文档库 最新最全的文档下载
当前位置:文档库 › 活塞环的选配

活塞环的选配

活塞环的选配
活塞环的选配

活塞环的选配

一、实训内容

1、活塞环三隙的检验;

2、活塞环弹力检验;

3、活塞环漏光度检验。

二、实训目的与要求使学生通过对活塞环三隙的检验、弹力检验、漏光检验等实际操作技能的学习,掌握活塞环的正确选配。

三、所需工具、仪器与设备厚薄规、活塞环漏光检验装置、弹力检验仪、锉刀、活塞环钳等。

四、安全与环保教育

1、树立安全文明生产意识。

2、合理使用工具、量具及设备。

3、操作规范,安全、文明作业。

4、学生应穿工作服进行实习操作,工作场地应打扫清洁,机具摆放整齐。

五、构造、原理、作用、技术标准和检验、维修方法

1、活塞环的结构与作用活塞环可分为气环和油环两种。气环的功能是密封活塞与汽缸壁间的间隙,防止汽缸中的高温、高压燃气大量漏入曲轴箱中,同时将活塞项部的大部分热量通过活塞环传递到汽缸壁上;油环则是用来在汽缸表面涂上一层均匀的油

膜,并将多余的润滑油刮去,以防止润滑油窜入汽缸燃烧,同时油环也起着密封的作用。气环的工作条件要求气环的材料要耐热、耐磨、具有高强度以及高的冲击韧性和良好的磨合性。气环的断面形状有多种,包括:矩形环、锥形环、正扭曲内切环、反扭曲内切环、梯形环和桶形环等。矩形断面的气环随活塞往复运动时,会把汽缸壁上的润滑油送入汽缸中,缸壁的润滑油压入燃烧室,会使燃烧室形成积炭和增加机油消耗。为了减少润滑油进入燃烧室,气环广泛采用非矩形断面的扭曲环和桶面环。油环一般为钢带组合式油环,它由两片相互独立的刮片和一个弹性良好的钢丝衬环组成,衬环的弹力作用使两个刮片分别向上和向下压向活塞环槽端面,形成端面密封,从而大大地减少了窜油量。这种油环具有以下优点:①片环很薄,接触压力高,刮油能力强;

②两个钢片独立工作,对汽缸的适应性好:③回油通路大,油路中不易结胶,降低了润滑油的消耗。技术标准发动机型号端隙(mm)侧隙(mm)气环油环气环油环CA6102第一道0、5~0、

70、3~0、

50、055~0、08

70、04~0、08第二道0、4~0、6EQ61000、29~0、4

90、5~0、7第一道0、05~0、

11、03~0、07第二道0、03~0、09TJ376Q0、20~0、700、20~1、

100、03~0、1

20、03~0、12六、实训步骤

(一)活塞环的磨损活塞环磨损有两种形式:磨料磨损和拉毛磨损。(1)磨料磨损磨料磨损主要是由进入汽缸的尘土、机械杂质等引起的,这些尖锐的杂质附在缸壁上,产生活塞环和活塞的磨料磨损,并通过润滑油到处扩散。第一道气环的环压较大,磨损最快。(2)拉毛磨损拉毛是一种熔接过程,即在相互移动表面的高出部分因温度很高、间隙很小,相互严重摩擦,活塞环的小片金属暂时熔化,发生熔接、拉毛。活塞环的拉毛通常发生在第一道气环到达汽缸上止点的位置,因为此处温度最高,润滑最差,而且环相对缸壁有短暂的停留,所以最容易发生拉毛。拉毛一经开始,便迅速扩展,当拉毛继续扩展时,气环和油环的密封作用遭到破坏,漏气和润滑油消耗增加。拉毛磨损除使活塞环和活塞损坏外,还会引起汽缸损坏。

(二)正确掌握更换活塞环的时机活塞环长期在高温下工作,润滑条件差,随着磨损加剧,弹力逐渐减弱,开口间隙、侧隙增大,导致汽缸密封变坏,产生漏气窜油现象,使发动机功率降低,油料消耗增多。实践证明,活塞环使用寿命比汽缸使用寿命要短。因此,在两次大修之间,应进行一次换环保养,以改善发动机的动力性和经济性。不适时更换活塞环,会加速发动机的磨损,缩短发动机使用寿命,从而影响发动机的动力性和经济性。掌握正确的换环时机,应考虑以下两个方面:①当车辆行驶km左右,发动机功率降低,燃油和润滑油消耗增加时,应考虑更

换活塞环。②发动机的动力性和经济性不良,汽缸压力降低,功率显著下降,燃油和润滑油消耗显著增加,火花塞容易积炭,排气冒蓝烟,此时应及时更换活塞环。

(三)活塞环的选配活塞环出现折断或磨损严重造成气缸压力明显下降时,应更换新件。选配新活塞环时,必须保证活塞环与活塞及气缸应为同一级修理尺寸,而且其端隙、侧隙、背隙、弹力及漏光度均应符合要求。

1、活塞环的“三隙”检验(1)端隙检验:将活塞环置于气缸内,用活塞顶部将活塞环推平,然后将厚薄规插入活塞环开口处进行测量,若端隙大于规定值(见技术标准),应重新选取活塞环;端隙小于规定值时,可对环口的一端进行锉削(只能锉削一端环口,并去除毛刺,以防刮伤气缸)。(2)侧隙检验:活塞环的侧隙是指安装到活塞上后,活塞环侧面与活塞环槽之间的间隙。将活塞环放人相应的环槽中滚动检查时,活塞环应滚动灵活且不松旷,用厚薄规进行测量时,侧隙应符合要求。侧隙过大或过小时均应重新选取活塞环。(3)背隙检验:背隙是活塞环装入气缸后,环的背面与环槽槽底之间的间隙。为了测量方便,通常以环槽槽深与环的宽度之差表示,将活塞环推靠到环槽槽底后,其外圆面应低于环岸0方观察活塞环的漏光程度。漏光检验时,活塞环端口左右30范围内不应有漏光点;同一根活塞环漏光不得多于2处,每处漏光弧长对应的圆心角不得超过25,同一环上漏光总弧

长对应的圆心角不得超过45;漏光处的缝隙应不大于0、03m。

七、测评标准八、思考题

1、如何选择更换活塞环的时机?

