文档库 最新最全的文档下载
当前位置:文档库 › 压水堆核电厂钢制安全壳设计建造规范-编制说明

压水堆核电厂钢制安全壳设计建造规范-编制说明

压水堆核电厂钢制安全壳设计建造规范-编制说明
压水堆核电厂钢制安全壳设计建造规范-编制说明

国家标准

《压水堆核电厂钢制安全壳设计建造规范》

编制说明

(征求意见稿)

标准编制组

2019年12月

压水堆核电厂钢制安全壳设计建造规范

一、任务来源及计划要求

本标准按照国家重点研发计划课题“基础通用与其它关键技术标准研究”(课题编号2017YFF0208004)任务书的要求以及与核工业标准化研究所签订的合同(合同编号为ISNI-KY-24-2019)内容进行编写。本标准由上海核工程研究设计院有限公司主编。

按照下达的计划,本标准计划于2019年12月31日前完成征求意见稿;于2020年3月31日前完成送审稿;于2020年6月30日前完成报批稿。

二、标准编制组组成

本标准由上海核工程研究设计院有限公司主编,编制组成员组成如下,详见表1。

表1:标准编制组成员名单

三、编制过程

3.1 总体过程

本标准的制定过程主要分为前期准备、征求意见稿编写阶段、送审稿编写阶段和报批稿编写阶段。

3.2 前期准备(2017年7月-2018年12月)

主要任务是成立标准编制小组,明确分工要求,分解工作任务、文件收集和调研分析、明确标准编制的进度控制。

在前期准备阶段成立标准编制小组和明确工作任务后,开展调研和文件收集工作。根据依托项目实施经验,确定了本标准编制的主要依据为ASME 规范NE 分卷,并参考国内压力容器设计规范(GB 150-2011)。此外还参考了相关的SRP 及RG导则进行规范的编制工作。

根据核电标准体系研究的前期工作分析结果,确定本标准的最初框架结构为:前言、目次、范围、术语和符号、总论、材料、设计、制造和安装、检测、试验、超压保护和附录。之后根据多次讨论和修改进行了必要的调整。

3.3 征求意见稿编写(2019年1月-2019年12月)

编制组在对参考文件进行详细分析的基础上,结合我国现状起草了本标准的工作组讨论稿,并在院内征求了专家意见。在具体章节编写过程中,对于标准内容的定位和合理安排问题征求了有关专家的意见,最终形成本标准征求意见稿。

3.4送审稿编写(2020年1月-2020年3月)

待广泛征求行业内的专家意见后,标准编写组将根据收到的专家意见对征求意见稿再进行深入地讨论,并对征求意见稿进行修改,按要求形成并提交送审稿。

3.5 报批稿编写(2020年4月-2020年6月)

届时根据标准《压水堆核电厂钢制安全壳设计建造规范》送审稿的审查情况,标准编写组将根据审查意见修改送审稿,完成了报批稿编写。

四、标准现状分析

我国监管机构国家核安全局批准出版的《核动力厂设计安全规定》(HAF 102-2016)和《核电厂反应堆安全壳系统的设计》(HAD102/06-1990),从法规和导则层面提出了核电厂安全壳系统和结构设计所需满足的要求,即要求在核电厂寿期内可能发生的所有荷载条件下,应保持安全壳结构的完整性和限制安全壳的泄漏。

因此,本标准在国内首次系统提出了钢制安全壳用材料技术要求、钢制安全壳设计技术要求和钢制安全壳建造技术要求。用于指导压水堆核电厂钢制安全壳设计、建造、试验和验收。

五、标准制修订背景和原则

5.1标准制修订背景

我国是从AP1000技术引进时,开始接触钢制安全壳这种设备,在之前的核电机组中,我国没有采用过钢制安全壳这种形式,国内相关法规及标准都未有涉及。当前我国第三代先进非能动核电站如依托项目(AP1000)、后续项目和示范项目(国和一号),都采用钢制安全壳设计。钢制安全壳是压水堆核电厂事故发生后的最后一道安全屏障,其功能包括余热排出及放射性废物的包容。在事故工

况下需要保证结构完整性,并且其整体泄漏率要符合核安全法规的规定。

因此,满足上述要求,需要进行可靠的结构设计,以及可控的制造和安装。通过本标准制定、发布、实施,有利于国内核电行业对钢制安全壳的设计、制造、安装等进行指导,有利于进一步完善我国核电标准体系,有利于推动我国自主研发的先进核电设计走出去。

5.2标准制修订原则

本标准通过分析研究ASME NE规范及RG 1.57的相关要求,结合三门、海阳依托项目AP1000机组和示范项目国和一号机组建造过程中的经验反馈,及监管部门对于钢制安全壳的监管要求,制定一份可以有效指导后续压水堆核电厂钢制安全壳设计、制造、安装的标准规范。

六、主要技术内容说明

本标准主要技术内容包括钢制安全壳用材料、设计、建造的技术要求,从而保证在核电厂寿期内可能发生的所有荷载条件下,保持安全壳结构的完整性和限制安全壳的泄漏。本标准中的主要设计要求和技术参数指标体现最新的研究成果,符合目前国内压水堆核电厂法律、法规和监管的要求。

本标准共分11章,附带四个规范性附录。

第一章为范围

本标准规定了压水堆核电厂钢制安全壳的设计、建造、试验和验收要求。

第二章为规范性引用文件,主要是本标准所引用的参考文件。

第三章为术语和符号。

第四章为总则,主要规定了不同单位的职责及人员资格,本标准的管辖范围。

第五章为材料,主要规定了承压材料的要求,包括试验、力学性能要求、检测和修补要求;焊接材料的要求等。

第六章为设计,主要规定了公式法设计、分析法设计、开孔补强设计及设计过程中的一些特殊要求等。

第七章为制造和安装,主要规定了制造和安装的总要求,包括成形、装配和对中要求、焊后热处理规定及要求、焊接及工艺评定要求等。

第八章为检测,主要包括无损检测的通用性要求、焊缝检测要求、验收准则、无损检测人员资格等。

第九章为试验,规定了压力试验的基本要求、结构完整性试验和泄漏率试验的基本要求及验收准则。

第十章为超压保护,规定了压力泄放装置及外压保护和内压保护等内容。

第十一章为铭牌,规定了钢制安全壳容器铭牌的要求。

附录A为材料的补充规定。

附录B为材料的许用应力及许用应力强度值。

附录C为外压计算用图表。

附录D为设计疲劳曲线。

七、与现行法规、标准的关系

本标准是新编标准,参考了GB150-2011有关内容,标准所规定的技术要求符合技术法规或导则规定的安全原则,可以指导后续压水堆核电厂钢制安全壳设计、制造、安装的标准规范。

