增大处理风量、提高除尘效率。

目前采用的形式有以下几种:

①器外预荷电的袋式除尘器。在粉尘进入袋式除尘器之前用预荷器使粉尘荷电。预荷电器可以采用不同的形式,例如在入口管道中心设高压放电极。

②预荷电脉冲除尘器(Apitron除尘器)。在脉冲袋式除尘器每条滤袋的下部串接一短管荷电器,其中心为放电极,气流通过短管时尘粒荷电,再进入到滤袋内。滤袋清灰时,压缩空气喷入袋内,以清除滤袋上的积灰,并吹扫短管荷电器的放电极和收尘表面。

③表面电场的袋式除尘器。它是利用每条滤袋中的骨架竖条间隔作正、负极,这样沿滤袋表面形成电场。气流通过滤袋时,在电场力和过滤双重机理作用下,使细小粉尘捕集。

2)静电强化的湿式除尘器

图5-7-20所示为静电水膜除尘器。用静电强化湿式除尘器,主要有三种方式:

①尘粒与水滴均荷电,但极性不同。在两者之间产生静电力,加强水滴与尘粒的接触,使粉尘加湿,凝聚成更大的颗粒,便于捕集。

②尘粒荷电,水滴为中性。当荷电尘粒接近水滴时,使后者产生镜象感应电荷。在两者间产生吸引力(镜象力),使尘粒与水滴接触。

③水滴荷电,尘粒为中性。当两者接近时同样会产生镜象感应电荷,在镜象力作用下,使尘粒加湿、凝聚。

静电强化的湿式除尘器的结构形式很多,主要是在传统的除尘器中加以应用,例如在通常的喷淋塔中,可以在入口加电晕荷电器,使尘粒荷电,有的则在喷嘴上通过感应效应,使水滴荷电。

图5-7-20静电水膜除尘器

3)静电强化的旋风除尘器

利用静电强化的旋风除尘器通常在旋风除尘器中心设置放电极,利用筒体的外壁和排出管的管壁作为集尘极。在静电力的作用下,可以使尘粒获得较大的向外的径向速度,有利于尘粒的捕集。试验研究表明,静电旋风除尘顺的除尘效率较不设静电的有较大提高。在静电旋风除尘器中,有一个最佳的进口速度,使静电力和离心力的作用得到最佳组合。

静电除尘器的常见故障与处理方法

电除尘 一、基础知识 1、什么是电晕放电? 电晕放电是指当极间电压升高到某一临界值时,电晕电极处在的高电场强度将其附近气体局部击穿,现在电晕极周围出现淡蓝色的辉光并伴有咝咝的响声的现象。 2、什么是火花放电? 在产生电晕放电后,继续升高极间电压,妥到某一数值时,两极间产生一个接一个瞬时的,通过整个间隙的火花闪络和噼啪声的现象。 3、什么是电弧放电? 在产火花放电后,继续升高极间电压,当到某一数值时,就会使气体间隙强烈击穿,出现持续放电,爆发出强光和强烈的爆裂声,并伴有高温、强光,将贯穿阴极和阳极的整个间隙,这种现象就叫电弧放电。 4、简述电除尘器的工作原理。 电除尘器是利用高直流电压主生电晕放电,使气体电离,烟气在电除尘器中通过时,烟气中的粉尘在电场中荷电,荷电粉尘在电场力的作用下向极性相反的电极运动,到达极板

或极线时,粉尘被吸附到极板或极线上,通过振打装置打落入灰斗,而使烟气净化。 5、简述粉尘荷电的过程。 在电除尘器阴极与阳极之间施以足够高的直流电压时,两极间产生极不均匀电场,阴极附近的电场强度最高,产生电晕放电,使其周围气体电离,气体电离主生大量的电子和正离子,在电场力的作用下向异极运动,当含尘烟气通过电场时,负离子和负离子与粉尘相互碰撞,并吸附在粉尘上,使中性的粉尘带上电荷,实现粉尘荷电。 6、荷电粉尘在电场中是如何运动的? 处于收尘极和电晕极之间的荷电粉尘,受四种力的作用,其运动服从牛顿定律,这四种力是:尘粒的重力、电场作用在荷电尘粒上的静电力、惯性力和尘粒运动时的介质阻力,重力可以忽略不计,荷电尘粒在电场力作用下向收尘极运动时,电场力和介质阻力很快达到平衡,并向收尘极作等速运动,此时惯性力也可忽略。 7、荷电尘粒是如何被捕集的? 在电除器中,尘粒的捕集与许多因素有关,如尘粒的比电阻、介电常数和密度,气流速度,温度和湿度,电场的伏

高压静电除尘原理

2.1 主要技术参数 2.1.1 输入、输出参数 GGAJ02(GAC)高压静电除尘用整流设备常用系列产品输入、输出技术参数见附表(一)。 2.1.2 输出调节范围 输出电流调节范围:0~100%额定值。 输出电压调节范围:0~100%额定值。 2.1.3 调压方式 晶阐管调压,可控制的晶阐管导通角范围为0~172度。 2.1.4 运行方式 100%额定输出电流,连续。(负载等级“I”级)。 2.1.5 效率和功率因数 效率≥80%,功率因数≥0.8。 2.2 使用条件 ① 海拔不超过1000m。若海拔高于1000m时,其额定值应按相关标准作相应修正。 ② 对于控制柜,环境温度为-10~+40℃;对于高压整流变压器,环境温度不高于+40℃,不低于变压器油所规定的凝点温度。 ③ 空气最大相对湿度为90%(在相当于空气20±5℃时)。 ④ 无剧烈振动和冲击,垂直倾斜不超过5%。 ⑤ 运行地点无导电爆炸尘埃,没有腐蚀金属和破坏绝缘的气体或蒸气。 ⑥ 输入交流电压持续波动范围不超过额定值±10%; ⑦ 输入交流电压频率波动范围不超过±2%; 2.3 产品的功能 2.3.1 控制方式选择 本系列产品具有多种控制方式可供在不同的工况条件选择运行。 ① 火花跟踪方式:为最常用的控制方式,适用于大部分工业现场的除尘、除雾、除焦油等应用。设备的火

