文档库 最新最全的文档下载
当前位置:文档库 › 数据结构复习要点(整理版)

数据结构复习要点(整理版)

数据结构复习要点(整理版)
数据结构复习要点(整理版)

第一章数据结构概述

基本概念与术语

1.数据:

数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。

2.数据元素:

数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。

(补充:

一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。)

3.数据对象:

数据对象是具有相同性质的数据元素的集合,是数据的一个子集。(有时候也叫做属性。)

4.数据结构:

数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

(1)数据的逻辑结构:

数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。

数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。

依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:

1.集合:

数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。

2.线性结构:

结构中的数据元素之间存在“一对一“的关系。若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。

3.树形结构:

结构中的数据元素之间存在“一对多“的关系。若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。

4.图状结构:

结构中的数据元素存在“多对多”的关系。若结构为非空集,折每个数据可有多个(或零个)直接后继。

(2)数据的存储结构:

数据元素及其关系在计算机内的表示称为数据的存储结构。

想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。逻辑结构可以映射为以下两种存储结构:

1.顺序存储结构:

把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。

2.链式存储结构:

借助指针表达数据元素之间的逻辑关系。不要求逻辑上相邻的数据元素物理位置上也相邻。

5.时间复杂度分析:1.常量阶:

算法的时间复杂度与问题规模n无关系T(n)=O

(1)

2.线性阶:

算法的时间复杂度与问题规模n成线性关系T(n)=O(n)

3.平方阶和立方阶:

一般为循环的嵌套,循环体最后条件为i++时间复杂度的大小比较:

O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )

6.算法与程序:

(1)算法的5个特性

1、输入:

有零个或多个输入

2、输出:

有一个或多个输出

3、有穷性:

要求序列中的指令是有限的;每条指令的执行包含有限的工作量;整个指令序列的执行在有限的时间内结束。(程序与算法的区别在于,程序不需要有有穷性)

4、确定性:

算法中的每一个步骤都必须是确定的,而不应当含糊、模棱两可。没有歧义。

5、可行性:

算法中的每一个步骤都应当能被有效的执行,并得到确定的结果。

(2).算法设计的要求:

1、正确性(达到预期效果,满足问题需求)

2、健壮性(能处理合法数据,也能对不合法的数据作出反应,不会产生不可预期的后果)

3、可读性(要求算法易于理解,便于分析)

4、可修改可扩展性

5、高效率(较好的时空性能)

补充内容:

1、名词解释:

数据结构、二元组

数据结构就是相互之间存在一种或多种特定关系的数据元素的集合。

二元组就是一种用来表示某个数据对象以及各个元素之间关系的有限集合。

2、根据数据元素之间关系的不同,数据的逻辑结构可以分为集合、线性结构、树形结构和图状结构四种类型。

3、常见的数据存储结构一般有两种类型,它们分别是顺序存储结构、链式存储结构

6.在一般情况下,一个算法的时间复杂度是问题规模的函数

7.常见时间复杂度有:

常数阶O

(1)、线性阶O(n)、对数阶O(log 2 n)、平方阶O(n^2)、指数阶

O(2^n)。通常认为,具有常数阶量级的算法是好算法,而具有指数阶量级的算法是差算法。

第二章线性表

定义:

线性表是n个数据元素的有限序列。一个数据元素可由若干个数据项组成。

1.顺序表结构

线性表的顺序存储是指在内存中用地址连续的一块存储空间顺序存放线性表的各元素,用这种存储形式存储的线性表称为顺序表。

2.单链表

(1)链表结点结构

线性表中的数据元素可以用任意的一组存储单元来存储,用指针表示逻辑关系逻辑相邻的两元素的存储空间可以是不连续的。

(2)链表操作算法:

初始化、插入、输出、删除、遍历

初始化:

p=(struct student *)malloc(sizeof(struct student));

插入:

p->next=head->next;head->next=p;

输出:

printf(“%d”,p->data);

删除:

q=p->next;p->next = q->next ;free(q);

结点遍历:

for(p=head;p;p=p->next);

补充内容:

1、线性表中,第一个元素没有直接前驱,最后一个元素没有直接后驱。

2、在一个单链表中,若p所指结点是q所指结点的前驱结点,则删除结点q的操作语句为P->next = q->next ;free(q)

3、在长度为N的顺序表中,插入一个新元素平均需要移动表中N/2个元素,删除一个元素平均需要移动(N-1)/2个元素。

4、若线性表的主要操作是在最后一个元素之后插入一个元素或删除最后一个元素,则采用顺序表存储结构最节省运算时间。

5、已知顺序表中每个元素占用3个存储单元,第13个元素的存储地址为336,则顺序表的首地址为300。(第n个元素的地址即首地址+(n-1)*每个元素的存储空间,如a[12](第13个元素)的地址=a[0]+12*3)

6、设有一带头结点单链表L,请编写该单链表的初始化,插入、输出和删除函数。(函数名自定义)

结点定义:

typedef int datype;//结点数据类型,假设为int

typedef struct node {//结点结构

datype data;

struct node *next;//双向链表还应加上*previous

} Lnode, * pointer ; //结点类型,结点指针类型

typedef pointer lklist;//单链表类型,即头指针类型

1.初始化:

lklist initlist() {

pointer head;

head=new node;//这是C++做法

//head=( pointer)malloc(sizeof(Lnode));这是C语言做法

head->next=NULL;//循环链表则是head->next=head;

//双向链表应加上head->previos=NULL;

return head;}

2.插入:

(C语言中需要把head转化为全局变量才能实现此程序)

int insert(lklist head,datype x,int i){

pointer q,s;

q=get(head,i-1);//找第i-1个点

if(q==NULL)//无第i-1点,即i<1或i>n+1时{cout<<”非法插入位置!\n”; //这是C++做法,即C语言中的printf(“非法插入位置!\n”);return 0;}s=new node;//生成新结点即C语言中的s=( pointer)malloc(sizeof(Lnode));

s->data=x;

s->next=q->next;//新点的后继是原第i个点

q->next=s;//原第i-1个点的后继是新点

return 1;//插入成功}

3.删除:

(C语言中需要把head转化为全局变量才能实现此程序)

int delete(lklist head,int i) {

pointer p,q;

q=get(head,i-1);//找待删点的直接前趋

if(q==NULL || q->next==NULL)//即i<1或i>n时

{cout<<”非法删除位置!\n”;return 0;}

p=q->next;//保存待删点地址

q->next=p->next;//修改前趋的后继指针

delete p;//释放结点即C语言中的free(p);

return 1;//删除成

1.不带头结点的单链表head为空的判定条件是(A )

A.head=NULL

B.head->next=NULL

C.head->next=head

D.head!=NULL

2.带头结点的单链表head为空的判定条件是(B )