八、重大分歧意见的处理经过和依据

暂无。

九、参考资料清单

(1)HAF 102-2016,核动力厂设计安全规定

(2)HAD102/06-1990,核电厂反应堆安全壳系统的设计

(3)ASME BPVC Section ⅢDivision 1 Subsection NE, Class MC

Components, 2010 Edition

(4)ASME BPVC Section ⅢDivision 1 Subsection NE, Class MC

Components, 2017 Edition

(5)RG1.57-2013, Design Limits and Loading Combinations for Metal

Primary Reactor Containment System Components

(6)GB 150-2011 压力容器

(7)SRP3.8.2-2007, Steel Containment, March 2007, Rev.2

(8)ASME BPVC Section III Subsection NCA, General Requirements for

Division 1 and Division 2, 2010 Edition

(9)ASME BPVC Section Ⅱ, Materials, 2010 Edition

(10)ASME BPVC Section Ⅲ, Appendices, 2010 Edition

十、引用标准与国外标准的差异分析

无。

核电站安全性分析报告

核电站安全性分析姓名:X X X 学号:0 9 X X X X X X 专业:核工程与核技术 学院:核工程与地球物理学院 指导老师:X X

2012 年06月10 日 核电站安全性分析 东华理工大学核工系XXX 摘要:能源是社会和经济发展的基础,是人类生活和生产的要素。随着社会的发展,能源的需求也在不断扩大。从能源的供应结构来看,目前世界上消耗的能源主要来自煤、石油、天然气三大资源,这三种能源不仅利用率低,而且对生态环境造成严重污染。为了缓解能源矛盾,除了应积极开发太阳能、风能、潮汐能以及生物质能等再生资源外,核能是被公认的唯一实现的可大规模替代常规能源的即清洁又经济的现代能源。核能不仅单位能量大,而且资源丰富。地球蕴藏的铀矿和钍矿资源相当于有机燃料的几十倍。如果进一步实现控核聚变,并在海水中提取氚加以利用,就会从根本上解决能源供应矛盾。然而随着一系列的核事故的发生,核能的安全性再一步受到人们的质疑,本文简要回顾核电的发展,并对其安全性做了分析,指出核电是一种安全的能源。

关键词:能源核电安全 Nuclear power plant safety analysis East China University of Technology Nuclear Engineering XXX Abstract: Energy is the basis of the social and economic development, the elements of human life and production. With the social development, energy demand is also expanding. From the structure of energy supply, energy consumption in the world from the three resources of coal, oil, natural gas, three energy is not only a low utilization rate, and cause serious pollution to the ecological environment. In order to alleviate the energy contradictions, should actively develop solar, wind, tidal energy and biomass energy renewable resources, nuclear energy is recognized only can achieve large-scale alternative to conventional energy, clean and modern energy economy. Nuclear power units of energy, but also rich in natural resources. Global reserves of uranium and thorium mineral resources is equivalent to several times of the organic fuel. Further to achieve controlled nuclear fusion, and be used to extract tritium in seawater, will fundamentally solve the contradictions among the energy supply. However, with a series of nuclear accidents, the safety of nuclear energy and then step been questioned, briefly reviewed the development of nuclear power, and its

HAF003核电厂质量保证安全规定

核安全法规 HAF003(91) 核电厂质量保证安全法规 (1991年7月27日国家核安全局令第1号发布 1991年修改) 本规定是中华人民国核电厂安全法规的第四部分 本规定自一九九一年七月二十七日起实施 本规定由国家核安全局负责解释

目录 第一章引言 (3) 1.1 概述 (3) 1.2 围 (3) 1.3 责任 (4) 第二章质量保证大纲 (4) 2.1 概述 (4) 2.2 程序、细则及图纸 (5) 2.3 管理部门审查 (5) 第三章组织 (6) 3.1责任、权限和联络 (6) 3.2 单位间的工作接口 (6) 3.3 人员配备与培训 (7) 第四章文件控制 (7) 4.1 文件的编制、审核和批准 (7) 4.2 文件的发布和分布 (7) 4.3文件变更的控制 (7) 第五章设计控制 (8) 5.1 概述 (8) 5.2 设计接口的控制 (8) 5.3 设计控制 (8) 5.4 设计的变更 (8) 第六章采购控制 (9) 6.1 概述 (9) 6.2 对供方的评价和选择 (10) 6.3 对所购物项和服务的控制 (10) 第七章物项控制 (10) 7.1 材料、零件和部件的标识和控制 (10) 7.2 装卸、贮存和运输 (11) 7.3维护 (11) 第八章工艺过程 (11) 第九章检查和试验控制 (11) 9.1 检查大纲 (11) 9.2 试验大纲 (12) 9.3 测量和试验设备的标定和控制 (12) 9.4 检查、试验和运行状态的显示 (13) 第十章对不符合项的控制 (13) 10.1概述 (13) 10.2 对不符合项的审查和处理 (13) 第十一章纠正措施 (14) 第十二章记录 (14) 12.1质量保证记录的编写 (14) 12.2 质量保证记录的收集、贮存和保管 (14) 第十三章监查 (15) 13.1 概述 (15) 13.2 监查的计划安排② (15)