花率可以调节,调节范围为:4次/每分钟~120次/每分钟。高火花率状态适用于粉尘浓度高,工况恶劣的场合,能起到加强粉尘荷电率和火花清灰的作用;低火花率状态适用于除尘器末电场或工况稳定的场合,在保证除尘效率的同时又减少电场因放电而产生的二次飞扬。 ② 功率跟踪方式:适用于高比电阻粉尘,易出现反电晕的应用场合。运行功率跟踪方式时,GAC-120微机控制器综合各反馈信号的变化情况,自动寻找最佳工作点,保持向电场输入最高有效功率。 ③ 电压跟踪方式:适用范围同功率跟踪方式,保持向电场输入最高电压。 ④ 简易间歇脉冲供电方式:适用于高比电阻粉尘或粉尘浓度很低的场合。高低脉冲比例有1:2和1:4两种可选。 2.3.2 故障检测保护功能 2.3.2.1显示故障类型 系统出现下列故障时,自动报警,跳闸切断主电源,并显示故障性质。 ① 一次过电流显示器闪动显示“LOAD” ② 二次开路显示器闪动显示“OPEN” ③ 二次短路显示器闪动显示“SHORT” 2.3.2.2 开机自检 开机时,处理器对系统主要部件进行自检,若发现故障,设备无法启动,显示器显示系统故障类型:“RAM ERROR”:外部存贮器故障; “EEPROM ERROR“:电可擦除存贮器故障; “A/D ERROR”:模数转换故障; “SYSTEM ERROR”:系统故障。 2.3.2.3 变压器油温和危险气体报警 变压器油温超过设定报警值,或除尘器内易爆气体超过报警值时,输出电流、电压自动降为零。油温超报警值时,显示器闪动显示:“TEMP”;危险气体超标时,显示器闪动显示:“GAS”。当上述故障消除时,输出电流电压自动恢复。当变压器油温超过设定极限值时,跳闸并报警。 变压器油温和危险气体报警为用户可选功能。 2.3.3 闪络控制功能 高压静电除尘用整流设备的控制部分必须准确地捕捉电场的闪络信号,并迅速作出适当的处理。如果小闪络信号(闪络时,二次电流、电压波形只发生高频畸变,二次电流波形变宽,而二次电流幅度没有明显增高)无法捕捉,将导致下一个波出现二次电流幅度增高,即过渡成更强闪络;在出现闪络后如果以固定半波数关

湿式静电除尘器技术方案 Word

354管湿式静电除尘除雾器 技术方案 日期:二0一七年五月 1.总则 1.1 本技术方案适用于项目湿式静电除尘除雾器工程。 1.2本技术方案对湿式静电除尘工程设备及工艺系统的功能、设计、结构、性能、安装和试验、验收等方面提出技术要求。 1.3承包方提供全套的烟气湿式静电除尘装置工艺系统,其范围包括:湿式静电除尘装置的设计、内外部组件设备、配套电控设备的供货、安装、调试、168h满负荷试运行等。 1.4承包方配合发包方接受环保、安全、消防等主管部门进行的审核、竣工验收等工作。 1.5 承包方必须应熟悉湿式静电除尘与湿法脱硫工艺。 1.6本技术方案提出的是最低限度的要求,并没有对一切技术细节作出规定,也未充分引述有关标准及规范的条文。承包方应保证提供符合本技术协议、规范和有关最新工业标准的产品,并满足国家有关安全、消防、环保、劳动卫生等强制性标准的要求,安全设施配置符合《中华人民共和国电力行业标准DL / T 1123—2009》的要求。 2工程概况及设计条件 2.1工程概况 2.1.1:

2.1.2本工程范围:湿式静电除尘除雾系统正常运行所必需具备的工艺系统设计、设备选择、采购、运输及储存、制造及安装(含设计、施工)、调试、试验及检查、试运行、考核与环保验收、消缺、培训和最终交付投产等。 2.2湿法脱硫后烟气指标 承包方提供设备及工艺的设计、制造、施工,符合国家有关标准,这些标准和规范至少包括: 燃煤电厂电除尘器 DL/T514-2004 火电施工质量验收及评定标准 电气装置安装工程施工及验收规范 GB50150 高压静电除尘用整流设备 JB/T9688-1999

静电除尘器规程

静电除尘器规程文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

目录 第一章电除尘器及相关辅助设备技术规范一、电除尘器本体技术特性:

1)负载短路保护。 2)开路保护。 3)变压器偏励磁保护。 4)变压器温度和瓦斯的声光报警和保护。 第二章电除尘器启动前的检查 1、电除尘器经过大修或长时间停运,在启运前,应对除尘器进行全面仔细的检查。 2、所有工作票应办理终结手续,检修期间的安全措施,如临时脚手架、遮拦等全部拆除,永久性栏杆、平台、走道、标牌等应恢复,场地清理干净。 3、通知电气检查相应设备的工作票是否已全部终结,临时安全措施(如临时接地线)是否已恢复备用状态。 4、电除尘器本体部分检查: 1)除尘器内部无杂物、灰块,阴极电晕线,收尘极板表面清洁、无杂 物、积灰。 2)阴极电晕线、收尘极板无明显变形、移位,电晕线、极板联接固定 部位无松动,框架支吊固定螺栓齐全、完好,无松动断裂现象。 3)绝缘部件上无灰尘、水份。 4)检查各电场室内无人工作后,将所有人孔门。检查孔全部严密关 闭,并上锁挂警示牌,钥匙交回集控制室,由锅炉运行班长负责集中所有钥匙插入安全联锁系统。 5)所有转动部件无异常现象,各连接部件、螺栓无松动。 6)振打转动机构保护罩及保险片完好,变速箱,各轴承润滑油充足, 油质合格。 7)所有楼梯、平台等工作场所,无杂物、照明完好、充足。