A.head=NULL

B.head->next=NULL

C.head->next=head

D.head!=NULL

3.在一个单链表中,若p所指结点不是最后结点,在p之后插入s所指结点,则执行(B )A.s->next=p;p->next=s;B.s->next=p->next;p->next=s

C.s->next=p->next;p=s;

D.p->next=s;s->next=p;

4.在一个单链表中,若删除p所指结点的后续结点,则执行(A )

A.p->next=p->next->next

B.p=p->next;p->next=p->next->next

C.p->next=p->next

D.p=p->next->next

5.从一个具有n个结点的有序单链表中查找其值等于x结点时,在查找成功的情况下,需平均比较(B )个结点。

A. n

B. n/2

C. (n-1)/2

D. O(n㏒2n)

6.给定有n个元素的向量,建立一个有序单链表的时间复杂度(B)

A.O

(1)B.O(n)C.O(n2)D.O(n㏒2n)

7.在一个具有n个结点的有序单链表中插入一个新结点并仍然有序的时间复杂度是(B)A.O

(1)B.O(n)C.O(n2)D.O(n㏒2n)

8.在一个单链表中删除q所指结点时,应执行如下操作:

q=p->next;

p->next=( p->next->next );

free(q);//这种题目靠一根指针是没有办法完成的,必须要借助第二根指针。

9.在一个单链表中p所指结点之后插入一个s所指结点时,应执行:

s->next=( p->next )

p->next=(s)操作。10.对于一个具有n个节点的单链表,在已知所指结点后插入一个新结点的时间复杂度是(O

(1));在给定值为x的结点后插入一个新结点的时间复杂度是(O(n))。

11.问答题

线性表可用顺序表或链表存储。试问:

(1)两种存储表示各有哪些主要优缺点?

顺序表的存储效率高,存取速度快。但它的空间大小一经定义,在程序整个运行期间不会发生改变,因此,不易扩充。同时,由于在插入或删除时,为保持原有次序,平均需要移动一半(或近一半)元素,修改效率不高。

链接存储表示的存储空间一般在程序的运行过程中动态分配和释放,且只要存储器中还有空间,就不会产生存储溢出的问题。同时在插入和删除时不需要保持数据元素原来的物理顺序,只需要保持原来的逻辑顺序,因此不必移动数据,只需修改它们的链接指针,修改效率较高。

但存取表中的数据元素时,只能循链顺序访问,因此存取效率不高。

(2)若表的总数基本稳定,且很少进行插入和删除,但要求以最快的速度存取表中的元素,这时,应采用哪种存储表示?为什么?

应采用顺序存储表示。因为顺序存储表示的存取速度快,但修改效率低。若表的总数基本稳定,且很少进行插入和删除,但要求以最快的速度存取表中的元素,这时采用顺序存储表示较好。

第三章栈和队列

1.栈

(1)栈的结构与定义

定义:

限定仅在表尾进行插入或删除操作的线性表。

结构:

typedef struct list{

int listsize;//栈的容量

struct list *head;//栈顶指针

struct list *base;//栈底指针}(2)顺序栈操作算法:

入栈、出栈、判断栈空等(这个是使用数组进行操作的,具体内容参照书本P46-47)

(3)链栈的结构与定义

2.队列

(1)队列的定义

定义:

只允许在表的一端进行插入,而在另一端删除元素。

----------------------------------------------------------------------------------------------------------------补充内容:

1、一个栈的入栈序列为“ABCDE”,则以下不可能的出栈序列是(B)

A. BCDAE

B. EDACB

C. BCADE

D. AEDCB

2、栈的顺序表示中,用TOP表示栈顶元素,那么栈空的条件是(D)

A. TOP==STACKSIZE

B. TOP==1

C. TOP==0

D. TOP==-1

3、允许在一端插入,在另一端删除的线性表称为队列。插入的一端为表头,删除的一端为表尾。

4、栈的特点是先进后出,队列的特点是先进先出。

5、对于栈和队列,无论他们采用顺序存储结构还是链式存储结构,进行插入和删除操作的时间复杂度都是O

(1)(即与已有元素N无关)。

6、已知链栈Q,编写函数判断栈空,如果栈空则进行入栈操作,否则出栈并输出。(要求判断栈空、出栈、入栈用函数实现)(详看考点2)

7.出队与取队头元素的区别:

出队就是删除对头的数据元素,取队头元素是获取对头的数据元素值,不需要删除。

8.链栈与顺序栈相比,比较明显的优点是:

(D)

A.插入操作比较容易

B.删除操作比较容易

C.不会出现栈空的情况

D.不会出现栈满的情况

考点1:队列的编程:

结构:

typedef struct QNode{

int date;

struct QNode *next;

}QNode,*QuePtr;

typedef struct{

QuePtr front;

QuePtr rear;

}LinkQue;

创建:

LinkQue InitQue(LinkQue Q){Q.front=Q.rear=(QuePtr)malloc(sizeof(QNode)); Q.front->next=NULL;

return (Q);}入队:

LinkQue EnQue(LinkQue Q,int e){QuePtr p;

p=(QuePtr)malloc(sizeof(QNode));

p->date=e;

p->next=NULL;

Q.rear->next=p;

Q.rear=p;

return (Q);}出队:

LinkQue DeQue(LinkQue Q){int e;

QuePtr p;

p=Q.front->next;

e=p->date;

Q.front=p->next;

printf("%d",e);

if(Q.rear==p)Q.rear=Q.front=NULL;

free(p);

return (Q);}考点2:栈的编程:

创建:

struct list *creat(){struct list *p;

p=(struct list *)malloc(LEN);

p->next=NULL;

return(p);}入栈:

struct list *push(struct list *head,int a){struct list *p; p=(struct list *)malloc(LEN);

p->num=a;

p->next=head;

return(p);}出栈:

struct list *pop(struct list *head){struct list *p;

p=head->next;

free(head);

return(p);}判断栈空:

int listempty(struct list *head){if(head->next)return 0;

else return 1;}第四章串(不是重点内容)

1.串是由零个或多个字符组成的有限序列

2.串的赋值:

x=’abc’;或x[ ]=’abc’;

第五章数组和xx表(不是重点内容)

1.多维数组中某数组元素的position求解。一般是给出数组元素的首元素地址和每个元素占用的地址空间并组给出多维数组的维数,然后要求你求出该数组中的某个元素所在的位置。

2.明确按行存储和按列存储的区别和联系,并能够按照这两种不同的存储方式求解1中类型的题。

3.将特殊矩阵中的元素按相应的换算方式存入数组中。这些矩阵包括:

对称矩阵,三角矩阵,具有某种特点的稀疏矩阵等。熟悉稀疏矩阵的三种不同存储方式:

三元组,带辅助行向量的二元组,十字链表存储。掌握将稀疏矩阵的三元组或二元组向十字链表进行转换的算法。

补充内容:

三元组:

结构:

typedef struct{

int i,j;//元素行下标及列下标

int e;//元素值

}Triple;

typedef struct{

int mu,nu,tu;//矩阵的行数、列数、非零元素个数

Triple data[MAXSIZE+1];//矩阵包含的三元组表,data[0]未用}TSMatrix;

十字链表:

typedef struct OLNode{

int i,j;//元素行下标及列下标

int e;//元素值

struct OLNode *right,*down;//行的后继以及列的后继

} OLNode,*OLink;

typedef struct{

int mu,nu,tu;//矩阵的行数、列数、非零元素个数

OLink *rhead,*chead;//行和列的表头指针组的首地址

}CrossList;

CrossList Creat(CrossList M){

int m,n,t;

scanf(“%d%d%d”,&m,&n,&t);

M.mu=m;M.nu=n;M.tu=t;

M.rhead=( OLink *)malloc((m+1)*sizeof(OLink));//开辟行表头指针组

M.chead=( OLink *)malloc((n+1)*sizeof(OLink));//开辟行列头指针组

M.rhead[]=M.chead[]=NULL;//初始化

……//接下来就是赋值和入链}

第六章树和二叉树

1.树

(1)树的概念及术语

树:

n(n≥0)个结点的有限集合。当n=0时,称为空树;任意一棵非空树满足以下条件:

⑴有且仅有一个特定的称为根的结点;

⑵当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,…,Tm,其中每个集合又是一棵树,并称为这个根结点的子树。

(2)结点的度:

结点所拥有的子树的个数。

树的度:

树中所有结点的度的最大值。

(3)xx结点:

度为0的结点,也称为终端结点。

分支结点:

度不为0的结点,也称为非终端结点。

(4)孩子、双亲:

树中某结点的子树的根结点称为这个结点的孩子结点,这个结点称为它孩子结点的双亲结点;

兄弟:

具有同一个双亲的孩子结点互称为兄弟。

(5)路径:

如果树的结点序列n1, n2,…, nk有如下关系:

结点ni是ni+1的双亲(1<=i

(6)xx、xx:

在树中,如果有一条路径从结点x到结点y,那么x就称为y的祖先,而y 称为x的子孙。

(7)结点所在层数:

根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。

树的xx:

树中所有结点的最大层数,也称高度。

(8)层序编号:

将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。

(9)有序树、无序树:

如果一棵树中结点的各子树从左到右是有次序的,称这棵树为有序树;反之,称为无序树。数据结构中讨论的一般都是有序树

(10)树通常有前序(根)遍历、后序(根)遍历和层序(次)遍历三种方式(树,不是二叉树,没中序遍历。)

2.二叉树

(1)二叉树的定义:

二叉树是n(n≥0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。满二叉树:

在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上。

(满二叉树的特点:

叶子只能出现在最下一层;只有度为0和度为2的结点。)

完全二叉树:

对一棵具有n个结点的二叉树按层序编号,如果编号为i(1≤i≤n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中的位置完全相同。

完全二叉树的特点:

1.在满二叉树中,从最后一个结点开始,连续去掉任意个结点,即是一棵完全二叉树。

2.叶子结点只能出现在最下两层,且最下层的叶子结点都集中在二叉树的左部;

3.完全二叉树中如果有度为1的结点,只可能有一个,且该结点只有左孩子。

4.深度为k的完全二叉树在k-1层上一定是满二叉树。

(3)二叉树的性质:

性质1:二叉树的第i层上最多有2i-1个结点(i≥1)。

性质2:一棵深度为k的二叉树中,最多有2k-1个结点,最少有k个结点。深度为k且具有2k-1个结点的二叉树一定是满二叉树

性质3:在一棵二叉树中,如果叶子结点数为n0,度为2的结点数为n2,则有:

n0=n2+1。(一个结点的度就是指它放出的射线)

性质4:具有n个结点的完全二叉树的深度为log2n +1。

性质5:对一棵具有n个结点的完全二叉树中从1开始按层序编号,则对于任意的序号为i(1≤i≤n)的结点(简称为结点i),有:

(1)如果i>1,则结点i的双亲结点的序号为i/2;如果i=1,则结点i是根结点,无双亲结点。

(2)如果2i≤n,则结点i的左孩子的序号为2i;如果2i>n,则结点i无左孩子。

(3)如果2i+1≤n,则结点i的右孩子的序号为2i+1;如果2i+1>n,则结点i无右孩子。

3.二叉树的遍历(递归调用与访问的顺序不同而产生不同的遍历方法)(1)先序遍历

void XianXu(BiTree T){

if(T){

printf("%c",T->data);//先访问

XianXu(T->lchild);//再继续遍历

XianXu(T->rchild);}}

(2)中序遍历

(3)后序遍历

4.森林与二叉树的转换

(1)同级以左为亲,即左一结点的右孩子是与它同级的右一结点

(2)只认最左路线为亲子路线,即结点的左孩子是它下一级结点的最左的元素

5.xx树

(1)xx树的基本概念:

xx树:

给定一组具有确定权值的叶子结点,带权路径长度最小的二叉树。

(2)xx树的特点:

1.权值越大的叶子结点越靠近根结点,而权值越小的叶子结点越远离根结点。

2.只有度为0(叶子结点)和度为2(分支结点)的结点,不存在度为1的结点.

(3)哈夫曼树的构造算法思想及构造过程(森林与哈夫曼编码)

就是求各权值和路径相乘之后叠加的最小值。

----------------------------------------------------------------------------------------------------------------------

1、已知一棵完全二叉树有47个结点,则该二叉树有(C)个叶子结点。

A. 6

B. 12

C. 24

D.48

解法如下:

1+2+4+8+16=31计算从第一层到n-1层的结点个数

数据结构与算法基础知识总结

数据结构与算法基础知识总结 1 算法 算法:是指解题方案的准确而完整的描述。 算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。 算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。特征包括: (1)可行性; (2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性; (3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义; (4)拥有足够的情报。 算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。 指令系统:一个计算机系统能执行的所有指令的集合。 基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。 算法的控制结构:顺序结构、选择结构、循环结构。 算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。 算法复杂度:算法时间复杂度和算法空间复杂度。 算法时间复杂度是指执行算法所需要的计算工作量。 算法空间复杂度是指执行这个算法所需要的内存空间。 2 数据结构的基本基本概念 数据结构研究的三个方面: (1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构; (2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。 数据结构是指相互有关联的数据元素的集合。 数据的逻辑结构包含: (1)表示数据元素的信息; (2)表示各数据元素之间的前后件关系。 数据的存储结构有顺序、链接、索引等。 线性结构条件:

(1)有且只有一个根结点; (2)每一个结点最多有一个前件,也最多有一个后件。 非线性结构:不满足线性结构条件的数据结构。 3 线性表及其顺序存储结构 线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。 在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。 非空线性表的结构特征: (1)且只有一个根结点a1,它无前件; (2)有且只有一个终端结点an,它无后件; (3)除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。结点个数n称为线性表的长度,当n=0时,称为空表。 线性表的顺序存储结构具有以下两个基本特点: (1)线性表中所有元素的所占的存储空间是连续的; (2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 ai的存储地址为:adr(ai)=adr(a1)+(i-1)k,,adr(a1)为第一个元素的地址,k代表每个元素占的字节数。 顺序表的运算:插入、删除。(详见14--16页) 4 栈和队列 栈是限定在一端进行插入与删除的线性表,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。 栈按照“先进后出”(filo)或“后进先出”(lifo)组织数据,栈具有记忆作用。用top表示栈顶位置,用bottom表示栈底。 栈的基本运算:(1)插入元素称为入栈运算;(2)删除元素称为退栈运算;(3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。 队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。rear指针指向队尾,front指针指向队头。 队列是“先进行出”(fifo)或“后进后出”(lilo)的线性表。 队列运算包括(1)入队运算:从队尾插入一个元素;(2)退队运算:从队头删除一个元素。循环队列:s=0表示队列空,s=1且front=rear表示队列满

数据结构整理完整版

第二章线性表 一、顺序表和链表的优缺点 1.顺序表 定义:用一组连续的存储单元(地址连续)依次存放线性表的各个数据元素。即:在顺序表中逻辑结构上相邻的数据元素,其物理位置也是相邻的。 优点 逻辑相邻,物理相邻 可随机存取任一元素 存储空间使用紧凑 缺点 插入、删除操作需要移动大量的元素(平均约需移动一半结点,当n很大时,算法的效率较低) 预先分配空间需按最大空间分配,利用不充分 表容量难以扩充 2.链式存储结构 定义:由分别表示a1,a2,…,a i-1,a i,…,a n的N 个结点依次相链构成的链表,称为线性表的链式存储表示 优势: (1)能有效利用存储空间; 动态存储分配的结构,不需预先为线性表分配足够大的空间,而是向系统“随用随取”,在删除元素时可同时释放空间。 (2)用“指针”指示数据元素之间的后继关系,便于进行“插入”、“删除”等操作; 插入或删除时只需要修改指针,而不需要元素移动。 劣势: (1)不能随机存取数据元素; (2)丢失了一些顺序表的长处,如线性表的“表长”和数据元素在线性表中的 “位序”,在单链表中都看不见了。如,不便于在表尾插入元素,需遍历整个表才能找到插入的位置。 二、单链表中删除一个节点和插入一个节点的语句操作,p29 1.插入元素操作 算法基本思想:首先找到相应结点,然后修改相应指针。 假定在a,b之间插入结点X,s指向X, p指向a,指针修改语句为: s->next=p->next; p->next =s;

2.删除元素操作 算法基本思想:首先找到第i-1 个结点,然后修改相应指针。 删除b结点,其中,P指向a,指针修改语句为:p->next=p->next->next; 三、单链表的就地逆置习题集2.22 算法的基本思想:以单链表作存储结构进行就地逆置的正确做法应该是:将原链表的头结点和第一个元素结点断开(令其指针域为空),先构成一个新的空表,然后将原链表中各结点,从第一个结点起,依次插入这个新表的头部(即令每个插入的结点成为新的第一个元素结点)。 算法思路:依次取原链表中的每个结点,将其作为第一个结点插入到新链表中去,指针p用来指向当前结点,p为空时结束。 void reverse (Linklist H){ LNode *p; p=H->next; /*p指向第一个数据结点*/ H->next=NULL; /*将原链表置为空表H*/ while (p){ q=p; p=p->next; q->next=H->next; /*将当前结点插到头结点的后面*/ H->next=q; } } 第三章栈和队列 一、栈和队列的特性 1.特点 栈必须按“后进先出”(LIFO)的规则进行操作,仅限在表尾进行插入和删除的操作。 队列(FIFO)必须按“先进先出”的规则进行操作,队尾插入,队头删除。 二、循环队列为空和满的判定方法,p63 队空条件:front == rear; 队满条件:(rear + 1) % maxSize == front

数据结构课程设计报告模板

《数据结构I》三级项目报告 大连东软信息学院 电子工程系 ××××年××月

三级项目报告注意事项 1. 按照项目要求书写项目报告,条理清晰,数据准确; 2. 项目报告严禁抄袭,如发现抄袭的情况,则抄袭者与被抄袭者均 以0分计; 3. 课程结束后报告上交教师,并进行考核与存档。 三级项目报告格式规范 1. 正文:宋体,小四号,首行缩进2字符,1.5倍行距,段前段后 各0行; 2. 图表:居中,图名用五号字,中文用宋体,英文用“Times New Roman”,位于图表下方,须全文统一。

目录 一项目设计方案 (3) 二项目设计分析 (4) 三项目设计成果 (4) 四项目创新创业 (5) 五项目展望 (6) 附录一:项目成员 (6) 附录二:相关代码、电路图等 (6)

一项目设计方案 1、项目名称: 垃圾回收 2、项目要求及系统基本功能: 1)利用数据结构的知识独立完成一个应用系统设计 2)程序正常运行,能够实现基本的数据增加、删除、修改、查询等功能3)体现程序实现算法复杂度优化 4)体现程序的健壮性 二项目设计分析 1、系统预期实现基本功能: (结合本系统预期具体实现,描述出对应基本要求(增、删、改、查等)的具体功能) 1. 2. 3. 4. 5. 6. 7. 2、项目模块功能描述 (基本分为组织实施组织、程序功能模块编写、系统说明撰写等。其中程序功能子模块实现) 模块一: 主要任务:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 模块二: 主要任务:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 模块n: 主要任务:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

(完整版)非常实用的数据结构知识点总结

数据结构知识点概括 第一章概论 数据就是指能够被计算机识别、存储和加工处理的信息的载体。 数据元素是数据的基本单位,可以由若干个数据项组成。数据项是具有独立含义的最小标识单位。 数据结构的定义: ·逻辑结构:从逻辑结构上描述数据,独立于计算机。·线性结构:一对一关系。 ·线性结构:多对多关系。 ·存储结构:是逻辑结构用计算机语言的实现。·顺序存储结构:如数组。 ·链式存储结构:如链表。 ·索引存储结构:·稠密索引:每个结点都有索引项。 ·稀疏索引:每组结点都有索引项。 ·散列存储结构:如散列表。 ·数据运算。 ·对数据的操作。定义在逻辑结构上,每种逻辑结构都有一个运算集合。 ·常用的有:检索、插入、删除、更新、排序。 数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。 ·结构类型:由用户借助于描述机制定义,是导出类型。 抽象数据类型ADT:·是抽象数据的组织和与之的操作。相当于在概念层上描述问题。 ·优点是将数据和操作封装在一起实现了信息隐藏。 程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。算法取决于数据结构。 算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。 评价算法的好坏的因素:·算法是正确的; ·执行算法的时间; ·执行算法的存储空间(主要是辅助存储空间); ·算法易于理解、编码、调试。 时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。 渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。 时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O (n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