核电厂安全壳隔离阀密封性检测与分析

核电厂安全壳隔离阀密封性检测与分析 文章结合某核电厂安全壳隔离阀密封性试验,介绍了直接测量法的试验原理、操作方法和验收标准,通过贯穿件隔离阀密封性检测实例对试验的实际操作过程进行了阐述,并对试验结果进行了具体的分析和研究 标签:安全壳;隔离阀;密封性试验 1 概论 某核电厂反应堆安全壳是一座由钢筋混凝土底板、立式预应力混凝土筒壁和准球型预应力混凝土穹顶三部分组成的封闭预应力混凝土结构。反应堆安全壳是为防止核反应堆在运行或发生事故时放射性物质外逸的密闭容器,也称反应堆保护外壳。核电站反应堆发生事故时会大量释放放射性物质,安全壳作为最后一道核安全屏障,能防止放射性物质扩散污染周围环境。同时,也常兼作反应堆厂房的围护结构,保护反应堆设备系统免受外界的不利影响,它是一种体态庞大的特种容器。 安全壳内外系统管道的连通是通过机械贯穿件来实现的,贯穿件套筒按要求有不同的直径和厚度,以适应所连接的设备及由它们所传递的机械载荷,贯穿件的套筒焊在一块较厚的环形板上,该环形板则焊在安全壳的钢衬里上。机械贯穿件在安全壳内外两侧根据具体情况分别设置隔离阀门,以保证安全壳的密闭性。 安全壳密封性试验的目的是模拟一回路失水事故工况下,验证安全壳的整体密封性。安全壳密封性试验可以分为A类、B类、C类。其中A类试验是指安全壳整体的密封性试验,B类试验是指设备闸门、人员闸门、燃料通道和电气贯穿件的密封性试验,C类试验是指安全壳上所有的机械贯穿件试验,即贯件壳内外隔离阀的密封性试验。一般来说,C类局部密封性试验在每次换料冷停堆时进行,仅有个别十分可靠的机械贯穿件密封性试验每5个换料周期或10个换料周期进行一次。 2 试验原理和方法 直接测量法是安全壳隔离阀密封性试验的一种检测方法,流量补充法和流量收集法,都采用局部加压方式。试验对象为安全壳内外两侧隔离阀以及位于隔离阀和安全壳之间的支路阀门。试验时,气源通过局部检漏仪向隔离阀和边界阀门之间的管道内充压,由施加压力的方向与隔离阀在执行安全功能时受压方向相同,压力达到安全壳设计压力并稳定后,在保持压力不变的情况下,局部检漏仪通过向管道内补充的气体流量与压力的关系计算出隔离阀的泄漏率,并在显示屏中直接给出结果,单位为Nm3/h。流量收集法试验介质一般为水,试验方法相同,采用液态检漏仪加压,可以在试验阀门下游较低点通过容器收集方法确定该阀门的泄漏率。具体检测方法如下:

核电厂常规岛常用气体消防系统设计分析

核电厂常规岛常用气体消防系统设计分析 发表时间:2019-07-18T15:09:42.480Z 来源:《城镇建设》2019年第8期作者:王亚彬白新鹏 [导读] 核电厂一直都是一个危险性比较高的行业,但是在运行的过程中非常容易出现火灾, 万纳神核控股集团有限公司浙江省嘉兴市 314300 摘要:核电厂一直都是一个危险性比较高的行业,但是在运行的过程中非常容易出现火灾,不仅会在之后影响核电厂的运行,还会引发安全事故。虽然核电厂是由不同区域构成,但是常规岛的危险性很大。因此,研究和设计常规岛显得尤为重要。本文主要对核电厂常规岛常用气体消防系统的设计进行分析。 关键词:核电厂;常规岛;常用气体;消防系统;设计分析 引言: 核能发电一直在能源开发的过程中发挥着重要的作用,也属于我国发展的重要课题。随着我国核电事业步入快速发展的阶段,整个核电站整体发展的过程也逐步走上了正轨。因此,充分地了解国内和国外防火规范势必会发挥着重要的作用。因此,对核电自主化设计显得尤为重要。本文主要就核电厂常规岛常用气体消防系统的设计进行分析。 1.核电厂常规岛概述 1.1核电厂常规岛的概念 常规岛指的是核电装置中的汽轮发电机组和配套设施的组合。常规岛的功能是能够将核岛中产生的蒸汽热能转化成汽轮机的机械能量,再直接通过运用发电机来转化成电能。常规岛内部的工艺系统也会被称为核电厂二回路系统。此系统主要可以由蒸汽系统、主给水系统、汽水分离再热系统、凝结水系统、高压加热水系统和其他系统组成。 1.2核电厂常规岛的功能 常规岛能够将核蒸汽供应系统内部的热能直接转化为机械能,并存储于汽轮机内部。核电厂常规岛将会直接带动发电机进行转动,从而转化成电能[1]。如果在中间发生了事故,核电厂常规岛又可以直接作为核反应堆的可靠冷源,从而能够让整个反应堆更好地运行。 2.常规岛中不同气体消防系统设计分析 2.1模型 在建设核电厂的过程中,设计常规岛消防系统显得格外重要。在实际操作时,需要综合厂房的实际情况和安全需求来进行设计,这样才能够保证整个消防系统能够更好地运行。在实际设计的过程中,需要随时关注常规岛内部气体消防房间内部的参数,并充分结合包括房间标高层和保护容积等要素进行设计,最终才能古设计出合理的消防系统。在实际设计的过程中,需要同时关注火系统内部的浓度和保护区内部的温度。如果将气体确定在101kPa状态下时,一定要确定这些参数之后才能够更好地确定一个稳定的气体消防系统。 在标高层为9m的电器电子设备、自动化电子设备间和工程师站为基础,将其内部的保护容积确定为333.81、329.45和195.83。该模型的电缆夹层的标高分别可以设定为5m,并将其保护容积确定为874.73和875.65。380V低压配电间和配电间的标准高度层分别处于-10m 的距离,且面积分别设定为159.13、1007.32和293.62。发电机的小间、380V低压配电间和凝结水配电间的标高层处于-10m的位置,其面积分别可以设定为560.50、995.20和125.42。 3.实际案例 目前,IG541系统和FM-200灭火系统可以在实际核电站常规岛的常用其他消防系统中有效地运用。其主要的特点主要如下: 2.1IG541系统的特点 整个系统的压力较高,且可以被用于长距离的运输过程中,但是又由于内部的浓度较高,所以需要运用较多的钢瓶。 2.2 FM-200系统的特点