8)除尘器外壳保温完好,排灰装置完好,进灰口无杂物堵塞,灰沟畅 通。 9)冲灰器水量充足,各管道、阀门无泄漏现象。 10)蒸汽加热系统的各管道、阀门无泄漏现象,保温良好。 11)所有仪表、开关、报警信号、保护装置完整齐全,安全联锁盘的钥 匙全部清点归位。 5、控制柜及仪表盘的检查: 1)通知电气查询所有相关电气工作票应已全部注销,安全措施拆除。 2)各配电屏、专用盘、低压动力柜、高压控制柜、动力箱、继电器等 柜内应清洁无杂物,各电气连接部分接触良好,各种仪表齐全,指 示正确。 3)检查各控制屏及所有的振打、排灰、电加热装置的开关在解除位 置,低压程控柜开关在断开位置。 4)电气应检查除尘专用盘、振打加热专用盘的所有刀闸在断开位置, 电除尘值班员检查排灰、振打装置各动力箱开关在分开位置。 5)检查“二点式”隔离开关操作灵活,在接“接地”位置。 6)检查硅整流电源刀闸在断开位置,可控硅高压整流变压器的高、低 瓷套管无破裂、变压器、集油盘无漏油。呼吸器应完好,硅胶无受 潮,油位正常各处接地线良好。 7)值班室、控制室、配电室、变压器室、控制楼内外照明充足,各处 的事故照明处于正常备用。 6、通知电气值班员测量以下设备的电阻: 1)测量电除尘本体接地电阻应小于1欧姆。 2)用2500y摇表检查硅整流变压器的绝缘电阻,高压端反向对地电阻 值应大于1000兆欧,低压端对地绝缘应大于300兆欧。 3)用2500V兆欧表测量电场及高压供电系统的绝缘电阻应大于1000 兆欧。 4)用500V摇表测量电动机及电缆对地绝缘应大于0.5兆欧,控制 柜、整流器接地电阻不得大于4欧。 7、全面检查后,汇报班长或值长,并对检查情况作好记录。 8、电除尘器启动前的准备 1)准备工作必须在全面检查工作结束后进行。 2)通知电气运行或值长对电除尘变送电。 3)合上380V进线控制柜电源开关,对电除尘专用盘母线送电。 4)值长应在锅炉点火前12~24h,通知电除尘值班员投入绝 缘预加热,阴极振打瓷轴加热,灰斗加热,控制温度在80~90℃. 9、值长应在锅炉点火前2h,通知电除尘值班员投入振打装置,卸灰机。同时投入冲灰器的供水系统。其操作步骤如下:

大气污染控制工程课程设计静电除尘器

南京工程学院 课程设计说明书(论文)题目锅炉烟气静电除尘器的设计 课程名称大气污染控制工程 院(系、部、中心) 康尼学院 专业环境工程 班级 K环境091 学生姓名朱盟翔 学号 0 设计地点文理楼A404 指导教师李乾军 设计起止时间:2012年5月7日至 2011 年5月18日 目录 烟气除尘系统设计任务书

一、课程设计的目的 通过课程设计近一步消化和巩固本能课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 二、设计原始资料 锅炉型号:SZL4-13型,共4台 设计耗煤量:600 kg/h (台) 排烟温度:160 ℃ 烟气密度(标准状态): kg/m3 空气过剩系数:α= 排烟中飞灰占煤中不可燃成分的比例:18% 烟气在锅炉出口前阻力:800 Pa 当地大气压力: kPa 冬季室外空气温度:-1℃ 空气含水(标准状态下)按m3

烟气其他性质按空气计算 煤的工业分析元素分析值: C ar =68% H ar =% S ar =% O ar =6% N ar =1% W ar =4% A ar =16% V ar =14% 按锅炉大气污染物排放标准(GBl3271-2011)中二类区标准执行。 烟尘浓度排放标淮(标准状态下):30mg/m 3 二氧化硫排放标准(标准状态下):200mg/m 3。 基准氧含量按6%计算。 净化系统布置场地如图1所示的锅炉房北侧15m 以内。 图1. 锅炉房平面布置图 图 2. 图1的剖面图 三、设计内容 (1) 燃煤锅炉排烟量及烟尘和二氧化硫浓度的计算。 (2) 净化系统设计方案的分析确定。 (3) 除尘器的比较和选样:确定除尘器类型、型号及规格,并确定其主要运行参数。

电除尘器运行维护

电除尘器运行维护

电除尘器 运行维护方案

浙江蓝珂机电有限公司 1 范围 规定了电除尘器的使用条件、考核标准、设备调整、试运转、操作、维修保养和故障分析检修的方法以及安全注意事项。 适用于火电、冶金、造纸、建材和化工等行业用的干式、板式、卧式HZS 卧式YSZ电除尘器的调试、操作和维修管理。 2 引用标准 本方案的各方应探讨使用下列标准最新版本的可能性。 Q/ZDF02-2000 电除尘器安装说明书 JB6406-92 电除尘器调试运行维修安全技术规范 3 概述 电除尘器是一种高效节能的烟气净化设备,具有收尘效率高、处理烟气大、使用寿命长、维修费用低等优点,在当前国内外对环保要求越来越高的情况下,电除尘得到了越来越广泛的应用。在使用电除尘器时必须按电除尘器使用说明书的规定操作。未涉事项,应按电除尘器产品有关图纸和技术文件的规定处理。 3.1 例子型号说明 我公司生产的电除尘器其主要型号及其意义说明如下: 1 Y 60 —4 电场数4个 电场有效流通面积为60M2 本公司钢结构 一套设备台数为1台

3.2 使用条件和考核标准 电除尘器可以处理含有腐蚀性物质的烟气(防腐蚀型电除器)。 电除尘器不宜处理易燃、易爆的烟气。 其使用范围是:烟气处理量:按用户工况参数确定 烟气温度:≤400℃ 承受许用压力:-6.0×104~0Pa 同极间距:250~600mm 入口烟气含尘浓度:≤100g/Nm3 其性能考核标准范围是(在符合设计工况条件下): 本体压力降不大于250Pa 本体漏风率不大于3% 除尘效率不低于技术协议规定值 我公司是根据用户所提供的不同工况条件、烟气特性、地理环境、环保要求等一系列参数来设计电除尘器的。因此,我公司生产的电除尘器的使用条件和考核标准均需符合技术协议书所规定的数据。 4.工作原理 电除尘器的除尘原理是:含尘烟气通过高压静电场时,与电极间的正、负离子和电子发生碰撞或在离子扩散运动中荷电,带上电子和离子的尘粒在电场力作用下向异性电极运动并吸附在异性电极上,通过振打等方式使电极上的灰尘落入集灰斗中。 实践证明:静电场场强越高,电除尘器效果越好,且以负电晕捕集灰尘之效果最好,所以,本除尘设备设计为高压负电晕电极结构型式。运行简图如下: 含尘烟气 正离子粘附尘粒动