2、选配活塞环时应做哪些检查?

活塞环梯形角度测量仪的设计方案说明书

姓名:李洋 学号:0743024017 学院:制造学院 指导老师:赵世平黄玉波陆小龙 2018年1月

活塞环梯形角度测量仪的设计 一·概述 活塞环(Piston Ring> 是用于崁入活塞槽沟的环,分为两种:压缩环和机油环。压缩环可用来密封燃烧室内的压缩空气;机油环则用来刮除汽缸上多余的机油。活塞环是一种具有较大向外扩张变形的金属弹性环,它被装配到剖面与其相应的环形槽内。往复和旋转运动的活塞环,依靠气体或液体的压力差,在环外圆面和气缸以及环和环槽的一个侧面之间形成密封。 活塞环作用包括密封、调节机油<控油)、导热<传热)、导向<支承)四个作用。 密封:指密封燃气,不让燃烧室的气体漏到曲轴箱,把气体的泄漏量控制在最低限度,提高热效率。漏气不仅会使发动机的动力下降,而且会使机油变质,这是气环的主要任务; 调节机油<控油):把气缸壁上多余的润滑油刮下,同时又使缸壁上布有薄薄的油膜,保证气缸和活塞及环的正常润滑,这是油环的主要任务。在现代高速发动机上,特别重视活塞环控制油膜的作用; 导热:通过活塞环将活塞的热量传导给缸套,即起冷却作用。据可靠资料认为,活塞顶所受的的热量中有70~80%是通过活塞环传给缸壁而散掉的; 支承:活塞环将活塞保持在气缸中,防止活塞与气缸壁直接接触,保证活塞平顺运动,降低摩擦阻力,而且防止活塞敲缸。一般汽油发动机的活塞采用两道气环,一道油环,而柴油发动机则采用三道气环,一道油环。 作为发动机的关键零件,活塞环的形状对内燃机的性能有着重要的影响, 活塞环的梯形角是梯形活塞环的一个重要参数, 其角度大小直接影响到活塞环的质量及使用性能。角度过大, 易发生拉缸现象, 角度过小, 则密封性能差, 发动机功率下降且容易发生烧机油现象。要提高活塞环的质量和性能,就必须首先提高其检测技术,为解决梯形活塞环角度测量问题,我们改进设计一种检测系统——活塞环梯形角度测量仪。 二·设计目的及技术指标 1.设计目的 本次设计课题为活塞环梯形角度测量仪的设计,其目的如下: a、巩固所学传感器、检测技术、精密机械设计、机械制图、公差分 析等相关知识;

活塞环制造

活塞环制造1.典型制造工艺过程 1.1压缩环 (1)柱面环(桶面) (2)铸铁环(锥面) 1.2油环 (1)3片组合油环

①刮片环 ②衬环 (2)2件组合油环(螺旋撑簧油环)

①环体 ○2撑簧 2.制造设备

2.1铸造 (1)冲天炉 图5-1冲天炉,图略为热风带前炉的冲天炉。 (2)感应炉 用于合金铸铁及球铁。图5.2为感应炉示意图省略。 (3)无箱造型机 图5.3无箱造型机 图5.3适用于筒体活塞环铸造生产(译注:即迪砂筒体造型) (4)叠箱造型机 采用圆形砂箱,几件环模共同直浇道的模 板参见图5.5,图5.4为纵树形状的环坯及 及浇冒口,所谓单体铸造即一个内浇道对应 一片环坯的铸造方法。 图5.4枞树形状环坯及浇冒口图5.5叠箱造型机的模板 2.2机加工 (1)侧面磨床 环坯两侧面通过侧面磨床(对磨

机)、进行加工,它经过两片平行 的砂轮磨削环的两侧面参见图5.6 图5.6对磨机 (2)仿形加工(凸轮仿形车) 活塞环的外圆自由形状是通过环 的仿形加工外圆面而获得参见图5.7 图5.7仿形加工车 (3)开口机 环经过开口机,切去“椭圆”环内浇 口处使环得到自由开口,参见图5.8 图5.8开口机 (4)内圆加工机 环经过内圆加工机加工环的内 圆,参见图5.9 图5.9内圆加工机 (5)外圆加工机

环经过外圆加工机加工环的外圆参见 图5.10 图5.10外圆加工机 (6)修口机 环经修口机修口参见图5.11 (7)回油孔加工机 环经回油孔加工机加工铸铁油环的回油孔参见图5.12 图5.11修口机图5.12回油孔加工机 图5.13梯形磨图5.14珩磨机 (8)梯形磨 环经梯形磨加工环的梯形面参见图5.13

发动机的基本知识

第一章发动机的基本知识 一、填空: 1.车用内燃机根据其燃料不同分为()和()。 2.四冲程发动机每完成一个工作循环,曲轴旋转()周,进、排气门各开启()次,活塞在两止点间移动()次。 3.上、下止点间的距离称为()。 4.四冲程发动机每完成一个工作循环需要经过()、()、()和()四个行程。 5.在内燃机工作的过程中,膨胀过程是主要过程,它将燃料的()转变为()。 6.压缩终了时可燃混合气的压力和温度取决于()。 7.在进气行程中,进入汽油机气缸的是(),而进入柴油机气缸的是();汽油机的点火方式是(),而柴油机的点火方式是()。 8.汽油机由()大机构()大系统组成,柴油机由()大机构()大系统组成。 9.发动机的动力性指标主要有()和()等;经济性指标主要有()。 10.发动机速度特性指发动机的功率、转矩和燃油消耗率三者随()变化的规律。 二、选择: 1.曲轴旋转两周完成一个工作循环的发动机称为()。 A.二冲程发动机B.四冲程发动机C.A,B二者都不是 2.发动机有效转矩与曲轴角速度的乘积称为()。 A.指示功率B.有效功率C.最大转矩D.最大功率 三、简答: 1、发动机通常由哪些机构和系统组成? 2、什么是发动机的工作循环,简述四行程汽油机的工作过程 3、试分析汽油机和柴油机的特点和区别 4、发动机的主要性能指标有哪些? 5、内燃机产品名称和型号包括几个部分?其含义是什么? 6、名词解释:上止点、下止点、活塞行程、总容积、工作容积、燃烧室容积、压缩比、发动机排量 第二章曲柄连杆机构 一、填空: 1.曲柄连杆机构是往复活塞式内燃机将()转变为()的主要机构。 2.根据汽缸体结构将其分为三种形式:()、()和()汽缸体。 3.按冷却介质的不同,冷却方式分为()与()两种。 4.汽车发动机汽缸的排列方式基本有三种形式:()、()和()。 5.根据是否与冷却水相接触,汽缸套分为()和()两种。 6.常用汽油机燃烧室形状有()、()和()三种。 7.活塞环分为()和()两种。 8.曲轴分为()和()两种。