数据结构复习提纲(整理)

复习提纲 第一章数据结构概述 基本概念与术语(P3) 1.数据结构是一门研究非数值计算程序设计问题中计算机的操作对象以及他们之间的关系和操作的学科. 2.数据是用来描述现实世界的数字,字符,图像,声音,以及能够输入到计算机中并能被计算机识别的符号的集合 2.数据元素是数据的基本单位 3.数据对象相同性质的数据元素的集合 4.数据结构包括三方面内容:数据的逻辑结构.数据的存储结构.数据的操作. (1)数据的逻辑结构指数据元素之间固有的逻辑关系. (2)数据的存储结构指数据元素及其关系在计算机内的表示 ( 3 ) 数据的操作指在数据逻辑结构上定义的操作算法,如插入,删除等. 5.时间复杂度分析 -------------------------------------------------------------------------------------------------------------------- 1、名词解释:数据结构、二元组 2、根据数据元素之间关系的不同,数据的逻辑结构可以分为 集合、线性结构、树形结构和图状结构四种类型。 3、常见的数据存储结构一般有四种类型,它们分别是___顺序存储结构_____、___链式存储结构_____、___索引存储结构_____和___散列存储结构_____。 4、以下程序段的时间复杂度为___O(N2)_____。 int i,j,x; for(i=0;i=0)个具有相同性质的数据元素a1,a2,a3……,an组成的有穷序列 //顺序表结构 #define MAXSIZE 100 typedef int DataType; Typedef struct{ DataType items[MAXSIZE]; Int length; }Sqlist,*LinkList; //初始化链表 void InitList(LinkList *L){ (*L)=(LinkList)malloc(sizeof(LNode)); if(!L){ cout<<”初始化失败!”; return;

数据结构课程设计报告模板

课程设计说明书 课程名称:数据结构 专业:班级: 姓名:学号: 指导教师:成绩: 完成日期:年月日

任务书 题目:黑白棋系统 设计内容及要求: 1.课程设计任务内容 通过玩家与电脑双方的交替下棋,在一个8行8列的方格中,进行棋子的相互交替翻转。反复循环下棋,最后让双方的棋子填满整个方格。再根据循环遍历方格程序,判断玩家与电脑双方的棋子数。进行大小判断,最红给出胜负的一方。并根据y/n选项,判断是否要进行下一局的游戏。 2.课程设计要求 实现黑白两色棋子的对峙 开发环境:vc++6.0 实现目标: (1)熟悉的运用c语言程序编写代码。 (2)能够理清整个程序的运行过程并绘画流程图 (3)了解如何定义局部变量和整体变量; (4)学会上机调试程序,发现问题,并解决 (5)学习使用C++程序来了解游戏原理。 (6)学习用文档书写程序说明

摘要 本文的研究工作在于利用计算机模拟人脑进行下黑白棋,计算机下棋是人工智能领域中的一个研究热点,多年以来,随着计算机技术和人工智能技术的不断发展,计算机下棋的水平得到了长足的进步 该程序的最终胜负是由棋盘上岗双方的棋子的个数来判断的,多的一方为胜,少的一方为负。所以该程序主要运用的战术有削弱对手行动战术、四角优先战术、在游戏开局和中局时,程序采用削弱对手行动力战术,即尽量减少对手能够落子的位置;在游戏终局时则采用最大贪吃战术,即尽可能多的吃掉对手的棋子;而四角优先战术则是贯穿游戏的始终,棋盘的四角围稳定角,不会被对手吃掉,所以这里是兵家的必争之地,在阻止对手进角的同时,自己却又要努力的进角。 关键词:黑白棋;编程;设计

数据结构基础知识整理

数据结构基础知识整理 *名词解释1、数据:是信息的载体,能够被计算机识别、存储和加工处理。 *2、数据元素:是数据的基本单位,也称为元素、结点、顶点、记录。一个数据元素可 以由若干个数据项组成,数据项是具有独立含义的最小标识单位。 *3、数据结构:指的是数据及数据之间的相互关系,即数据的组织形式,它包括数据的 逻辑结构、数据的存储结构和数据的运算三个方面的内容。 *4、数据的逻辑结构:指数据元素之间的逻辑关系,即从逻辑关系上描述数据,它与数 据的存储无关,是独立于计算机的。 *5、数据的存储结构:指数据元素及其关系在计算机存储器内的表示。是数据的逻辑结 构用计算机语言的实现,是依赖于计算机语言的。 *6、线性结构:其逻辑特征为,若结构是非空集,则有且仅有一个开始结点和一个终端 结点,并且其余每个结点只有一个直接前趋和一个直接后继。 *7、非线性结构:其逻辑特征为一个结点可能有多个直接前趋和直接后继。 *8、算法:是任意一个良定义的计算过程,它以一个或多个值作为输入,并产生一个或 多个值作为输出;即一个算法是一系列将输入转换为输出的计算步骤。 *9、算法的时间复杂度T(n):是该算法的时间耗费,它是该算法所求解问题规模n趋向无穷大时,我们把时间复杂度T(n)的数量级(阶)称为算法的渐近时间复杂度。 *10、最坏和平均时间复杂度:由于算法中语句的频度不仅与问题规模n有关,还与输入实例等因素有关;这时可用最坏情况下时间复杂度作为算法的时间复杂度。而平均时间复杂度是指所有的输入实例均以等概率出现的情况下,算法的期望运行时间。 *11、数据的运算:指对数据施加的操作。数据的运算是定义在数据的逻辑结构上的,而 实现是要在存储结构上进行。 *12、线性表:由n(n≥0)个结点组成的有限序列。其逻辑特征反映了结点间一对一的关 系(一个结点对应一个直接后继,除终端结点外;或一个结点对应一个直接前趋,除开始结点外),这是一种线性结构。 *13、顺序表:顺序存储的线性表,它是一种随机存取结构。通过将相邻结点存放在相邻 物理位置上来反映结点间逻辑关系。 *14、单链表:每个结点有两个域:一个值域data;另一个指针域next,用来指向该结