静电除尘器

静电除尘器 静电除尘器的工作原理是利用高压电场使烟气发生电离,气流中的粉尘荷电在电场作用下与气流分离。负极由不同断面形状的金属导线制成,叫放电电极。 正极由不同几何形状的金属板制成,叫集尘电极。静电除尘器的性能受粉尘性质、设备构造和烟气流速等三个因素的影响。粉尘的比电阻是评价导电性的指标,它对除尘效率有直接的影响。比电阻过低,尘粒难以保持在集尘电极上,致使其重返气流。比电阻过高,到达集尘电极的尘粒电荷不易放出,在尘层之间形成电压梯度会产生局部击穿和放电现象。这些情况都会造成除尘效率下降。 静电除尘器的电源由控制箱、升压变压器和整流器组成。电源输出的电压高低对除尘效率也有很大影响。因此,静电除尘器运行电压需保持40一75kV乃至100kV以上。 基本结构 静电电除尘器由两大部分组成:一部分是电除尘器本体系统;另一部分是提供高压直流电的供电装置和低压自动控制系统。电除尘器的结构原理图如图1所示,高压供电系统为升压变压器供电,除尘器集尘极接地。低压电控制系统用来控制电磁振打锤、卸灰电极、输灰电极以及几个部件的温度。 工作原理 电除尘器的基本原理是利用电力捕集烟气中的粉尘,主要包括以下四个相互有关的物理过程:(1)气体的电离。(2)粉尘的荷电。(3)荷电粉尘向电极移动。(4)荷电粉尘的捕集。 荷电粉尘的捕集过程:在两个曲率半径相差较大的金属阳极和阴极上,通过高压直流电,维持一个足以使气体电离的电场,气体电离后所产生的电子:阴离子和阳离子,吸附在通过电场的粉尘上,使粉尘获得电荷。荷电极性不同的粉尘在电场力的作用下,分别向不同极性的电极运动,沉积在电极上,而达到粉尘和气体分离的目的。 特点

静电除尘器运行规程

静电除尘器运行规程 第一章主题内容与适用范围 本规程规定了电除尘运行的基本要求、运行方式、运行维护、异常运行和事故处理. 本规程用于1#~3#炉运行管理工作. 下列人员应熟悉和执行本规程: 公司生产技术领导、生技部、安质部、运行分场、检修分场、值长,电除尘运行人员. 第二章引用标准 下列标准包含的条文,通过本规程中引用而构成为本规程的条文,在规程出版前,所示版本均为有效.所有标准都会被修订,使用本规程的和方应探讨使用下列标准最新版本的可能性 <<电力工业安全规程>>,<<电除尘器使用说明书>>,<<电除尘设计技术规范>>. 第三章设备规范 3.1电除尘器本体 本厂三台静电除尘器为浙江三净环保工程有限公司生产的静电除尘器,与锅炉烟道出口相联,电除尘出口接锅炉引风机. 表3.1.1 电除尘器型号BS60B-4 制造厂家浙江三净环保工程有限公司 炉号1# 2# 3# 投产日期200X年X月200X年X月200X年X月 表3.1.2电除尘器主要参数 有效电场截面积57.8m2 %设计效率99.4 保证效率99.2% 处理烟气量171542m3/h 设计温度145℃ 箱体设计压力-6000Pa 本体漏风率<%3 本体阻力<200Pa 同极间距400mm 烟气流速/(烟气最大流速) 0.82m/s 驱进速度7.14cm/s 处理烟气时间(处理烟气最小时间) 14.56s 最大电功率183.36kw 电场数4 长高比1.41 壳体材料及规格Q235-A 进出口烟箱尺寸23.48m 灰斗数量及材料4/Q235-A

灰斗有效容积63m3 灰斗出口尺寸300*300mm 灰斗加热器形式蒸汽加热器 每个灰斗加热负荷 4.5kw 料位探测器形式美国DE公司射频导纳料位计 每个灰斗料位探测器个数2 集尘极形式及材料480C/SPCC 集尘极有效面积3468m2 集尘极振打形式侧部机械振打 集尘极使用寿命30年 放电极形式及材料新型芒刺线/SPCC 放电极总长度3468m 放电极振打形式顶部传动侧部机械振打 放电极使用寿命30年 噪声<85dB 总保温面积约1100m2 外形尺寸(长×宽×高) 21.8*7.2*25 3.2阳极系统 阳极系统包括阳极悬吊装置、阳极板和撞击杆等零部件组成.阳极板为收尘极,厚度为1.5mm. 3.3阴极系统 阴极系统阴极吊挂、上横梁、竖梁、上中下部框架、阴极线等零部件组成,阴极线为放电极,采用芒刺线;阴极吊挂是把整个阴极系统吊挂在顶部大梁上并引入高压负极;由竖梁、上横梁、角钢等组成的平面结构的功用是固定上中下部框架和阴极振打轴系;上中下部框架是阴极线的支持体. 3.4阳极振打 阳极振打采用侧部振打,由阳打传动装置、振打轴系、和尘中轴承等零部件组成. 3.5阴极振打 阴极振打由阴打传动装置、竖轴、大小针轮、振打轴系、和尘中轴承等零部件组成. 3.6低压控制系统 3.6.1阴阳极振打程序控制 3.6.2高压绝缘件的加热和加热温度控制 3.6.3料位检测及报警控制 3.6.4门孔柜安全联锁控制 3.6.5进出口烟气温度检测及显示 3.6.6综合信号显示和报警显示 3.7高压输入装置 电除尘器进线电压380V,每个电场配一个高压进线柜、硅整流变压器,输出电压72KV.

静电除尘器的工作原理

一、静电除尘器的工作原理 一、静电除尘器的工作原理 1.气体电离和电晕放电 由于辐射摩擦等原因,空气中含有少量的自由离子,单靠这些自由离子是不可能使含尘空气中的尘粒充分荷电的。因此,要利用静电使粉尘分离须具备两个基本条件,一是存在使粉尘荷电的电场;二是存在使荷电粉尘颗粒分离的电场。一般的静电除尘器采用荷电电场和分离电场合一的方法,如图5-7-1所示的高压电场,放电极接高压直流电源的负极,集尘极接地为正极,集尘极可以采用平板,也可以采用圆管。 图5-7-1静电除尘器的工作原理 在电场作用下,空气中的自由离子要向两极移动,电压愈高、电场强度愈高,离子的运动速度愈快。由于离子的运动,极间形成了电流。开始时,空气中的自由离子少,电流较少。电压升高到一定数值后,放电极附近的离子获得了较高的能量和速度,它们撞击空气中的中性原子时,中性原子会分解成正、负离子,这种现象称为空气电离。空气电离后,由于联锁反应,在极间运动的离子数大大增加,表现为极间的电流(称之为电晕电流)急剧增加,空气成了导体。放电极周围的空气全部电离后,在放电极周围可以看见一圈淡蓝色的光环,这个光环称为电晕。因此,这个放电的导线被称为电晕极。 在离电晕极较远的地方,电场强度小,离子的运动速度也较小,那里的空气还没有被电离。如果进一步提高电压,空气电离(电晕)的围逐渐扩大,最后极间空气全部电离,这种现象称为电场击穿。电场击穿时,发生火花放电,短路,电除尘器停止工作。为了保证电除尘器的正常运动,电晕的围不宜过大,一般应局限于电晕极附近。