汽车发动机基本知识

精心整理汽车是指由独立的动力装置驱动,有4个或4个以上的车轮,可以单独行驶并完成运载任务的非轨道无架线的车辆。 汽车的总体构造:发动机、底盘、电气设备和车身等四个主要部分组成。 发动机工作原理和总体构造 发动机是将热能转化为机械能的机器。它利用燃料在气缸内燃烧所产生的热能使气体膨胀以推动曲柄连杆机构运动,并通过传动系驱动汽车行驶。作用是将化学能通过燃烧转化为热能,再通过受热气体膨胀将热能转化为机械能。 现代汽车一般采用往复活塞式内燃机,根据其不同的工作特征和结构可分为:点燃式与压燃式发动机,四(行)冲程和二(行)冲程发动机,汽油机、柴油机和新型燃料发动机,化油器和喷射式发动机,单缸和多缸发动机,风冷和水冷发动机,增压式和非增压式发动机,气门顶置式和侧置式发动机。(蓝色加粗为现代常用。) 发动机基本术语 上止点:活塞顶部在气缸内的最高位置,即活塞距离曲轴回转中心最远处。 下止点:活塞顶部在气缸内的最低位置,即活塞距离曲轴回转中心最近处。 活塞行程S:指气缸上、下止点间的距离。活塞从一个止点运动到另一个止点间的距离称为一个活塞行程行程,单位为mm。 曲柄半径R:曲轴连杆轴颈中心的距离。活塞移动一个行程,曲轴转过半圈(180度),即S=2R。 气缸的工作容积:指活塞从上止点到下止点让出空间所对的容积。(即上下止点间的气缸容积) 发动机工作容积:多缸发动机各缸的工作容积之和,也称发动机的排量。 燃烧室容积:指活塞在上止点时,活塞顶部以上的空间。 气缸总容积:指活塞在下止点时,活塞顶部以上的空间。

压缩比:指气缸总容积和燃烧室容积的比值。 四行程汽油机工作原理:四行程发动机曲轴转两圈,活塞在气缸内依次往复运动经历进气、压缩、作功和排气四个行程,完成一个工作循环。 进气行程:曲轴带动活塞从上止点向下止点移动,进气门开启,排气门关闭。活塞顶部空间增大,气缸内压力降低到小于外界大气压。空气和汽油经混合形成的可燃混合气通过进气管道、进气门被吸入气缸。 压缩行程:进气结束,进、排气门都关闭。曲轴带动活塞由下止点向上止点运动,活塞顶部的可燃混合气被压缩。作功行程:当压缩行程接近上止点时,进、排气门都处于关闭状态,火花塞发出电火花点燃可燃混合气,混合气迅速燃烧使气体温度和压力急剧升高,推动活塞下止点运动,经过连杆使曲轴旋转作功,并对外输出功。 排气行程:曲轴带动活塞从下止点向上止点运动,排气门打开,进气门关闭。在活塞和废气自身的压力作用下,废气经排气门排出气缸,活塞到达上止点时排气结束。 四行程柴油发动机工作原理: 进气行程:汽油机在进气行程中吸入的是可燃混合气,而柴油发动机吸入的是纯空气

活塞环的基本材料

活塞环的基本材料 当今活塞环应用各种品质的铸铁材料和钢。首先考察铸铁材料,按照用材料强度、延伸率、疲劳强度和耐磨性等指标表征的承载能力,可选用的铸造品质的全部范围见表1。对于第一道压缩环应特别优先选用一种具有高抗弯强度和弹性模数的球墨铸铁,其基体为马氏体,以获得高的硬度,可使侧面具有较好的耐磨性。 第二道活塞环能应用无镀层环,开发了一种在调质热处理状态下呈现细化片状组织铸造品质的材料,通过生成铬、钒、锰和钨元素的特殊碳化物,以及马氏体基体组织,以获得良好的耐磨性。而GOE44可锻铸铁是一种在细化珠光体基体组织中有针对性地生成残余碳化物成分的材料,能将高抗切向力强度与良好的耐磨性结合起来。 由于对材料强度和疲劳强度以及良好耐磨性的要求越来越高,现在趋向于进一步优化球状石墨的生成,以便在静态(装配状态)和动态负荷下获得特别高的抗弯强度,同时用贝氏体基体组织来获得活塞环侧面和工作表面较低的磨损率。 由于汽油机和柴油机活塞结构高度降低,压缩环的轴向高度相应减小,特别是面对20MPa气缸爆发压力,对机械结构的要求越来越高,这一切都要求提高活塞环侧面的强度和耐磨性。钢材料特别适合于这些要求。与铸铁材料相比,钢具有良好的机械动态承载能力,因此在弯曲负荷增大的情况下具有高的疲劳强度。当然,通过表面镀层和表面处理的效果可部分地缩小铸铁和钢之间动态强度的差异。试验表明,通过附加的化学处理(CPS法)可使氮化钢活塞环的动态强度提高大约30%。 首先应用含铬量为13%或18%的高铬马氏体钢,这种材料通过生成精细分布的铬碳化物和附加生成的渗氮层使表面层硬度明显提高,从而获得良好的耐磨性。如果要使用调质处理的Cr-Si低合金钢的话,则环工作表面镀层是必需的。 在最近15年内,全世界汽油机第1道压缩环都由铸铁环改用钢环,其中特别是欧洲和日本偏爱于氮化钢环。在汽油机高转速的使用条件下,现在轴向高度低的第1道钢环已成为标准零件,在此期间开发的发动机的第1道环超过90%采用氮化钢环,而第2道环大多数采用成本较低的铸铁环,并根据各自的功能要求选择相应的结构型式和工作表面涂层。 在欧洲轿车柴油机,即升功率大于50k W/的高负荷发动机上,第1道压缩环必须使用牌号为52/56的球墨铸铁,第2道环采用牌号为32的调质耐磨灰铸铁。通过采用强化的球墨铸铁(GOE56)或含铬18%铬钢来改善活塞环侧面特别是上侧面的耐磨性。当然,特别是在环轴向高度低的情况下,钢环包含着环槽磨损增大的风险,但是在每种情况下槽和环侧面总磨损量的差异并不大。 在柴油机上,由于活塞环的轴向高度较高,其材料向钢变化的倾向并不明显。这一方面是因为铸铁环和环槽镶圈材料之,间的材料配对非常好,另一方面是因为铸铁材料具有非常良好的加工性。 原则上,商用车柴油机第1道压缩环使用球墨铸铁已有非常丰富的经验,这从球墨铸铁环在欧洲柴油机上占有很高的分额就反映出来了。但是,自从上世纪60年代以来,具有非常低轴向磨损的含铬18%铬钢镀层压缩环在商用车柴油