07核电厂堆芯的安全设计

07核电厂堆芯的安全设计 3、2、3二氧化碳由于二氧化碳的密度和中子吸收截面均较小,其温度和压力变化对反应性的影响可以忽略。 3、3慢化剂慢化剂的选择和燃料在慢化剂中的配置,应以中子经济性最佳化的需要(及由此引起的燃料耗用量最佳化的需要)和满足工程上的要求为依据。主要堆型采用轻水、重水或石墨作为慢化介质。 3、3、1轻水轻水在压水堆和沸水堆中都同时用作慢化剂和冷却剂。这两种功能不能机械地分割。因此 3、2和 3、2、1中关于添加剂、反应性特性、辐照效应等方面的讨论对二者都适用的。 3、3、2重水在重水冷却和慢化的压力管型反应堆中,慢化剂和冷却剂之间有排管容器的排管和压力管把慢化剂和冷却剂分隔开。有时,慢化剂可能含有可溶性中子吸收剂,用于反应性控制或停堆后的反应性抑制。慢化剂还用于冷却各种反应堆构件,如排管容器本身,仪表支承结构、反应性控制装置及其导向管。尽管压力管和排管破裂的可能性极小,但不能完全排除此种可能。发生爆管致使重水冷却剂射入慢化剂区域时,部分慢化剂被冷却剂所取代。如慢化剂中含有吸收剂而冷却剂不含吸收剂,发生上述替代时堆芯反应性就有可能上升。停堆系统的设计必须提供手段使得在发生这一事故时仍能保持停堆状态。反应堆的结构设计中必须考虑慢化剂的流动和温度(例如水力、温差等)的影响。在重水冷却和慢化的压力容器型反应堆中,堆芯区的慢化剂与冷却剂由冷却通道分隔。然而,冷却剂和慢化剂回路可根据电厂的运行工况(如功率运行或余热排出)分隔或连通。在功率运行时,慢化剂通过少量压力补偿孔和冷却剂连通,慢化剂的运行压力和冷却剂相同,而温度则低于冷却剂。慢化剂温度系由一个独立的高压冷却系统保持,在余热排出运行工况下,冷却剂和慢化剂互相连通,两者的压力、温度或液体毒物浓度均无差异。在重水慢化剂中,氚的比放射性会积累得很高,因此慢化剂系统的设计中必须考虑当慢化系统出现大破口时氚化重水释放的可能性。对慢化剂的辐照分解需要采取措施,以控制腐蚀并防止爆炸,详细的讨论见HAD102/08。在某事故工况下,压力管型反应堆中慢化剂具有储存衰变热的能力。

核电厂安全分析

Regulatory Document RD–310 Safety Analysis for Nuclear Power Plants February 2008

CNSC REGULATORY DOCUMENTS The Canadian Nuclear Safety Commission (CNSC) develops regulatory documents under the authority of paragraphs 9(b) and 21(1)(e) of the Nuclear Safety and Control Act (NSCA). Regulatory documents provide clarifications and additional details to the requirements set out in the NSCA and the regulations made under the NSCA, and are an integral part of the regulatory framework for nuclear activities in Canada. Each regulatory document aims at disseminating objective regulatory information to stakeholders, including licensees, applicants, public interest groups and the public on a particular topic to promote consistency in the interpretation and implementation of regulatory requirements. A CNSC regulatory document, or any part thereof, becomes a legal requirement when it is referenced in a licence or any other legally enforceable instrument.

压水堆核电厂钢制安全壳设计建造规范-编制说明

国家标准 《压水堆核电厂钢制安全壳设计建造规范》 编制说明 (征求意见稿) 标准编制组 2019年12月

压水堆核电厂钢制安全壳设计建造规范 一、任务来源及计划要求 本标准按照国家重点研发计划课题“基础通用与其它关键技术标准研究”(课题编号2017YFF0208004)任务书的要求以及与核工业标准化研究所签订的合同(合同编号为ISNI-KY-24-2019)内容进行编写。本标准由上海核工程研究设计院有限公司主编。 按照下达的计划,本标准计划于2019年12月31日前完成征求意见稿;于2020年3月31日前完成送审稿;于2020年6月30日前完成报批稿。 二、标准编制组组成 本标准由上海核工程研究设计院有限公司主编,编制组成员组成如下,详见表1。 表1:标准编制组成员名单 三、编制过程 3.1 总体过程 本标准的制定过程主要分为前期准备、征求意见稿编写阶段、送审稿编写阶段和报批稿编写阶段。 3.2 前期准备(2017年7月-2018年12月) 主要任务是成立标准编制小组,明确分工要求,分解工作任务、文件收集和调研分析、明确标准编制的进度控制。 在前期准备阶段成立标准编制小组和明确工作任务后,开展调研和文件收集工作。根据依托项目实施经验,确定了本标准编制的主要依据为ASME 规范NE 分卷,并参考国内压力容器设计规范(GB 150-2011)。此外还参考了相关的SRP 及RG导则进行规范的编制工作。