数据结构复习要点整理版

第一章数据结构概述 基本概念与术语 1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。 2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。 (补充:一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。(有时候也叫做属性。) 4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 (1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。 数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。 依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种: 1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。 2.线性结构:结构中的数据元素之间存在“一对一“的关系。若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。 3.树形结构:结构中的数据元素之间存在“一对多“的关系。若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。 4.图状结构:结构中的数据元素存在“多对多”的关系。若结构为非空集,折每个数据可有多个(或零个)直接后继。 (2)数据的存储结构:数据元素及其关系在计算机的表示称为数据的存储结构。 想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。逻辑结构可以映射为以下两种存储结构: 1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。 2.链式存储结构:借助指针表达数据元素之间的逻辑关系。不要求逻辑上相邻的数据元素物理位置上也相邻。 5.时间复杂度分析:1.常量阶:算法的时间复杂度与问题规模n无关系T(n)=O(1) 2.线性阶:算法的时间复杂度与问题规模n成线性关系T(n)=O(n) 3.平方阶和立方阶:一般为循环的嵌套,循环体最后条件为i++ 时间复杂度的大小比较: O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )

数据结构基础知识大全

/** *名词解释1、数据:是信息的载体,能够被计算机识别、存储和加工处理。 *2、数据元素:是数据的基本单位,也称为元素、结点、顶点、记录。一个数据元素可以由若干个数据项组成,数据项是具有独立含义的最小标识单位。 *3、数据结构:指的是数据及数据之间的相互关系,即数据的组织形式,它包括数据的逻辑结构、数据的存储结构和数据的运算三个方面的内容。 *4、数据的逻辑结构:指数据元素之间的逻辑关系,即从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。 *5、数据的存储结构:指数据元素及其关系在计算机存储器内的表示。是数据的逻辑结构用计算机语言的实现,是依赖于计算机语言的。 *6、线性结构:其逻辑特征为,若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且其余每个结点只有一个直接前趋和一个直接后继。 *7、非线性结构:其逻辑特征为一个结点可能有多个直接前趋和直接后继。 *8、算法:是任意一个良定义的计算过程,它以一个或多个值作为输入,并产生一个或多个值作为输出;即一个算法是一系列将输入转换为输出的计算步骤。 *9、算法的时间复杂度T(n):是该算法的时间耗费,它是该算法所求解问题规模n趋向无穷大时,我们把时间复杂度T(n)的数量级(阶)称为算法的渐近时间复杂度。 *10、最坏和平均时间复杂度:由于算法中语句的频度不仅与问题规模n有关,还与输入实例等因素有关;这时可用最坏情况下时间复杂度作为算法的时间复杂度。而平均时间复杂度是指所有的输入实例均以等概率出现的情况下,算法的期望运行时间。 *11、数据的运算:指对数据施加的操作。数据的运算是定义在数据的逻辑结构上的,而实现是要在存储结构上进行。 *12、线性表:由n(n≥0)个结点组成的有限序列。其逻辑特征反映了结点间一对一的关系(一个结点对应一个直接后继,除终端结点外;或一个结点对应一个直接前趋,除开始结点外),这是一种线性结构。 *13、顺序表:顺序存储的线性表,它是一种随机存取结构。通过将相邻结点存放在相邻物理位置上来反映结点间逻辑关系。 *14、单链表:每个结点有两个域:一个值域data;另一个指针域next,用来指向该结点的直接后继结点。头指针是它的充分必要的信息。单链表是一种单向的结构。 *15、双链表:每个结点中增加了一个prior,用来指向该点的直接前趋结点。它是一种双向、对称的结构。 *16、循环链表:是一种首尾相接的链表。单循环链表形成一个next链环,而双循环链表形成next链环和prior链环。 *17、存储密度:是指结点数据本身所占的存储量和整个结点结构所占的存储量之比。顺序表的存储密度为1,而链表的存储密度小于1。 *18、栈:只允许在一端进行插入、删除运算的线性表,称为“栈”(stack)。 *19、LIFO表:即后进先出表,修改操作按后进先出的原则进行。譬如栈就是一种LIFO 表。 *20、顺序栈:采用顺序存储结构的栈,称为顺序栈。 *21、链栈:采用链式存储结构的栈,称为链栈。 *22、队列:只允许在一端进行插入、另一端进行删除运算的线性表,称为“队列”(queue)。*23、FIFO表:即先进先出表。譬如队列就是一种FIFO表。 *24、顺序队列:采用顺序存储结构的队列,称为顺序队列。 *25、循环队列:为克服顺序队列中假上溢现象,将向量空间想象为一个首尾相接的圆环,

数据结构课程设计报告模板

数据结构课程设计报告模板

课程设计说明书 课程名称:数据结构 专业:班级: 姓名:学号: 指导教师:成绩: 完成日期:年月日

任务书 题目:黑白棋系统 设计内容及要求: 1.课程设计任务内容 通过玩家与电脑双方的交替下棋,在一个8行8列的方格中,进行棋子的相互交替翻转。反复循环下棋,最后让双方的棋子填满整个方格。再根据循环遍历方格程序,判断玩家与电脑双方的棋子数。进行大小判断,最红给出胜负的一方。并根据y/n选项,判断是否要进行下一局的游戏。 2.课程设计要求 实现黑白两色棋子的对峙 开发环境:vc++6.0 实现目标: (1)熟悉的运用c语言程序编写代码。 (2)能够理清整个程序的运行过程并绘画流程图 (3)了解如何定义局部变量和整体变量; (4)学会上机调试程序,发现问题,并解决 (5)学习使用C++程序来了解游戏原理。 (6)学习用文档书写程序说明

目录 1.引言 (1) 2.课题分析 (4) 3.具体设计过程 (5) 3.1设计思路 (5) 3.2程序设计流程图 (5) 3.3.函数实现说明 (10) 4.程序运行结果 (12) 5.软件使用说明 (16) 6.结论 (19) 参考文献 (20) 附录:源代码 (21)

1.引言 数据结构在计算机科学界至今没有标准的定义。个人根据各自的理解的不同而有不同的表述方法: Sartaj Sahni在他的《数据结构、算法与应用》一书中称:“数据结构是数据对象,以及存在于该对象的实例和组成实例的数据元素之间的各种联系。这些联系可以通过定义相关的函数来给出。”他将数据对象(data object)定义为“一个数据对象是实例或值的集合”。Clifford A.Shaffer在《数据结构与算法分析》一书中的定义是:“数据结构是ADT(抽象数据类型Abstract Data Type)的物理实现。” Lobert L.Kruse在《数据结构与程序设计》一书中,将一个数据结构的设计过程分成抽象层、数据结构层和实现层。其中,抽象层是指抽象数据类型层,它讨论数据的逻辑结构及其运算,数据结构层和实现层讨论一个数据结构的表示和在计算机内的存储细节以及运算的实现。数据结构具体指同一类数据元素中,各元素之间的相互关系,包括三个组成成分,数据的逻辑结构,数据的存储结构和数据运算结构。 1.1. 重要意义 一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。 在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。 选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。 1.2. 研究内容