八活塞环见图62图62活塞环技术要求

八、活塞环 2-62 见图 技术要求 1、热处理硬度91~107HRB 6、退磁处理。 2、环的端面翘曲度<0.07mm。7、环的金相组织是分布均匀的细片 3、上、下端面平行度公差为状珠光体,不允许有游离的渗碳0.05mm 体存在。 4、弹力允差±20%以内,弹力8、材料HT200。 19.7kg 5、漏光检查,环的外圆柱面与量具 间隙不大于0.05mm,整个圆周 上漏光不能多于2处,单处弧长不 超过25°弧长,两处弧长之和不大于 45°弧长,且距开口处不少于30°。 1

2 1、零件图样分析 1)活塞环属于环类零件,其直径与壁厚相差较大,在加工中易发生翘曲变形。环 的端面翘曲度应小于0.07mm 2)活塞环上、下平面平行度公差为0.05mm 。 3)弹力允差±20%以内,弹力19.7kg 。 4)漏光检查,环的外圆柱面与量具间隙不大于005mm ,整个圆周上漏光不能多 于2处,单处弧长不能超过25°弧长,两处弧长之和不能超过45°弧长,并且漏光处距开口处不能小于30°。 5)在磁性工作台上加工之后,须进行退磁处理。 6)环的金相组织应为分布均匀的细片状珠光体。不允许有游离的渗碳体存在。 7)热处理硬度为91~107HRB 。 8)材料为HT200。 2、活塞环机械加工工艺过程卡 (表2-52 表2-52 活塞环机械加工工艺过程卡 工序号 工序名称 工序内容 工艺装备 1 铸造 铸成一个长圆筒,其尺寸为φ308mm ×φ350mm ×500mm 2 清砂 清砂 3 热处理 时效处理 4 检验 检查硬度及金相组织 5 车 夹一端外圆,按毛坯找正,车端面,见平即可,车外圆至尺寸φ 346mm ,车内圆至尺寸φ314mm CW6163 6 车 倒头装夹,按已加工外圆找正,粗、精车外圆及内圆至图样尺寸。外圆尺寸为φ340mm ,内圆尺寸为φ318.4mm ,切下厚度尺寸为 92.00+mm (两端面各留0.6mm 磨削余量) CW6163 7 磨 粗磨活塞环两端面,单边留量0.2mm 。退磁 M7475 8 车 车端一内圆倒角1.2×45°(专用工装、端面压紧) CW6163 专用工装

活塞环的机械加工工艺规程设计

机械制造工艺学 课程设计 班级 B120231 姓名王志强 学号 B12023118 2014 年 03 月 14 日

课程设计任务书 机械工程系机械设计制造及其自动化专业学生姓名王志强班级 B120231 学号 B12023118 课程名称:机械制造工艺学 设计题目:活塞环的机械加工工艺规程设计 设计内容: 1.产品零件图1张 2.毛坯图1张 3.机械加工工艺过程综合卡片1份 4.机械加工工艺工序卡片1份 5.课程设计说明书1份 设计要求: 大批生产 设计(论文)开始日期 2014 年 03 月 03 日 设计(论文)完成日期 2014 年 03 月 07 日 指导老师邹聆昊

课程设计评语 机械工程系机械设计制造及其自动化专业学生姓名王志强班级 B120231 学号 B12023118 课程名称:机械制造工艺学 设计题目:活塞环的机械加工工艺规程设计 课程设计篇幅: 图纸共 2 张 说明书共 16 页指导老师评语: 年月日指导老师

目录 1.零件的分析 (1) 1.1.零件的作用 (1) 1.2.零件的工艺分析 (1) 1.2.1.零件图样分析 (2) 1.2.2.零件的技术要求 (3) 2.工艺规程设计 (4) 2.1.确定毛坯的制造形式 (4) 2.2.基面的选择 (5) 2.3.制定工艺路线 (6) 2.4.机械加工余量、工序尺寸及毛坯尺寸的确定 (7) 2.5.确定切削用量及基本工时 (8) 总结 (11) 参考文献 (12) 附表A1-A4:机械加工工艺过程综合卡片 附表B1-B9:机械加工工艺(工序)卡片

1. 零件的分析 1.1.零件的作用 活塞环作用包括密封、调节机油(控油)、导热(传热)、导向(支承)四个作用。密封:指密封燃气,不让燃烧室的气体漏到曲轴箱,把气体的泄漏量控制在最低限度,提高热效率。漏气不仅会使发动机的动力下降,而且会使机油变质,这是气环的主要任务;调节机油(控油):把气缸壁上多余的润滑油刮下,同时又使缸壁上布有薄薄的油膜,保证气缸和活塞及环的正常润滑。在现代高速发动机上,特别重视活塞环控制油膜的作用;导热:通过活塞环将活塞的热量传导给缸套,即起冷却作用。据可靠资料认为,活塞顶所受的的热量中有70~80%是通过活塞环传给缸壁而散掉的;支承:活塞环将活塞保持在气缸中,防止活塞与气缸壁直接接触,保证活塞平顺运动,降低摩擦阻力,而且防止活塞敲缸。 1.2.零件的工艺分析 1.该工艺安排是将毛坯造成筒形状,粗车切下后再进行单件加工。若单件铸造毛坯单件加工,其工艺安排,只是粗加工前的工序与筒形状毛坯不同,其他工序基本相同。 2.活塞环类零件在磨床上磨削加工时,多采用磁力吸盘装夹工件,因此在加工后,必须进行退磁处理。 3.为了保证活塞环的弹力,加工中对活塞环在自由状态下开口有一定的要求,因开口铣削后不能满足图样要求,所以增加一道热定型工序,热定型时需在专用工装上进行,其活塞环的开口处用一个键撑开,端面压紧,键的宽度要经过多次试验后得出合理宽度数据之后,再成批进行热定型。 4.对45°开口的加工采用专用工装进行装夹工件,但每批首件应划线对刀,以保证加工质量。 5.活塞环的翘曲度是将工件放在平台进行检查,采用0.06mm塞尺进行检查,当塞尺未能通过翘曲的缝隙时为合格。