根据核电标准体系研究的前期工作分析结果,确定本标准的最初框架结构为:前言、目次、范围、术语和符号、总论、材料、设计、制造和安装、检测、试验、超压保护和附录。之后根据多次讨论和修改进行了必要的调整。 3.3 征求意见稿编写(2019年1月-2019年12月) 编制组在对参考文件进行详细分析的基础上,结合我国现状起草了本标准的工作组讨论稿,并在院内征求了专家意见。在具体章节编写过程中,对于标准内容的定位和合理安排问题征求了有关专家的意见,最终形成本标准征求意见稿。 3.4送审稿编写(2020年1月-2020年3月) 待广泛征求行业内的专家意见后,标准编写组将根据收到的专家意见对征求意见稿再进行深入地讨论,并对征求意见稿进行修改,按要求形成并提交送审稿。 3.5 报批稿编写(2020年4月-2020年6月) 届时根据标准《压水堆核电厂钢制安全壳设计建造规范》送审稿的审查情况,标准编写组将根据审查意见修改送审稿,完成了报批稿编写。 四、标准现状分析 我国监管机构国家核安全局批准出版的《核动力厂设计安全规定》(HAF 102-2016)和《核电厂反应堆安全壳系统的设计》(HAD102/06-1990),从法规和导则层面提出了核电厂安全壳系统和结构设计所需满足的要求,即要求在核电厂寿期内可能发生的所有荷载条件下,应保持安全壳结构的完整性和限制安全壳的泄漏。 因此,本标准在国内首次系统提出了钢制安全壳用材料技术要求、钢制安全壳设计技术要求和钢制安全壳建造技术要求。用于指导压水堆核电厂钢制安全壳设计、建造、试验和验收。 五、标准制修订背景和原则 5.1标准制修订背景 我国是从AP1000技术引进时,开始接触钢制安全壳这种设备,在之前的核电机组中,我国没有采用过钢制安全壳这种形式,国内相关法规及标准都未有涉及。当前我国第三代先进非能动核电站如依托项目(AP1000)、后续项目和示范项目(国和一号),都采用钢制安全壳设计。钢制安全壳是压水堆核电厂事故发生后的最后一道安全屏障,其功能包括余热排出及放射性废物的包容。在事故工

4. 核电厂的设计安全要求

第四章核动力厂的设计安全要求 第一节核动力厂安全目标 一、安全目标 总的安全目标是在核动力厂中建立并保持对放射性危害的有效防御,以保护人员、社会和环境免受危害。 总的核安全目标由辐射防护目标和技术安全目标所支持,这两个目标互相补充、相辅相成,技术措施与管理性和程序性措施一起保证对电离辐射危害的防御。 辐射防护目标是保证在所有运行状态下核动力厂内的辐射照射或由于该核动力厂任何计划排放放射性物质引起的辐射照射保持低于限值并且合理可行尽量低,保证减轻任何事故的放射性后果。 技术安全目标是采取一切合理可行的措施防止核动力厂事故,并在一旦发生事故时减轻其后果。对于在设计核动力厂时考虑过的所有可能事故,包括概率很低的事故,要以高可信度保证任何放射性后果尽可能小且低于规定限值。并保证有严重事故后果的事故发生的概率极低。 安全目标要求核动力厂的设计和运行使得所有辐射照射的来源都处在严格的技术和管理措施控制之下。 二、安全目标的实现 辐射防护目标不排除人员受到有限的照射,也不排除法规许可数量的放射性物质从处于运行状态的核动力厂向环境的排放。 在设计核动力厂时,要进行全面的安全分析。此种安全分析要考察以下内容,(1)核动力厂所有计划的正常运行模式。(2)发生预计运行事件时核动力厂的性能。(3)设计基准事故。(4)可能导致严重事故的事件序列。 在分析的基础上,确认工程设计抵御假设始发事件和事故的能力,验证安全系统和安全相关物项或系统的有效性,以及确定应急响应的要求。 尽管采取措施将辐射照射控制在合理可行尽量低,并将能导致辐射来源失控事故的可能性减至最小,但仍然存在发生事故的可能性。这就需要采取措施以保证减轻放射性后果。这些措施包括,(1)专设安全设施。(2)营运单位制定的厂内事故处理规程。(3)国家和地方有关部门制定的厂外干预措施。

核电厂初步设计消防专篇内容及深度规定

核电厂初步设计消防专篇内容及深度规定 为提高核电厂工程初步设计消防专篇编制质量,进一步规范核电厂工程初步设计消防专篇内容与深度,根据《中华人民共和国消防法》《核电厂消防安全监督管理暂行规定》和能源行业标准《核电厂初步设计文件内容深度规定》(NB/T 20401-2017)等法规标准,制定本规定。 I.总体编制要求 一、核电厂初步设计消防专篇应在初步设计阶段编制,应包括专篇所需的说明书和图纸。文件应齐全,应注明版本、签署人员和签署日期。 二、说明书中应包括核电厂工程建(构)筑物和设施的消防设计、消防设施布置、设备和材料选型、设计计算等内容。图纸应符合国家相关制图标准,应清晰、比例适当。说明书和图纸均应使用中文,若使用外文应进行中文内容标注。 三、当核电厂消防设计由两家及以上设计院承担时,应明确消防总体设计院,并由其负责消防专篇的编制和协调工作。 四、核电厂初步设计消防专篇的主要内容应包括:法规标准、火灾危害性分析、火灾危险性分类及耐火等级、防火间距、消防车道、防火分区、消防疏散、建筑构造、工艺系统防火、通风防火、消防给水、灭火设施、消防供电及应急照明、火灾自动报警、防烟

和排烟、消防站和消防组织等。 II.图纸及计算书编制要求 一、图纸内容及深度要求 (一)防火分区图 核岛子项防火分区图。应标注防火区类型、防火区边界、耐火极限、该防火区内的房间名称、编号。 (二)总图部分 1.全厂总体规划图,比例为1:5000~1:10000。应表示全厂总体规划内容和分期建设情况。 2.厂区总平面布置图,比例为1:1000。应标注各子项间的最小安全间距。 3.厂区消防通道布置图,比例为1:2000。应表示全厂消防通道路径和最小转弯半径。 (三)消防给水及灭火系统 1.全厂消防系统总平面布置图,比例为1:1000。应表示消防系统总体分区及相关接口,包括区域名称、水源、消防水池或水箱、消防水泵、稳压泵、干管平面布置、联络检修阀门等重要附件;应表示消防水泵等主要设备一览表。 2.核岛消防给水系统流程图。应表示核岛室外、室内消火栓给水系统,自动喷水和水喷雾系统,包括管路系统、阀门、喷头和消火栓布置等。 3.常规岛(含自动灭火系统)消防给水系统流程图,厂区消