如果电场各点的电场强度是不相等的,这个电场称为不均匀电场。电场各点的电场强度都是相等的电场称为均匀电场。例如,用两块平板组成的电场就是均匀电场,在均匀电场,只要某一点的空气被电离,极间空气便会部电离,电除尘器发生击穿。因此电除尘器必须设置非均匀电场。 开始产生电晕放电的电压称为起晕电压。对于集尘极为圆管的管式电除尘器在放电极表面上的起晕电压按下式计算: V (5-7-1) 式中m——放电线表面粗糙度系数,对于光滑表面m=1,对于实际的放电线,表面较为粗糙,m=0.5~0.9; R ——放电导线半径,m; 1 ——集尘圆管的半径,m; R 2 δ——相对空气密度。 T 、P——标准状态下气体的绝对温度和压力; T、P——实际状态下气体的绝对温度和压力。 从公式(5-7-1)可以看出,起晕电压可以通过调整放电极的几何尺寸来实现。电晕线越细,起晕电压越低。 电除尘器达到火花击穿的电压称为击穿电压。击穿电压除与放电极的形式有关外,还取决于正、负电极间的距离和放电极的极性。 图(5-7-2)是在电晕极上分别施加正电压和负电压时的电晕电流—电压曲线。从图(5-7-1)可以看出,由于负离子的运动速度要比正离子大,在同样的电压下,负电晕能产生较高的电晕电流,而且它的击穿电压也高得多。因此,在工业气体净化用的电除尘器中,通常采用稳定性强、可以得到较高操作电压和电流的负电晕极。用于通风空调进气净化的电除尘器,一般采用正电晕极。其优点是,产生的臭氧和氮氧化物量较少。

静电除尘器常见故障地诊断

静电除尘器常见故障的诊断 一、造成除尘器不能正常运转并超标排放的原因及解决办法: 1)、由于设备本身技术或安装问题,造成除尘器不能正常运转或粉尘超标;安装完毕的除尘设施,经过测试调整和连续运转,直至正式交付生产使用后,要建立正确的操作管理制度和经常的维护检修制度,才能是除尘设施在最佳工作状态下正常运行,取得较好的除尘效果。相反,因制度不健全或运行管理不当,就可能使除尘设施运行不正常,达不到消烟除尘、改善室内卫生条件、保护大气环境的目的。 2)、由于操作人员违章操作造成粉尘超标;对锅炉使用单位除需要建立健全环保管理机构,配备足够的专业技术人员和管理修人员,有组织地进行环保知识教育,对管理和司炉人员进行培训外,还需了解掌握环保设施的构造、工作原理及操作技术和维修保养等基本知识。在提高干部的管理水平和工人的素质外,还必须对各项环保设施分别制定操做管理制度和设施的维修保养及检修制度。二、除尘设施的启动和运行:由于各类除尘设施的除尘机理不相同,结构形式各异,它们的运行管理制度也不完全一样。 1、除尘设施的启动(1)、启动前的准备工作。1)、经系统风量平衡调试后的除尘设施,应固定好管网个抽风直管调节风阀的位置,并作出相应的标志。一般情况下不得随意改动风阀的位置,以免破坏全系统的平衡。 2)、除尘系统启动前,首先应分别检查引风机、除尘装置、振打结构、卸灰系统等传动机构的电机接线是否正常,绝缘是否良好,转动是否灵活。

3)、检查各转动部轴承等的注油情况是否符合要求。 4)、检查各种检测仪表及控制装置动作是否灵活,读书指示是否准确可靠。(2)、除尘设施的启动。为防止除尘系统引风机起机时电机电流过载,应关闭或减少风机入口阀门,使风机在空载或减载下启动,然后逐渐开启阀门,使风机在额定负荷下运行。为防止粉尘散入房间或在管道内沉积,一般除尘系统和锅炉的启动和停机应遵循以下原则:启动:除尘系统应在锅炉启动之前启动;停机:除尘系统应在停炉数分钟之后才能停机。 2、除尘设施的运行管理影响除尘系统正常运行及除尘性能的因素很多,如煤种不同、煤量多少、风量大小、燃烧用不同煤种及时间长短、除尘效率低、除尘器运行时间长短、操作管理水平等因素都可以引起烟气以参数的变化,从而给除尘系统带来影响。另外,除尘系统经长时间运行后,有可能出现一些影响除尘设施正常运行的情况,如:管道式除尘器壁可能因尘粒的磨查擦或因酸气体的腐蚀而穿孔;袋式除尘器因装板与滤袋连接不严或滤袋破损而造成含尘烟气短路;因卸灰器动作失灵或灰尘输送系统发生故障而发生灰尘堵塞;对湿式除尘器因水位控制装置失灵或喷嘴堵塞使除尘失效等情况。因此,对正常运行的除尘设施,除应加强管理外,还要作到以下几方面:(1)细心观察设备的运行情况,认真作好设备运行日志,严格交接班制度。其中设备运行日志的内容主要应包括:1)、生产设备的负荷及生产能力;2)、工艺流程所采用原材料的种类、成分、原料配比及实际消耗等;3)、采用燃料的特性、煤种、灰份、消耗量等;4)、各种电动设备的电流、电压值;5)、

电收尘器的运行调试与维护

电收尘器的运行调试与维护 1、试运行前的检查 电收尘器安装完毕投入运行前应进行全面检查,内容如下: 1)对电场内的同极间距和异极间距进行全面检查,要求同极间距安装误差不能超过 ±10mm,异极间距安装误差不能超过±15mm。 2)检查电场内全部要求点焊固定的连接部位是否进行了点焊固定。 3)检查壳体的全部焊缝,不能有漏焊,少焊和有焊接缺陷等现象。 4)清除电场内的全部杂物,包括收尘极和放电极间,内部走台上,灰斗内、进出气口及分布板、输灰装置和锁风装置等处。 5)清除箱型梁内的杂物,检查高压导线的连接,电加热器及温控器的接线是否准确、可靠,并远离高压导线400mm以上。检查全部的绝缘材料清洁、干燥、完好。 6)检查全部的密封垫及密封材料是否安装完整、准确。检查人孔门的关闭及密封情况是否良好。 7)检查灰斗阻流板和气体分布板的人孔门是否正确安装并进行了紧固。 8)检查所有减速电机是否都加注了润滑油或润滑脂,电源接线是否准确、可靠。检查全部电机的绝缘电阻是否在说明书要求的范围内。检查全部振打装置(包括振打传动装置和振打锤轴、对轮、挡圈等)的紧固螺栓是否全部拧紧,对BS930型还应检查振打轴承座内是否加好了润滑脂,检查振打轴承盖是否安装好。 9)检查高、低压电控柜,高压硅整流变压器的接线是否准确可靠,变压器内的油位是否正常,保护及安全设施是否完好,高压电缆和电缆终端盒是否安装可靠,是否有漏油现象。高压隔离开关是否接触良好,切换是否灵活。 10) 检查全部的工作接地和保护接地是否准确可靠,接地电阻是否在2Ω以内。 11)根据发运单和安装资料检查安装是否有安装漏项。 2、升压前的调试