表面处理知识

活塞环表面处理知识 自从内燃机问世以来,其心脏部件活塞环一汽缸套这对摩擦付就一直为人所关注,想方设法提高其使用寿命。这对磨擦付既要耐磨、又要减磨,还得磨合性能好。耐磨、减磨、磨合这三者是互有矛盾、互相联系的一个统一体,因此完全依靠材质本身来达到这一目的是不可能的,改善环和缸套的结构也只能缓解矛盾,而不能根本解决矛盾。但表面处理特别是复合表面处理可采用不同表面处理层去解决好各个时期不同的矛盾,确保活塞环—汽缸套的服役期达到整车的大修期。 活塞环表面处理发展速度很快,以理研(RiKen)活塞环株式会社为例,到二十一世纪初其表面处理技术有DVD;复合镀;HVOF高速氧火焰喷涂;等离子喷涂;固体润滑薄膜;气体氮化。其中离子镀有Cr-n系和Ti-N系,复合分散镀(Cpn-200)Ni-P-co+si3N4系。NPR 表面处理生产线有:激光处理;等离子喷涂;火焰淬火等。如果把活塞环生产分作热加工、机加工、表面处理三个部分,则表面处理相比之下与国外先进的差距较大,好在国内这方面部分进展较快,来势较好,有待努力赶上。 一、发蓝 我国上世纪六十年代初,活塞环表面处理一直以磷化、镀锡、发蓝为主,当时采用老工艺,生产率低、质量不稳定,其中发蓝工艺是将水玻璃作粘结剂的铁粉采用喷涂或滚动镀层的方法,把铁粉填入活塞环外圆面的沟槽中,随后在压力蒸气中加热至500℃左右,使之形成四氧化三铁。它本身相当于软磨粒能帮助磨合,又能保持润滑油。现在发蓝工艺用氧化剂加在高浓度的苛性钠水溶液中,温度为130°-150℃,活塞环浸泡5-30分钟。它比老工艺简单、质量可靠,活塞环外圆也不用加工凹槽,且防止氧化生锈,改善初期磨合的作用有所增强。 发蓝溶液配制应控制NaOH 550-650g/L.Nano2200-250g/L工作温度147-152℃,处理时间10-20分钟。发蓝溶液配制应先向槽中加入2/3(容积)的水。缓慢加入计量的氢氧化纳到槽中,搅拌使之溶解,要防止氢氧化纳放热溅出。然后在搅拌下,缓慢加入计量的亚硝酸钠,待全部溶解后,补充水至液位,升温至工作温度。 溶液管理方法;根据沸腾情况,每天调整槽液:补加一定量的氢氧化纳及亚硝酸钠,一般NaOH : NaNO2约为3 :1,并及时补充液位,经常打捞槽液上的浮渣,补加水时要缓慢小心,避免产生暴沸现象。 四氧化三铁膜(发蓝)由晶体组成,它能去除钝化膜,防锈。改善初期磨合性,提高耐蚀性和润滑性。在磨合过程中,它比磷化膜磨掉要慢,具有帮助防止拉缸的作用。 发蓝对活塞环的典型用途目前为:顶环硅铬钢外圆面镀铬,侧面发蓝;刮片环外圆面镀铬,侧面发蓝,螺旋撑簧油环环体外圆面镀铬,侧面发蓝。 由上可见发蓝的典型用途为活塞环侧面的表面处理。 以镀铬后的刮片环的发蓝为例,其工艺过程为:除油酸洗发蓝 封闭(皂液封闭进一步提高耐蚀性和润滑性)。发蓝所用槽液:亚硝酸纳(NaNO3)150-200g/L;苛性钠(NaoH)600-800g/L,温度140-150℃,时间10-20分钟,发生下述反应:3Fe+5NaoH+NaNo2 3Na2FeO2+H2O+NH3 亚铁酸纳进一步与氧化剂反应 6Na2FeO2+NaNO2+5H2O 3Na2Fe2O4+7NaOH+NH3 亚铁酸钠和铁酸纳在溶液中反应: Na2FeO2+Na2Fe2O4+2H2O Fe3O4+4NaOH 反应生成四氧化三铁,当浓度超过饱和时,结晶堆积在活塞环表面,形成黑褐色厚约

04第三章活塞环的设计

第三章活塞环的设计 内燃机的性能与活塞环的设计息息相关。目前世界上活塞环设计已进入标准化系列化时代。 3.1 活塞环的设计原则 根据活塞环的作用和工作条件,活塞环的设计应满足如下要求: 1 有适当的弹力,以利初始密封; 2 有较高的机械强度和热稳定性好; 3 易磨合且有足够的耐磨性和抗结胶能力; 4 加工工艺简单,成本低廉。 活塞环设计采用弹性弯曲理论,综合考虑环装入活塞的张开应力和环在气缸中的工作应力。根据这些应力的最佳比例和环材料的强度和弹性模量,实际环的自由状态开口距离为2.5~3.5倍的环径向厚度,环直径/径向厚度之比在22~34之间。 经长期设计经验之积累和广泛的发动机运转测试,得出了压缩环、油环和环槽设计参数的推荐范围,如表3-1~3-4所示的数据,给活塞环设计提供一个全面的指南。 表3-1 气环侧隙 环直径间隙 顶环第二和第三道环 76~178mm >178~250mm >250~405 mm >405~600mm >600mm 0.064/0.114 mm 0.076/0.127 mm 0.102/0.152 mm 0.152/0.216 mm 0.152/0.229 mm 0.038/0.089 mm 0.064/0.114 mm 0.076/0.127 mm 0.127/0.191 mm 0.127/0.203 mm 表3-2 油环侧隙 环直径间隙 76~178 mm >178~250 mm >250~405 mm >405~600 mm >600 mm 0.038/0.089 mm 0.064/0.114 mm 0.076/0.127 mm 0.127/0.191 mm 0.127/0.203 mm 表3-3 闭口间隙 发动机型式单位缸径的闭口间隙 水冷 风冷及两冲程 0.003/0.004 0.004/0.005表3-4 侧面光洁度 活塞环直径侧面光洁度CLA ≤178 mm >178~405 mm >405~920 mm 最大0.4μm 最大0.8μm 最大1.6μm