保证核电厂安全有哪些管理措施(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 保证核电厂安全有哪些管理措 施(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

保证核电厂安全有哪些管理措施(最新版) 管理措施之一——健全的国家监管机构 国家监管机构对核电厂实行全寿期监督管理,即从选址、设计、建造、调试、运行、直到退役和废物处理处置的各个环节。 我国民用核设施的核安全监督管理主要由国家核安全局负责。 管理措施之二——制定和完善核安全防护法规体系 国家有关部门发布实施核电厂厂址选择、设计、运行、质量保证、辐射防护和废物管理等安全规定以及辐射防护基本标准等,形成一整套比较完整的核安全、辐射防护法规标准体系。 管理措施之三——实行核设施安全许可证制度 核电厂在不同阶段,其营运单位要向国家核安全主管部门提交相应的报告。经审评,在条件完全符合国家有关规定后才颁发许可证。营运单位只有获得这些许可证后才能开展相应的工作。 管理措施之四——严密的质量保证体系

核电厂有严密的质量保证体系。对选址、设计、建造、调试、运行直至退役等各个阶段的每一项具体活动都有单项的质量保证大纲,并严格执行。 另外,还实行内部和外部监查制度,监督检查质量保证大纲的实施情况,确认起到应有的作用。例如,在建造阶段,要对设备进行监造,对施工进行监理。在运行阶段,要进行预防性检修、在役检查和定期试验,以保证机组的系统和设备的状态符合技术规范。 管理措施之五——对参与单位和人员严格要求 国家对参与核电厂建设的单位,甚至小到零部件制造单位,都要经审查合格后,方可开展相应的活动。 国家对参加核电厂工作的人员的选择、培训、考核和任命有严格的规定。以操纵员为例,要求选择基本素质好、有一定学历和工作经验的人员,经过课堂、核电厂模拟机和核电厂实际运行培训,再通过国家级的考试,领到操纵员执照后,才能上岗。上岗工作以后,还要定期考查和再培训,保证在工作岗位上的人员都合格。 管理措施之六——极其严密的安全保卫系统

AP1000核电厂的安全壳设计

核电厂的安全壳设计 1 引言 为了在电厂简化、安全性、可靠性、投资保护和电厂成本方面提供重大的、可度量的改进,AP1000采用非能动安全系统。安全壳是实现上述改进的一个关键设施。它不仅提供了防止裂变产物释放的高度完整、低泄漏率的屏障,其表面还承担将安全壳空气中的热量排到大气中去的传热功能。安全壳内部结构连同非能动堆芯冷却系统(PXS)和严重事故缓解设施一起设计。本文介绍了API000安全壳容器设计、建造、事故后特征和严重事故性能。此外,本文也讨论了放射性释放模式,假设条件以及安全壳短期和长期性能。 2 AP1000 安全壳设计概述 AP1000安全壳是一个自由直立的圆柱形钢制容器,带有椭球形的上封头和下封头。钢制安全壳容器被完全包容在一个混凝土屏蔽体中,该厂房提供了对外部危害(如飞射物)的防护,并限制中子、γ射线、散射照射对电厂工作人员和公众的辐照。 如图l 所示,API000设计保留了和AP600相同的直径,但其高度比AP600增加了7.8 m ,从而增加了自由空间。此外,与AP600相比,AP1000通过增加容器壁的厚度和使用SA738型B 级材料提高了安全壳的设计压力。AP1000安全壳容器的一些重要参数与AP600的比较见表l。如表中所示,圆柱形容器大部分的钢壁标称厚度是4.445cm,局部位置较厚,如设备闸门处。最低一层圈柱形壳体的壁厚增加到4.762 cm,以便为预埋件过渡段中的腐蚀情况留有裕度。封头是椭球形的,厚度为4.127cm,主直径为39.624m,而高度为11.468m。 安全壳容器由5个主要结构模块组装建造而成,每个模块都由预先成型的、喷好漆的钢板制成。为了进一步减少安全壳内的组装活动,这些模块包含环形加强筋、吊环梁、设备闸门、人员空气闸门、贯穿件组件和其它附件,其中包括非能动安全壳冷却系统(PCS)空气挡板的支撑和水分配溢流口的固定板。 安全壳容器的设计使其能支撑环吊及其载荷,并考虑了蒸汽发生器的更换。

核电厂安全知识点参考文本

核电厂安全知识点参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

核电厂安全知识点参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 核电厂潜在的危险性:1)核电厂存在大量的放射性物 质2 反应堆停闭后会长时间释放衰变热3)反应堆存在大量 的高温高压水4)反应堆功率可能迅速升高。 核安全文化的定义:安全文化是在于单位和个人中的 种种特性和态度的总和,他建立在一种超出一切之上的观 念,即核电厂的安全问题由于他的重要性得到应有的重 视。 特性:安全文化的有形导出、安全文化主动精神。 实质:在电厂内建立一整套科学严密的规章制度和组 织体系,在核电厂内营造人人自觉关注安全的氛围,通过 培训,提高员工的知识技能,培养员工尊章守纪的自觉性 和良好的工作习惯,从而提高人员绩效和核电厂的安全性

能。 人品特性:质疑的工作态度、严谨的工作方法、相互交流的工作习惯。 自我检查是一种极高人员绩效的工具,常用方 法:STAR”stop停止、think思考、act行动、review检查。 监护:指两名操作人员同时检查将要进行的操作的正确性。 安全文化评价的方法:人员访谈、行为观察、文件查阅。 我国核安全法规体系分为:国家法律、国务院行政法规、部门规章、指导性文件、参考性文件。 核电安全许可证:核电厂厂址安全审查安全批准书、核电厂建造许可证、核电厂首次装料批准书、核电厂运行许可证、核电厂退役批准书、操作员执照、高级操作员执

压水堆核电厂安全壳隔离系统(EIE)