数据结构实验报告模板

数据结构实验报告 顺序表实验 1.实验目标 a.熟练掌握线性表的顺序存储结构。 b.熟练掌握顺序表的有关算法设计。 c.根据具体问题的需要,设计出合理的表示数据的顺序结构,并设计相关算法。 2.实验内容和要求 a.顺序表结构和运算定义,算法的实现以库文件方式实现,不得在测试主程序中直接实现; b.实验程序有较好可读性,各运算和变量的命名直观易懂,符合软件工程要求; c.程序有适当的注释。 3.数据结构设计 顺序表 4.算法设计 1.i表示要在顺序表中查找的位置,x表示查找到后返回的值。 int search(seqlist A,int i,elementType &x) { if(i<1||i>A.Len)//查找的范围不在顺序表中 return 0; else { x=A.data[i-1];//复制要查找的值 return 1; } } 2.i表示要在顺序表中插入的位置,x表示要插入的元素。 void insert(seqlist &A,int i,elementType x) { if(i<1||i>A.Len)//超出顺序表范围 cout<<"error"<=i;j--)//找到第i-1个结点擦,并后移元素 A.data[j]=A.data[j-1]; A.data[i-1]=x;//插入元素数据 A.Len++;//改变顺序表长度 }

} 3.先利用循环找到顺序表中第i个结点,然后进行删除操作。 void del(seqlist *L,int i) { int j; if(i<1||i>L->Len+1)//超顺序表范围 cout<<"超出表范围"<Len;j++) L->data[j]=L->data[j+1];//删除第i个结点 L->Len--; cout<<"删除元素后的表为:"; for(int k=0;kLen;k++)//输出顺序表 cout<data[k]<<" "; cout<Len==MAXLEN) return 0; else { int i=L->Len-1; L->Len++; while(x<=L->data[i]) { L->data[i+1]=L->data[i];//查找待插入的位置 i--; } L->data[i+1]=x;//插入元素 return 1; } } 5.申请两个新的顺序表,然后对原表进行遍历,由 A.data[i]%2进行及奇偶的分离,并分别存入顺序表B,C中。 void separatelist(seqlist A,seqlist *B,seqlist *C) { int b(0),c(0); for(int i=0;i

数据结构基本知识.

数据结构基本知识 数据(Data) 数据是信息的载体。它能够被计算机识别、存储和加工处理,是计算机程序加工的"原料"。随着计算机应用领域的扩大,数据的范畴包括: 整数、实数、字符串、图像和声音等。 数据元素(Data Element) 数据元素是数据的基本单位。数据元素也称元素、结点、顶点、记录。 一个数据元素可以由若干个数据项(也可称为字段、域、属性)组成。 数据项是具有独立含义的最小标识单位。 数据结构(Data Structure) 数据结构指的是数据之间的相互关系,即数据的组织形式。 1.数据结构一般包括以下三方面内容: ①数据元素之间的逻辑关系,也称数据的逻辑结构(Logical Structure); 数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。数据的逻辑结构可以看作是从具体问题抽象出来的数学模型。 ②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构(Storage Structure); 数据的存储结构是逻辑结构用计算机语言的实现(亦称为映象),它依赖于计算机语言。对机器语言而言,存储结构是具体的。一般,只在高级语言的层次上讨论存储结构。 ③数据的运算,即对数据施加的操作。 数据的运算定义在数据的逻辑结构上,每种逻辑结构都有一个运算的集合。最常用的

检索、插入、删除、更新、排序等运算实际上只是在抽象的数据上所施加的一系列抽象的操作。 所谓抽象的操作,是指我们只知道这些操作是"做什么",而无须考虑"如何做"。只有确定了存储结构之后,才考虑如何具体实现这些运算。 为了增加对数据结构的感性认识,下面举例来说明有关数据结构的概念。 【例1.1】学生成绩表,见下表。 注意:在表中指出数据元素、数据项、开始结点和终端结点等概念 (1)逻辑结构 表中的每一行是一个数据元素(或记录、结点),它由学号、姓名、各科成绩及平均成绩等数据项组成。 表中数据元素之间的逻辑关系是:对表中任一个结点,与它相邻且在它前面的结点(亦称为直接前趋(Immediate Predecessor))最多只有一个;与表中任一结点相邻且在其后的结点(亦称为直接后继(Immediate Successor))也最多只有一个。表中只有第一个结点没有直接前趋,故称为开始结点;也只有最后一个结点没有直接后继。故称之为终端结点。例如,表中"马二"所在结点的直接前趋结点和直接后继结点分别是"丁一"和"张三"所在的结点,上述结点间的关系构成了这张学生成绩表的逻辑结构。

数据结构实验报告模板

2009级数据结构实验报告 实验名称:约瑟夫问题 学生姓名:李凯 班级:21班 班内序号:06 学号:09210609 日期:2010年11月5日 1.实验要求 1)功能描述:有n个人围城一个圆圈,给任意一个正整数m,从第一个人开始依次报数,数到m时则第m个人出列,重复进行,直到所有人均出列为止。请输出n个人的出列顺序。 2)输入描述:从源文件中读取。 输出描述:依次从显示屏上输出出列顺序。 2. 程序分析 1)存储结构的选择 单循环链表 2)链表的ADT定义 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,3,…n,n≧0} 数据关系:R={< a i-1, a i>| a i-1 ,a i∈D,i=1,2,3,4….,n} 基本操作: ListInit(&L);//构造一个空的单链表表L ListEmpty(L); //判断单链表L是否是空表,若是,则返回1,否则返回0. ListLength(L); //求单链表L的长度 GetElem(L,i);//返回链表L中第i个数据元素的值; ListSort(LinkList&List) //单链表排序 ListClear(&L); //将单链表L中的所有元素删除,使单链表变为空表 ListDestroy(&L);//将单链表销毁 }ADT List 其他函数: 主函数; 结点类; 约瑟夫函数 2.1 存储结构

[内容要求] 1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59 页图2-9 2.2 关键算法分析 结点类: template class CirList;//声明单链表类 template class ListNode{//结点类定义; friend class CirList;//声明链表类LinkList为友元类; Type data;//结点的数据域; ListNode*next;//结点的指针域; public: ListNode():next(NULL){}//默认构造函数; ListNode(const Type &e):data(e),next(NULL){}//构造函数 Type & GetNodeData(){return data;}//返回结点的数据值; ListNode*GetNodePtr(){return next;}//返回结点的指针域的值; void SetNodeData(Type&e){data=e;}//设置结点的数据值; void SetNodePtr(ListNode*ptr){next=ptr;} //设置结点的指针值; }; 单循环链表类: templateclass CirList { ListNode*head;//循环链表头指针 public: CirList(){head=new ListNode();head->next=head;}//构造函数,建立带头节点的空循环链表 ~CirList(){CirListClear();delete head;}//析构函数,删除循环链表 void Clear();//将线性链表置为空表 void AddElem(Type &e);//添加元素 ListNode *GetElem(int i)const;//返回单链表第i个结点的地址 void CirListClear();//将循环链表置为空表 int Length()const;//求线性链表的长度 ListNode*ListNextElem(ListNode*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针 ListNode*CirListRemove(ListNode*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回 CirList&operator=(CirList&List);//重载赋