活塞式发动机的基本常识

活塞式燃油发动机基础常识 活塞式燃油发动机通常是指燃油在汽缸里燃烧膨胀,推动活塞下行带动曲轴旋转,以此形式输出动力的发动机。这种发动机是目前最最接近平民百姓的实用型燃油发动机,大到火车、轮船~~,小到助力车、航模~~,可以说是随处可见;其中一些经过少许改装后,还可以使用汽体燃料。 最近几年,版友们最常接触的是踏板助力车上的燃油发动机,其实活塞式燃油发动机的范畴很大,不只是汽油机和柴油机,点火方式也不全是靠火花塞;在此写上一篇,以本版角度,将活塞式燃油发动机的一些常识简述一下,以四冲汽油机为主,作为车民常识资料,以便版内车友学习参考。 一、活塞式燃油发动机常见名词常识: A、活塞式燃油发动机: 通常指做功形式为燃油在汽缸里燃烧、以膨胀气体推动活塞,通过连杆带动曲轴输出动力,以消耗燃油而产生动力的发动机。它的主要产品为使用化油器实施汽缸外雾化燃油、汽缸内火花塞点火的汽油机,还有使用喷油泵直接对汽缸内喷射柴油、直接燃烧作功的柴油机。 B、发动机的工作循环与冲程: 工作循环是指发动机活塞由进气、压缩、燃烧膨胀(做功)、排气行程所组成的工作进程。发动机每完成一次进气,压缩、做功、排气的进程,称为一个工作循环,也称一个周期。 C、二冲程发动机:

凡发动机曲轴每旋转一转,即活塞上下往复运动两个行程而完成一个工作循环的发动机。按点火方式包含有:火花塞点火,压缩点火,喷油点火。按进气方式有:簧片阀进气,活塞阀进气,转盘阀进气~~~。D、四冲程发动机: 凡发动机曲轴每旋转两转,即活塞上下往复动动四个行程而完成一个工作循环的发动机。通常以化油器供油、火花塞点火的汽油发动机和直接向汽缸里喷射燃油的柴油机为主。其外观最大特征:有复杂的换气机构--缸头。 E、曲轴: 一根类似“弓”字形的转轴,用连杆连接活塞,通过它使活塞来回运动,完成吸气、压缩、作功、排气等功能。同时活塞也通过它将直线运动的作功力量转换为输出动力的旋转运动。 F、飞轮: 为了使活塞连续往复运动,曲轴需要靠飞轮的惯性来保持连续运转。在小型发动机中,飞轮通常与磁电机合并设计,在飞轮的内圈安置强力磁钢,使得飞轮一转动,底盘上的线圈就有点火电力输出。 G、连杆: 连接曲轴与活塞的部件,其主要功能是将曲轴的旋转运动转换成活塞的往复运动,同时也将活塞的推动力转换成曲轴的旋转运动。因其运动时的摆动幅度较大,所以需要尽量轻巧牢固。 H、曲轴箱: 将曲轴安装在内、并连接汽缸和变速机构的发动机箱体。常规二冲程发

活塞环的材料

活塞环的材料 活塞环材料品种繁多、性能各异。选择活塞环的材料要考虑其使用条件、性能要求和环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高的机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定的强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性和工艺性等。目前,活塞环材料主要是铸铁,随着发动机的强化,出现了从灰铸铁过渡到可锻铸铁和球墨铸铁以及钢材的趋向。常用的材料和性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2许用应力(㎏)推荐使用范 围 工作 应力 安装应力 灰铸铁合金铸铁亚共晶铸 铁 球墨铸铁碳钢马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油 环 压缩环油 环 压缩环油 环 IST IST OIL刮片 环 IST 钢带衬环 许用剪应力200㎏/mm2

活塞环的材料主要是灰铸铁、合金铸铁和球墨铸铁,其材料的成份和性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3.5-3.75% Si:2.2-2.75% Mn:0.6-0.8% P:0.3-0.8% S:小于0.10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁的基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要是因铸铁中含有石墨是优良的固体润滑剂,当活塞环处于临界摩擦或干摩擦的状态下,铸铁材料就显示出其优越的自身润滑性能。 如摩擦或润滑问题,能充分解决的话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2.1 活塞环的一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号的铸铁。材质是活塞环机械性能与使用寿命的基础,因此在规定范围内合理调整材料成分比例、严格控制造

活塞环基本知识

活塞环基本知识 活塞环是发动机的重要零件之一。活塞环分为气环和油环两种。活塞环的作用:密封气体;均匀分布气缸壁上的润滑油,并防止润滑油窜入燃烧室;导出活塞上的热量;支承活塞,防止活塞直接与气缸壁接触。活塞环工作的好坏直接影响发动机的性能、工作可能性和使用寿命。 1 活塞环的作用 1.1气环的作用 气环起密封气体及导热的作用,其本身具有一定弹力。将环压在缸壁上。当发动机工作时,高压气体进入环槽,一方面将环压紧在环槽上,另一方面环背将更紧密地压在缸壁上起到更好的密封作用。当气体通过第一道环隙窜入第二道时,压力已大大降低。而且第二道环漏泄的气体极少。为了进一步减少摩擦损失,有的发动机只采用一道气环。第二道气环密封任务较轻,而且工作条件较一道好些。为了避免机油窜入燃烧室,所以要求第二道气环除密封气体外,还有一定的刮油作用。 1.2 油环的作用 油环的作用是将一定的润滑油均匀分布在缸壁上,防止润滑油窜入燃烧室并保证活塞环和缸壁的润滑。 油环要刮下缸壁上多余的油,须较大的径向力将环压在缸壁上。由于环背没有气体压力的帮助,故环本身要具有较大的弹力及较小的接触面积,同时刮下的润滑油要能顺利地流回油底壳,所以油环槽背设有回油孔或切口。 2 活塞环的结构分析 2.1活塞环各部分名称,如图1所示。 2.2切口形式 活塞环切口基本上有3种形式:直切口、斜切口和梯形切口,如图2所示。其