安全壳隔离系统(EIE) 一、作用 安全壳隔离系统(EIE)用在事故发生时,放射性裂变产物有可能从堆芯释放出来的情况下,确保安全壳的密闭。 隔离装置的目的是应保持安全壳封闭体整体的完整性,保证在正常运行和事故发生时安全壳的完整。或将有缺陷的系统与其压力源隔离。 二、系统的描述 安全壳隔离系统(EIE)使用以下类型的隔离阀门。及其配置情况(见图1.3.3-1):(1)安全壳内侧一只手动闭锁阀,外侧一只手动闭锁阀。 (2)安全壳内侧一只自动隔离阀,外侧一只手动闭锁阀。 (3)安全壳内侧一只手动隔离阀,外侧一只自动隔离阀。 (4)安全壳内侧一只自动隔离阀,外侧一只自动隔离阀。 (5)安全壳内侧一只止回阀,外侧一只自动隔离阀或手动闭锁阀(仅用于进入管线)(6)安全壳外侧两只自动隔离阀或手动闭锁阀(仅用于安全壳内闭合管线) 在各隔离阀之间的管段中,当阀门关闭时,由于留在其中液体的热膨胀可能会形成超压,一般是在绕过安全壳内隔离阀的反向管线上放置止回阀或泄压阀进行超压保护。 三、系统的运行 安全注射时,安全壳第I阶段隔离,对以下系统发生作用: (1)安全注射系统(RIS):试验管线; (2)化学和容积控制系统(RCV):下泄管线,轴封水回程管线和上充管线; (3)反应堆硼和水的补给系统(REA):补充水分配管线; (4)核岛排气及疏排水系统(RPE):反应堆冷却剂排放管线,工艺排水管线,地面排水管线,含氢排放管线; (5)设备冷却水系统(RRI):稳压器泄压箱和过剩下泄热交换器管线; (6)蒸汽发生器排污系统(APG); (7)安全壳内大气监测系统(ETY); (8)核岛氮气分配系统(RAZ); (9)核取样系统(REN):除反应堆冷却剂取样所需管线外的所有管线。 安全壳喷淋系统启动时,实施第II阶段隔离,对以下系统发生作用: 152

压水堆核电站工作原理简介

压水堆核电站工作原理简介 核反应堆是核电动力装置的核心设备,是产生核能的源泉。在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。 裂变反应是指一个重核分裂成两个较小质量核的反应。在这种反应中,核俘获一个中子并形成一个复合核。复合核经过很短时间(10-14s)的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。铀-235的裂变反应如图1.3-1所示。 对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。 在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。 由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳)。这些能量除了极少数(约2%)随裂变产物泄露出反应堆外,其余(约98%)全部在燃料元件内转化成热能,由此完成核能向热能的转化。 水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。 蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀做功,将蒸汽的热能转变为汽轮机转子旋转的机械能。在膨胀过程中,从高压缸前后流道不同的级后抽取部分蒸汽分别送入高压加热系统和辅助蒸汽系统。高压缸的排气一部分送往4号低压加热器用于加热凝结水,大部分通过四根管道排往位于低压缸两侧的四台汽水分离再热器,在这里进行汽水分离,并由新蒸汽对其进行再热。从汽水分离再热器出来的过热蒸汽经四根管道送入四台低压缸内膨胀做功,从四台低压缸前后流道抽取部分蒸汽分别送往3号、2号和1号低

HAD003-06 核电厂设计中的质量保证

HAD003/06 核电厂设计中的质量保证 (1986 年10 月30 日国家核安全局批准发布) 1 引言 在核电厂设计中制订和执行质量保证大纲,是为了保证在设计中充分地体现全部有关的准则、规范和标准,并保证设计达到所要求的质量,达到信得过的程度。 在本导则中, 技术和管理过程。 本导则中各项要求和建议的应用范围,主要决定于服务中的差错或物项的失灵对安全的影响。需要考虑的其他因家包括: (1)所设计的物项的复杂性、独特性和新颖性; (2)物项的标准化程度; (3)物项被安装在电厂后,其维护、在役检查或更换的可达性。 1.1 范围 本导则对核电厂物项的设计的质量保证提出了要求和建议。 本导则的要求必须按需要程度应用于核电厂工程的设计、制造、建造、调试和运行等各项活动。这些要求和建议必须根据情况由责任单位或由它所指定的代表实施:当这些要求和建议涉及待制造物项的设计活动时,要由参与该活动的设计单位、工程公司或制造厂来实施;涉及现场的工程活动时,要由现场施工单位来实施;涉及电厂交付使用后,有关修改或备件选择、零件更换的设计活动时,要由电厂运行人员或其他单位来实施;涉及在核电厂工程的不同阶段会影响其他设计单位的任何活动时,要由相应的有关单位来实施。 本导则对核电厂物项的设计的质量保证提出了要求和建议。这些要求和建议将在核电厂不同阶段,根据具体情况由责任单位或由它所指定的代表实施,包括设计单位、工程公司、制造厂、现场施工单位、电厂运行人员或其他单位。 1.2 责任 对核电厂负全面责任的单位(以下简称责任单位)必须对制订和实施核电厂物项设计中的质量保证大纲负责。该单位可以委托其他单位来制订和实施设计中的质量保证大纲或其中的一部分,但必须对大纲总的有效性负责,并且不改变设计者的义务和(或)法律责任。在电厂设计中,责任单位或其指定的代表负责确定适用本导则不同条款的构筑物、系统和部件及这些条款的应用范围。每一承包单位的责任是:保证贯彻与本身所承担的责任有关的条款,并保证承担与设计有关的服务的分包单位也切实贯彻应负责的条款。