湿式静电除尘器运行维护注意事项

湿式静电除尘器运行维护注意事项 火力发电厂经常被人误解为是引起雾霾的重要因素,实质上火电厂作为一种能源转换的模式,火电厂清洁利用煤炭资源的主要方式。要利用煤炭,就要提高火电厂用煤比例,减少企业小锅炉用煤、减少居民烧煤做饭,由火电厂集中采取脱硫、脱硝、除尘措施,这是防治雾霾的重要手段。 实际上,诸如风电、太阳能等清洁能源也不是真正的清洁,能源本身清洁,但建设、生产过程也形成新的污染,风电、太阳能发电为什么电价比较高,就是其消耗的资源多。 新的火电厂大气污染物排放标准(GB13223-2011)实施后,火电厂烟尘、二氧化硫、氮氧化排放控制要求都有了很大的提高。京津地区、东南区域更是提出了超净排放环保理念。湿式静电除尘器就是在该背景下应对电厂脱硫吸收塔后烟尘、石膏雨和SO3等排放的重要手段,特别是我们关注的PM2.5的微细粉尘,具有良好的脱除效果,华电环保火电厂烟气综合治理技术,走在了行业前列。 严格意义上讲,过渡的高标准,无益于整个社会的环保,因为要求太高,消耗的社会各种资源就越高,这些资源的消耗将产生新的污染。 5月22日随华电工程项目经理、设计经理到军粮城电厂学习,与军电技术骨干进行交流,老严谈了自己的一些学习体会,回公司后简要整理如下。

一、双塔循环脱硫运行安全第一 军粮城电厂9/10(350MW)机组,控制烟气排放SO2≦35mg/Nm3,烟尘≦5mg/Nm3,本次改造在原来旧脱硫吸收塔基础上新加一台吸收塔,烟气由原来的A塔引出,经新建B塔,至湿式静电除尘器,烟气达标排放。 为了确保系统和机组安全,应充分认识A/B塔的作用和地位,A 塔循环泵全停,将直接导致机组停运,B塔则不会。因此,从安全角度考虑应注意下列情况: 1)A塔至少2台循环泵运行,防止万一有一台循环泵异常停运情况下,对系统影响。 2)A塔循环泵保护之一为“循环泵入口阀门关信号来,跳循环泵”,而非平常习惯的“循环泵入口阀门开信号消失”。这主要是防止循环泵误动; 3)B塔循环泵保护之一为“循环泵入口阀门开信号消失”,与A 塔不一样,主要是防止循环泵拒动。两者的差异主要是因为对系统影响不一样。 4)A吸收塔出口温度比B吸收塔出口温度重要,参与机组保护。A吸收塔出口温度高,说明A吸收塔异常,高温烟气对除雾器内元器件特别是除雾器造成损坏,为了保护设备需要跳机组。B塔出口温度则不然,其正常不一定系统正常(如B塔喷淋致使其出口温度正常),因此只要控制住了A塔出口温度,整个系统就安全了。B塔出口温度不需参与保护。

静电电除尘器检修要点及常见故障处理

静电电除尘器检修要点及常见故障处理 摘要:在我国的工业成产过程中,主要运用煤炭作为第一能源,在煤炭的燃烧中,会产生大量的烟尘,而如何处理工业生产中的烟尘,是作为新时达工业生产 的第一要务。在上个世纪50年代,我国就开始注重生产除尘系统的运用。早先 除尘技术发展不成熟,主要靠引进国外的电除尘器。随着技术的不断更新,静电 除尘器在电除尘器的基础上应运而生,大大的推进了生产除尘技术。所以,需要 专业的技术,通过维护和检修静电除尘器,确保静电除尘器的正常运行,来保障 工业的正常生产。 关键词:静电除尘器;检修;分析 引言: 我国最初的除尘技术,主要依靠进口电除尘器,因其具有阻力低,耐高温, 除微尘的强大作用,所以,电除尘器的使用率大大提高。随着工业技术的不断进步,静电除尘器的生产,逐渐取代了传统的电除尘器,随之,静电除尘器的使用 率也在逐步提高。静电除尘器在工业生产中起到的作用,已经无法取代。在当下 的工业生产中,需要不断加强对静电除尘器的维护工作,通过在维护中发现问题,进行检修,以此来保障静电除尘器的正常运转。经过多年的发展,静电除尘器的 稳定性依然成为工厂生产关注的焦点,因此,对静电除尘器实施定期维护检修, 是提高静电除尘器正常运行的有利条件。 一、静电除尘器的检修要点 想要做好静电除尘器的检修工作,需要培养专业的技术性人才,对静电除尘 器的构造原理完全掌握,对故障具有很敏感的判断意识,是做好静电除尘器的先 决条件[1]。以下对静电除尘器的核心部件进行分析,对相应的故障检修做出预备 方案,以供参考学习。 (一)密闭情况 静电除尘器主要是通过静电,对烟气中的灰尘进行处理的装置。在静电除尘 器的运行过程中,确保整套除尘设备的密闭性,是保证除尘工作的完整性。由于 在烟气中存在着大量的硫化物,一氧化碳,氨气等具有腐蚀性的气体,在静电除 尘器进行处理过程中,会与这些气体直接接触,从而会引起静电除尘器自身的腐 蚀和损坏。如果长时间为进行清理,则会加大腐蚀面积,从而影响静电除尘器的 密闭性。为了确保静电除尘器的密闭性,在检修过程中,需要对除尘器内部,以 及外部附带设备进行全面的检查,对于发现的漏洞,或者腐蚀面积较大的部位, 及时进行维修或者更换,以此来确保静电除尘器在运行中的密闭性。 (二)阴阳极系统 阴阳极系统是静电除尘器的运转的核心。由于阴极线板和阳极线板的固定方 式不同,阴极线板主要是通过阴极线和M8螺栓固定,因此,阴极的结构变得复杂,从而引起阴极线板的磨损。阳极线板的接触面相对比较平整,因此在烟尘输 送中,摩擦力较小,不会出现涡流,所以,阳极板的磨损程度要小于阴极板。但是,阴极线板在阴阳极系统中,起到了放电的作用,所以,在静电除尘器运行中,需要定期对阴极线板和阳极线板进行监测,维护。建议每年对阴阳极系统进行全 面监测,对于磨损较大的阴极线板,及时进行更换,确保放电的正常。对于阳极板,需要进行技术性维护。主要是对阳极板的脱钩,是否变形情况进行检查,对 于变形严重的阳极板,进行更换。通过对阴阳极系统的定期监测,维护,并及时 维修,确保静电除尘器内部结果完整,运行正常。