中用得最普遍的是直切口。二行程发动机为防止环切口与缸壁上的气口相碰,在切口处用销钉档住,不让环在环槽内转动,如图3所示。 2.3 常用气环断面形状 气环断面形状如图4所示。 矩形环:断面呈矩形,制造简单,广泛采用。 锥形环:将工作面制成小锥度以提高表面接触压力,有利于是磨合密封,并有一定的刮油作用。锥形环用肉眼不一定能看出锥角,所以一定要做标记,不能装反。正确安装应是正锥形,其锥顶向上。 图4 常用活塞环的断面形状 a)矩形 环b)锥面环c)桶面 环d)内切槽环 e)下切槽

活塞环

活塞环PISTON 概述:活塞环在发动机(和空压机)中有三大作用,将燃烧和曲轴箱密封,将活塞上的热量传到汽缸壁上,以及控制机油消耗。 为了产生有效的密封,活塞环既要与汽缸壁贴和良好,又要与活塞环槽的上或下平面贴和良好。径向贴和能力由活塞环本身的弹力与作用在环背的工质压力产生。在发动机里面公质当然是燃气。活塞环在其环槽中的轴向位置主要有气体压力和惯性力决定,亦在环槽上下平面之间往复运动。 在很多场合下活塞环亦用作转动轴的金属密封件。General: Piston rings in and compressors have three main functions: to seal the working chamber from the crankcase, to assist in the flow of heal from piston to cylinder wall and to control oil consumption. In order to achieve efficient sealing the piston ring should make a good fit with both the cylinder wall and either the top or bottom of the piston groove. The radial fit is achieved by the inherent spring force of the ring together with the pressure of the working medium acting from behind the ring . In the case of an engine this working medium is of course the combustion gas. The axial position of the ring within its groove is determined mainly by gas pressure and inertia forces and altermates between the top and bottom of the groove. Piston rings are also used in increasing numbers as metallic seals for rotating shafts. 活塞环介绍Introduction to piston rings 引擎工作原理: 发动机四冲程是指:1(1)进气(2)压缩(3)作功(4)排气 活塞环组件: 一道环→第一道气环工作环境最为恶劣,高温高压,第一道气环的主要功能是密封气体和带走热量。 二道环→第二道气环主要功能是与第一道气环一起密封燃烧室 油环→油环顾名思义,主要用来刮油,刮走钢壁上多余的润滑油,保持适度润滑,减少机油消耗。HOW ENGINE WORKS We will begin our explanation of basic engine operation by looking at the four-stroke working cycle of the engine。These four strokes are usually called (1)The intake stroke,(2)The compression stroke,(3)The combustion(expansion)stroke,(4)The exhaust stroke PISTON RING SET Top Ring→This is referred to as the “upper compression ring”. The upper compression ring is the piston ring that operates under the harshest conditions with respect to thermal and mechanical loading. Its job is to form a gas-tight barrier between the piston and cylinder wall in order to seal the combustion chamber Second Ring→This is referred to as the “lower compressing ring”. One of its jobs is to work together with the top ring in order to “seal”the combustion chamber. Oil Ring→As its name” oil control ring” implies, this ring scrapes excess lubricating oil off the cylinder wall, maintaining proper lubrication while keeping oil

活塞环的材料

第二章活塞环的材料 活塞环材料品种繁多、性能各异。选择活塞环的材料要考虑其使用条件、性能要求和环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高的机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定的强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性和工艺性等。目前,活塞环材料主要是铸铁,随着发动机的强化,出现了从灰铸铁过渡到可锻铸铁和球墨铸铁以及钢材的趋向。常用的材料和性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2 许用应力(㎏)推荐使用范围工作应力安装应力 灰铸铁 合金铸铁亚共晶铸铁 球墨铸铁 碳钢 马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油环 压缩环油环 压缩环油环 IST IST OIL刮片环 IST 钢带衬环 活塞环的材料主要是灰铸铁、合金铸铁和球墨铸铁,其材料的成份和性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3.5-3.75% Si: 2.2-2.75% Mn:0.6-0.8% P:0.3-0.8% S:小于0.10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁的基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要是因铸铁中含有石墨是优良的固体润滑剂,当活塞环处于临界摩擦或干摩擦的状态下,铸铁材料就显示出其优越的自身润滑性能。 如摩擦或润滑问题,能充分解决的话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2.1 活塞环的一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号的铸铁。材质是活塞环机械性能与使用寿命的基础,因此在规定范围内合理调整材料成分比例、严格控制造型与浇铸工艺来确保活塞环具有符合设计要求的最佳金相组织。 2 热处理 采用适当的热处理方法,以调整活塞环的金相组织及消除加工应力。 3 刚度 活塞环是一个刚度差的弹性零件,加工时必须合理安排工艺流程、注意装夹方法,以保 许用剪应力200㎏/mm2