核电厂安全知识点

核电厂潜在的危险性:1)核电厂存在大量的放射性物质2 反应堆停闭后会长时间释放衰变热3)反应堆存在大量的高温高压水4)反应堆功率可能迅速升高。 核安全文化的定义:安全文化是在于单位和个人中的种种特性和态度的总和,他建立在一种超出一切之上的观念,即核电厂的安全问题由于他的重要性得到应有的重视。 特性:安全文化的有形导出、安全文化主动精神。 实质:在电厂内建立一整套科学严密的规章制度和组织体系,在核电厂内营造人人自觉关注安全的氛围,通过培训,提高员工的知识技能,培养员工尊章守纪的自觉性和良好的工作习惯,从而提高人员绩效和核电厂的安全性能。 人品特性:质疑的工作态度、严谨的工作方法、相互交流的工作习惯。 自我检查是一种极高人员绩效的工具,常用方法:STAR”stop停止、think思考、act行动、review 检查。 监护:指两名操作人员同时检查将要进行的操作的正确性。 安全文化评价的方法:人员访谈、行为观察、文件查阅。 我国核安全法规体系分为:国家法律、国务院行政法规、部门规章、指导性文件、参考性文件。 核电安全许可证:核电厂厂址安全审查安全批准书、核电厂建造许可证、核电厂首次装料批准书、核电厂运行许可证、核电厂退役批准书、操作员执照、高级操作员执照。 核电厂环境影响报告书指许可证申请者向环境保护部提交的环境影响评价文件。 核安全报告分为定期报告、不定期报告、和事故报告。 核事故应急管理的方针:常备不懈、积极兼容、统一指挥、大力协同、保护公众保护环境。应急计划是针对应急响应行动制定的文件,是其他应急文件的基础。 应急计划区:为了在核事故发生时能够及时、有效的采取保护公众的防护行动,事先在核电厂周围划出制定应急计划并做好适当准备的区域。 应急状态分级:应急待命、厂房应急、厂区应急、场外应急。 通用应急水平即又防护行动客避免的剂量。。。。隐蔽10 撤离50 典防护100 临时性避迁(第一个月30 第二个月10)(mSv)永久性在居住寿期内1Sv 核电安全的总目标是建立在核动力厂中建立并保持对放射性危害的有效防御,以保护人民和环境免受危害。用防护目标、核电技术安全目标、核电安全目标的目标的数量指标做补充。核动力厂设计的纵深防御的五个层次:1)高质量的设计、施工及运行,使偏离正常运行状态的情况很少发生、2)设置停堆保护系统和相应的支持系统,防止运行中出现的偏差发展成为事故3)设置专设安全设施,限制设计基准设计的后果,防止发生堆芯融化的严重事故4)利用特殊设计设施,进行事故管理5)场外应急设施和措施。 轻水堆核电厂普遍采用的四道实体屏障:芯块、燃料元件包壳、反应堆冷却剂系统承压边界和安全壳及安全壳系统 概率安全分析:把整个系统的失效概率通过结果的逻辑推理与他各个层次的子系统、部件及外界条件等的失效概率联系起来,从而找出各种事故发生的概率。 概率论的分析方法:1)事件树分析:建立事件树即进行功能模化,继始发事件后,把各项与安全相关的功能按失效与否逐级开展,就能得到一系列后果不同的事件序列。2)故障树分析:把系统的失效作为分析的目标,由此反推,寻找直接导致这一失效的全部因素。直至毋需再研究其发生的因素为止。 电厂的概率安全分析通常是在三个级别上进行的。一级概率安全分析确定可导致堆芯损坏的事件序列及这些序列的估算频率,可对上述弱点及防止堆芯损坏的的方法提供重要见解。二

核电厂安全壳内仪表与控制电缆的老化管理示范文本

核电厂安全壳内仪表与控制电缆的老化管理示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

核电厂安全壳内仪表与控制电缆的老化 管理示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 摘要:在调研国际上核电厂安全壳内仪控电缆老化管 理文献资料的基础上,介绍了仪控电缆的组成及老化机 理,叙述了仪控电缆的环境鉴定、状态监测、寿命评估等 方面的内容,希望对国内开展此项工作有所帮助。 仪控;电缆;老化;安全壳;核电厂 Abstract: Based on surveying the documents of the management of ageing of in-containment instrumentation and control cables used in NPPs, this paper briefly introduces the I&C cable construction and degradation mechanism, and describes

核电厂系统及设备课程设计

第一章概论 1.1 国际国内核电概况 能源是社会和经济发展的基础,是人类生活和生产的要素。随着社会的发展,能源的需求也在不断扩大。从能源供应结构方面看,目前世界上消耗的能源主要来自煤、石油、天然气。此类能源为不可再生能源,且在作为能源利用的过程中,对生态环境造成污染。对于煤、石油、天然气来说,它们还是很好的化工原料,应用于化工生产过程中,能够创造出更大的效益。核能不仅单位能量大,而且资源丰富。地球上蕴藏的铀矿和钍矿资源相当于有机燃料的几十倍。如果进一步实现受控核聚变,并从海水中提取氚加以利用,就会根本上解决能源供应的矛盾。 我国秦山三期为重水堆,秦山一期、二期,大亚湾,岭澳,田湾均为压水堆。其他国家在运行的核电机组主要有轻水堆(PWR、BWR)、改进型气冷堆(AGR)、高温气冷堆(HTGR)、CANDU重水堆和金属冷却快种子增殖堆(LMFBR) 。 我国在建核电厂有三门核电站、阳江核电站、台山核电站、福建省宁德核电站、福建省福清核电站、山东省华能石岛湾核电厂、华辽宁省红沿河核电厂、湖南省桃花江核电站、广西省防城港核电站等。 1.1.1 人类能源结构三次重大的演变: 18世纪60年代:煤炭逐步替代了木柴; 20世纪20年代:煤炭转向石油和天然气; 20世纪70年代:石油、天然气,煤,核能和再生能源等多种能源结构; 21世纪主要能源:核能 1.1.2 世界核电的发展大体可分为四个阶段。 1954~1960年:试验阶段; 1961~1969年:实用化阶段; 1969年至二十世纪70年代末:大发展阶段; 二十世纪80年代至二十世纪末:低潮阶段; 二十一世纪开始:复苏阶段 1.1.3 2009年底世界核电统计

相关文档
相关文档 最新文档