电除尘器运行操作规程及注意事项

电除尘器运行操作规程及注意事项 一、运行前的准备工作 1、开车前要对电除尘器内部进行全面检查,内部不得有任何杂物,并检查两极之间是否有短路隐患; 2、检查所有绝缘件表面是否清洁和损坏,否则用无水酒精擦拭干净,有破损则及时更换; 3、接地装置及其它安全设施必须安全可靠; 4、通电试运行阴极电磁锤振打器,并检查电磁锤振打器的动作情况; 5、检查阳极振打装置是否完好,各转点、电机、减速机是否转动灵活和润滑情况;检查灰斗卸料机是否转动灵活; 6、要求场地清理干净,道路畅通,各操作巡查平台、走道扶手完整、照明充足; 7、关闭所有的人孔门; 8、将高压隔离开关柜的刀闸置于“电场”位置; 9、在电场投运前完成加热及振打装置投运; 10、投入电场前10个小时送上保温箱加热,避免绝缘件因结露而爬电。 二、启、停操作过程 ?一?、电场启动操作步骤 1、合上上柜内空开QF 2、将主令开关SAl置“通”位置,控制柜“电源”灯亮: 3、控制器开始自动检索过程,LED遂屏显示:RATE(铭牌上写的设备容量),MODE:0,LOCAL,IL:80%,UL:120%,MAN: 60%,RP:500,SP-SET:60,ST:32,END:92,INC:10,OFF:1,HI-LEV:135%;最后一屏显示:MODE0 4、按下“起动”按钮,接通主电源,交流接触器KM1吸合,柜面“电源”灯灭、“运行”灯亮。电流电压应开始上升;

?二?、电场停止操作步骤 1、按“复位”按钮,输出电流电压降为零; 2、按“停止”按钮,断开主回路; 3、断开柜内空开QF; 4、如果设备自动故障报警,按“复位”按键解除报警,然后可按操作步骤重新启动或进行检修; 5、如果需要长时间停炉,将隔离开置于“接地”位置. ?三?、运行后的停止 1、按“复位”按钮,输出电流电压降为零; 2、按“停止”按钮,断开主回路; 3、等锅炉送、引风机停运后,继续保持各振打构连续运行2—3小时后方可 停振打装置; 4、振动装置停运后,应及时把灰斗内的灰排干净; 5、除尘器停运后8小时方能打开人孔门冷却,如检查需要时可在停运后4 小时开启人孔门冷却; 6、锅炉事故灭火后应立即停止电除尘运行。 三、电除尘器的操作维护检修及故障处理 电除尘器及供电设备的操作必须严格按供电设备说明书进行,操作人员必须掌握电除尘原理、结构性能及操作规章,电除尘器运行时应关闭人孔门并挂上写有“高压危险”字样的警告。?一?、正常维护 1、严格监视供电装置的一次电压、一次电流、二次电压和二次电流。每1小 时记录一次。

静电除尘器存在的问题与检修措施

静电除尘器存在的问题与检修措施 摘要:本文依据本人所在钢铁企业电除尘器的运行与维护工作实际,通过在工作中遇到的问题进行分析总结,提出了相应的解决办法,并针对出现的问题提出改进意见。关键词:静电除尘器、除尘效率、检修、维护 引言 目前电除尘器广泛应用于火力发电、冶金、化学和水泥等工业部门的烟气除尘和物料回收行业,在烟气处理方面取得了很大的成就,我国作为世界电除尘器大国,近些年来,为电除尘的发展做出了重大贡献,但是在实际生产中,由于在安装、运营、维护及生产环节的差异的因素,造成电除尘器不能达到理想的效果,出现效率低,达不到设计效果的情况。 1 电除尘器运行状况 电除尘器运行状况差异很大。72%~75%的电除尘器用于电力,16%~18%用于水泥厂,1999年前,运行状况比较好的有重庆发电厂各电除尘器,白马电厂23号炉电除尘器,豆坝发电厂各电除尘器,华釜山发电厂各电除尘器,珞磺电厂各电除尘器,它们的除尘效率几乎都保持在99%以上,达到或超过电除尘器设计制造时除尘效率的保证指标。黄桷庄发电厂电除尘器经大修改造和调整试验后,除尘效率高于99%,超过电除尘器原设计指标。白马电厂新投产的22号炉电除尘器,验收试验时除尘效率高于99.3%的保证指标。嘉陵成都热电厂各电除尘器验收试验时,除尘效率超过99.5%。其它电除尘器除尘效率都低于设计指标,有的甚至只略高于90%。 2 电除尘器存在的问题 导致多数电除尘器除尘效率不高的因素很多,而诸多因素又相互关联,

在此只能针对部分问题分别叙述。 2.1 运行参数不佳 一般来说,新建、扩建、改建和大修后的电除尘器运行电压、电流较高,但是随着运行时间的增加,电压、电流有所下降,有些电除尘器运行电压、电流下降幅度较大,导致这种想象的主要原因有以下几方面: 2.1.1 燃煤用的低硫煤,粉尘比电阻较高。 2.1.2 整流变压器的供电能力减弱。 2.1.3振打效果差,有的阴极线尖端钝化而导致放电性能不好;有的受到拉弧放电的冲击等, 2.1.4 造成阳极板和极线严重挂灰,导致电压和电流下降。 2.1.5 电除尘器运行未作调整,尤其是新建的改建的机组较为普遍。2.2 阴极线断线 目前,阴极线主要有锯齿线,管状芒齿线、螺旋线和星型线等,这几种极线都发生过不同程度的断线问题,由于断线使得电场不能正常运行,导致除尘效率下降。 2.3 振打系统 现有的电除尘器的阴阳极振打系统大多采用顶部振打和侧向振打,由于振打力度不足,造成极板极线表面挂灰严重;在振打力度和均匀性都满足要求时,振打制度是否合理,对电除尘器除尘效率的影响也很大,振打过频,收集在阳极板上的粉尘不能成块状落入灰斗,二次飞扬严重,尤其末级电场的二次飞扬,将大大降低除尘效率。反之,振打间隔时间过长,阳极板上积灰太厚,使空间电场电压下降,二次电流降低,电晕功率减小,除尘效率下降。阳极板严重积灰甚至形成反电晕,使已经被收集在阳极板上的粉尘再次进入气流。①另外振打锤接触部位发生变形卡死、振打锤偏移位置,不能有