活塞环工作原理

活塞环工作原理 乍一看活塞环是一个形态非常简单,具有圆开口的环,但它在摩托车发动机(内燃机)中却是不可缺少的运动部件,起着极为重要的作用,活塞环按作用分为气环和油环,它有四大功能。 一、保持气密性
活塞环是所有发动机零件中唯一作三个方向运动的零件。(即轴向运动、径向运动和圆周方向的旋转运动),同时也是使用条件中最为苛刻的零件。发动机燃烧室在爆炸的瞬间,燃气温度可达到2000℃-2500℃,其爆发压力平均达到50kg/cm平方,活塞头部的温度一般不低于200℃。活塞是作往复运动的,其速度和负荷都很大。因此活塞环是工作在高温、高压条件下的。尤其是第一道气环,承受的温度最高,润滑条件也最差,为了保证它具有和其它几道环相同或更高的耐用性,常常将第一道气环,的工作表面进行多孔镀铬处理。多孔镀铬层硬度高,并能贮存少量的润滑,以改善润滑条件,使环的寿命提高2-3倍。近年来,摩托车发动机大多采用长度短于缸径的活塞,这种活塞的头部在上行程转到下行程时会产生摆动现象,使活塞环外圆的上下边缘紧紧地与缸壁接触,导致活塞环的棱缘加载而形成刮伤。为避免这种异常现象,一般将第一道气环外圆制成圆弧状,以其上、下端面的边缘角不触及缸壁,并且易于发动机的初期磨合,这种气环称为桶面环,为目前高功率高转速的内燃机所采用。尽管当今制造技术非常精细,零部件差亦控制在最小范围,但因其材料、热处理及装配后的机械变形,汽缸内的气密总有极个别泄漏点存在,这就需要发动机在使用初期进行良好的磨合及启动后适

当的预热来逐渐消除摩擦副的凹凸不平点。倘若由于多种原因引起汽缸的密封不良时,会引起压缩压力下降和燃烧气体的窜漏,高压高温气体将穿过缸壁与活塞环之间的微小空隙,由此而引起的故障是破坏了活塞环与缸壁之间的所必需的油膜,以致形成了金属之间直接接触的干磨擦状态,从而导致了因干磨擦而烧伤的拉伤活塞、活塞环和汽缸,使发动机产生异常磨损。泄漏的高温气体窜入曲轴箱使机油变质和产生硬质油泥,使活塞环发生粘着等故障。由此看来,确保活塞环在汽缸内的气密性关重要,来不得任何的泄漏。
二、控制机油
活塞环是在高负荷下和高温气氛中沿缸壁来回滑动的。为了更好地发挥其功能,既要有少量的机油润滑汽缸和活塞,又必然适当地刮掉附着在缸壁上多余的机油,防止其上窜以保持机油消耗量适中。
大家知道,四冲程发动机在进气行程中,燃烧室内的压力低于曲轴箱内的压力,由于这种压差起着一种泵油作用,所以机油通过活塞环、活塞和汽缸之间微小间隙而被吸入燃烧室,导致因窜机油而使机油消耗量大增。尤其在发动机怠速情况下,节气门基本处于关闭状态,汽缸内负压较大时,这种现象更趋严重。为了控制机油上窜,一般都将活塞上第二道气环外圆制成锥面。锥面环既能在活塞上行时的滑动面上布下油膜,又能在活塞环下行时有效的刮去缸壁下端多余机油,真可谓一举两得。为了更加有效地将飞溅至汽缸壁下部的机油刮净,又在活塞第二道气环的下部增加一道钢片组合式刮油环。这种环的特点仅在于其接触压力高,而且由于上下刮片能够分别动作,即使对于正圆爌较差的汽缸来说,也具有良好的适应性。更重要的是每个

汽车发动机活塞环的技术现状和发展

万方数据

盏至垄塾垫渣垂堑塑堡丕塑丛垫垄壁U正匹翟卫■司雹囵 的疲劳强度。当然.通过表面镀层和表面处理的效果可部分地缩小铸铁和钢之间动态强度的差异。试验表明.通过附加的化学处理(cPS法)可使氮化钢活塞环的动态强度提高大约30%。 首先应用含铬量为13%或18%的高铬马氏体钢,这种材料通过生成精细分布的铬碳化物和附加生成的渗氮层使表面层硬度明显提高.从而获得良好的耐磨性。如果要使用调质处理的c卜sil氐合金钢的话.则环工作表面镀层是必需的。 在最近15年内,全世界汽油机第1道压缩环都由铸铁环改用钢环.其中特别是欧洲和日本偏爱于氮化钢环(表2)。在汽油机高转速的使用条件下.现在轴向高度低的第1道钢环已成为标准零件,在此期间开发的发动机的第1道环超过90%采用氮化钢环,而第2道环大多数采用成本较低的铸铁环,并根据各自的功能要求选择相应的结构型式和工作表面涂层。 在欧洲轿车柴油机,即升功率大于50kw/I的高负荷发动机上,第1道压缩环必须使用牌号为52/56的球墨铸铁,第2道环采用牌号为32的调质耐磨灰铸铁(表3)。通过采用强化的球墨铸铁(GOE56)或含铬18%铬钢来改善活塞环侧面特别是上侧面的耐磨性。当然,特别是在环轴向高度低的情况下,钢环包含着环槽磨损增大的风险.但是在每种情况下槽和环侧面总磨损量的差异并不大。 在柴油机上.由于活塞环的轴向高度较高,其材料向钢变化的倾向并不明显。这一方面是因为铸铁环和环槽镶圈材料之间的材料配对非常好,另一方面是因为铸铁材料具有非常良好的加工性。 原则上,商用车柴油机第1道压缩环使用球墨铸铁已有非常丰富的经验.这从球墨铸铁环在欧洲柴油机上占有很高的分额就反映出来了(表3)。但是.自从上世纪60年代以来.具有非常低轴向磨损的含铬18%铬钢镀层压缩环在商用车柴油机上的应用也具有相当丰富的批量生产使用经验。此外,随着气缸爆发压力明显超过20MPa,可望钢活塞环的应用会有所增长。 20。6—16(No8)APT技术与市场Ⅸ汽车与配件* 2.活塞环的结构型式 汽车汽油机第1道活塞环1OO%采用矩 形环,其工作表面根据有关机油耗和曲轴 箱通风方面的要求,采用对称球形、单边 球形或锥形。大约30%的欧洲轿车汽油 机.为了改善机油消耗,工作表面不是 带有单边鼓形度就是带有锥度。 轿车柴油机大部分第1道活塞环同样 也采用矩形环。在最近25年内.轿车柴 油机第1道活塞环采用双梯形环的份额稳 定在大约30%。随着气缸直径的增大. 由于燃烧侧的影响.双梯形环的份额也 随之增加(图2)。 3.活塞环的轴向高度 在最近20年过程中.全世界汽油机第1 道压缩环明显趋向于低轴向高度(图3)。 由于发动机转速的提高和由此而导致的 活塞质量的减轻或尺寸的缩小,活塞环 33  万方数据

相关文档