静电除尘器的工作原理

静电除尘器的工作原理 佛冈一中冯高强 教学目的 1、知道一些静电现象,并能解释这些现象的成因 2、知道静电除尘器的工作原理 3、知道静电除尘器的应用 教学重点 1、静电除尘器的工作原理 2、知道静电除尘器的应用对环境保护的作用 教学难点 静电除尘器的工作原理 学法指导 探究、讲授、讨论、练习 教学手段 多媒体教学(本教案须配合同名课件使用) 教学过程设计 一、静电除尘器的工作原理 1.气体电离和电晕放电 由于辐射摩擦等原因,空气中含有少量的自由离子,单靠这些自由离子是不可能使含尘空气中的尘粒充分荷电的。因此,要利用静电使粉尘分离须具备两个基本条件,一是存在使粉尘荷电的电场;二是存在使荷电粉尘颗粒分离的电场。一般的静电除尘器采用荷电电场和分离电场合一的方法,如图5-7-1所示的高压电场,放电极接高压直流电源的负极,集尘极接地为正极,集尘极可以采用平板,也可以采用圆管。

图5-7-1静电除尘器的工作原理 在电场作用下,空气中的自由离子要向两极移动,电压愈高、电场强度愈高,离子的运动速度愈快。由于离子的运动,极间形成了电流。开始时,空气中的自由离子少,电流较少。电压升高到一定数值后,放电极附近的离子获得了较高的能量和速度,它们撞击空气中的中性原子时,中性原子会分解成正、负离子,这种现象称为空气电离。空气电离后,由于联锁反应,在极间运动的离子数大大增加,表现为极间的电流(称之为电晕电流)急剧增加,空气成了导体。放电极周围的空气全部电离后,在放电极周围可以看见一圈淡蓝色的光环,这个光环称为电晕。因此,这个放电的导线被称为电晕极。 在离电晕极较远的地方,电场强度小,离子的运动速度也较小,那里的空气还没有被电离。如果进一步提高电压,空气电离(电晕)的范围逐渐扩大,最后极间空气全部电离,这种现象称为电场击穿。电场击穿时,发生火花放电,电话短路,电除尘器停止工作。为了保证电除尘器的正常运动,电晕的范围不宜过大,一般应局限于电晕极附近。 如果电场内各点的电场强度是不相等的,这个电场称为不均匀电场。电场内各点的电场强度都是相等的电场称为均匀电场。例如,用两块平板组成的电场就是均匀电场,在均匀电场内,只要某一点的空气被电离,极间空气便会部电离,电除尘器发生击穿。因此电除尘器内必须设置非均匀电场。 2.尘粒的荷电 电除尘器的电晕范围(也称电晕区)通常局限于电晕线周围几毫米处,电晕区以外的空间称之为电晕外区。电晕区内的空气电离后,正离子很快向负(电晕)极移动,只有负离子才会进入电晕外区,向阳极移动。含尘空气通过电除尘器时,由于电晕区的范围很小,只有

湿式静电除尘器

湿式静电除尘器的过去、现在、未来 第207页 理查德.C. 斯戴尔和罗纳德.J. 斯考瑞K. 桑帕斯 (Sam) 库马尔 贝克考克&威尔科克斯公司 F.L.斯米德斯航空技术公司巴伯顿休斯敦,得克萨斯州俄亥俄州加力.罗斯教育署帕斯特尔纳克 纽不伦瑞克省电力公司 AES 深水公司 弗雷德里克顿,纽不伦瑞克省,加拿大帕萨迪纳(得 克萨斯州) 背景 湿式静电除尘器自1907年由F.G.Cottrell 先生第一次介绍推广以来,已经实现了全面的商业化。然而,该设备的大多数还是面向电力企业中的小型工业装置,并且在过去的20年里,这项技术被专门应用于燃煤电厂。 在燃烧含硫燃料的发电厂中,过去十年,烟气脱硫技术和选择性催化还原技术已被采用来控制二氧化硫和氮氧化物的排放。最近在燃煤电厂采用的新催化还原系统表明硫酸排放的增加是由于一部分二氧化硫在通过催化剂时被氧化所致。尽管对于电厂酸雾的排放并没有正式的监管,但是关于此的考虑和疑问已经得到了人们广泛的重视。 焦油和一种釩含量相对较高的奥里油(釩,一种在燃烧过程中

可以将二氧化硫氧化成三氧化硫的催化剂)燃烧过程会产生浓度等级更高的硫酸排放,在一些案例中,酸浓度和燃烧高含硫燃煤的电厂排放的尾气中的相当。 在烟气脱硫和硫催化氧化联合使用的情况下,高含硫煤或含釩较高的石油燃料燃烧产生的尾气中硫酸所占比例可以超过20 ppmvd (ppmvd,容积比为百万分之一)。由于亚微粒固有的光散射特性,排放的废气就造成了显著的模糊影像。酸雾的浓度即使低及5~10 ppmvd,空气看上去也会如羽絮一般模糊不清。 此文将就过去应用的湿式电除尘技术和现有的在电厂中使用的技术进行讨论,同时从经济上对用于解决潜在的和未来的除尘问题的技术进行分析。这些分析也将比较湿式电除尘技术和吸收剂注入法在控制酸雾上的优缺。 湿式静电除尘的过去 如上文所述,湿式静电除尘技术在最近的一百年中已经被广泛地应用于冶金等工厂,以控制酸雾和微尘的排放。今天,全世界已经有超过1000台该种除尘器在工作了。在商业买卖中也有多种型号、设计的除尘器以供选择。湿式静电除尘器由一系列满收集电极的细管和平行平板组成。立式的只有垂直的气流通道(向上或向下),而卧式的设计则也可以满足水平而来的气流除尘。 在满足冶金工厂处理需求上,建造材料是该除尘器设计上的主要问题。比如在冶炼铜时,二氧化硫在废气中的含量通常超过百分

相关文档