数据结构图习题

第七章图:习题 习题 一、选择题 1.设完全无向图的顶点个数为n,则该图有( )条边。 A. n-l B. n(n-l)/2 C.n(n+l)/2 D. n(n-l) 2.在一个无向图中,所有顶点的度数之和等于所有边数的( )倍。 A.3 B.2 C.1 D.1/2 3.有向图的一个顶点的度为该顶点的( )。 A.入度 B. 出度 C.入度与出度之和 D.(入度+出度)/2 4.在无向图G (V,E)中,如果图中任意两个顶点vi、vj (vi、vj∈V,vi≠vj)都的,则称该图是( )。 A.强连通图 B.连通图 C.非连通图 D.非强连通图 5.若采用邻接矩阵存储具有n个顶点的一个无向图,则该邻接矩阵是一个( )。 A.上三角矩阵 B.稀疏矩阵 C.对角矩阵 D.对称矩阵 6.若采用邻接矩阵存储具有n个顶点的一个有向图,顶点vi的出度等于邻接矩阵 A.第i列元素之和 B.第i行元素之和减去第i列元素之和 C.第i行元素之和 D.第i行元素之和加上第i列元素之和 7.对于具有e条边的无向图,它的邻接表中有( )个边结点。 A.e-l B.e C.2(e-l) D. 2e 8.对于含有n个顶点和e条边的无向连通图,利用普里姆Prim算法产生最小生成时间复杂性为( ),利用克鲁斯卡尔Kruskal算法产生最小生成树(假设边已经按权的次序排序),其时间复杂性为( )。 A. O(n2) B. O(n*e) C. O(n*logn) D.O(e) 9.对于一个具有n个顶点和e条边的有向图,拓扑排序总的时间花费为O( ) A.n B.n+l C.n-l D.n+e 10.在一个带权连通图G中,权值最小的边一定包含在G的( )生成树中。 A.最小 B.任何 C.广度优先 D.深度优先 二、填空题 1.在一个具有n个顶点的无向完全图中,包含有____条边;在一个具有n个有向完全图中,包含有____条边。 2.对于无向图,顶点vi的度等于其邻接矩阵____ 的元素之和。 3.对于一个具有n个顶点和e条边的无向图,在其邻接表中,含有____个边对于一个具有n个顶点和e条边的有向图,在其邻接表中,含有_______个弧结点。 4.十字链表是有向图的另一种链式存储结构,实际上是将_______和_______结合起来的一种链表。 5.在构造最小生成树时,克鲁斯卡尔算法是一种按_______的次序选择合适的边来构造最小生成树的方法;普里姆算法是按逐个将_______的方式来构造最小生成树的另一种方法。 6.对用邻接表表示的图进行深度优先遍历时,其时间复杂度为一;对用邻接表表示的图进行广度优先遍历时,其时间复杂度为_______。 7.对于一个具有n个顶点和e条边的连通图,其生成树中的顶点数为_______ ,边数为_______。 8.在执行拓扑排序的过程中,当某个顶点的入度为零时,就将此顶点输出,同时将该顶点的所有后继顶点的入度减1。为了避免重复检测顶点的入度是否为零,需要设立一个____来存放入度为零的顶点。

数据结构名词解释整理

Data Structure 2015 hash table散列表:存放记录的数组 topological sort拓扑排序:将一个DAG中所有顶点在不违反前置依赖条件规定的基础上排成线性序列的过程称为拓扑排序(44) worst case 最差情况:从一个n元一维数组中找出一个给定的K,如果数组的最后一个元素是K,运行时间会相当长,因为要检查所有n 个元素,这是算法的最差情况(15) FIFO先进先出:队列元素只能从队尾插入,从队首删除(20)(P82)2014 growth rate增长率:算法的增长率是指当输入的值增长时,算法代价的增长速率(14) priority queue 优先队列:一些按照重要性或优先级来组织的对象成为优先队列(26) external sorting外排序:考虑到有一组记录因数量太大而无法存放到主存中的问题,由于记录必须驻留在外存中,因此这些排序方法称为外排序(32) connected component连通分量:无向图的最大连通子图称为连通分量(40) 2013 stack栈:是限定仅在一端进行插入或删除操作的线性表(19)

priority queue 优先队列:一些按照重要性或优先级来组织的对象成为优先队列(26) BFS广度优先搜索:在进一步深入访问其他顶点之前,检查起点的所有相邻顶点(42) collision (in hashing)冲突:对于一个散列函数h和两个关键码值k1和k2,如果h(k1) =β= h(k2) ,其中β是表中的一个槽,那么就说k1和k2对于β在散列函数h下有冲(35) Chapter 1 Data Structures and Algorithms type类型:是指一组值的集合 data type数据类型:一个类型和定义在这个类型上的一组操作abstract data type (ADT) 抽象数据类型:指数据结构作为一个软件构件的实现 data structure数据结构:是ADT的实现 problem问题:一个需要完成的任务,即对应一组输入,就有一组相应的输出 function函数:是输入和输出之间的一种映射关系 algorithm算法:是指解决问题的一种方法或者一个过程algorithm算法是解决问题的步骤,它必须把每一次输入转化为正确的输出;一个算法应该由一系列具体步骤组成,下一步应执行的步骤必须明确;一个算法必须由有限步组成;算法必须可以终止。computer program计算机程序:被认为是使用某种程序设计语言对一个算法的具体实现

数据结构课程设计报告模板

数据结构课程设计报告模板 成绩 计算机与信息工程学院 专业名称信息与计算科学 学生班级 10 级1班 学生姓名刘远远 学生学号 2010025707 设计起止时间: 2012年12月17日至 2012年12月21日 课程设计任务书 一、课程设计题目: 线性表的应用(大数运算) 二、课程设计目的与要求: 1、课程设计目的 (1)对数据结构中线性结构的理解和掌握; (2)熟练掌握顺序和链式存储结构有关知识和方法; (3)深入掌握各种数据结构的理论知识和实践操作; (4) 养成良好的编程风格,掌握各种数据结构的编程思想和编程方法; (5)将数据结构的理论知识和实践有机结合起来,为后续知识的学习 做好准备。 2、课程设计要求 (1) 选择合适的存储结构实现大数存储; (2) 设计算法,采用顺序存储结构完成大数的阶乘运算; (3) 设计算法,采用链式存储结构完成大数的加法运算; (4) 设计算法,选择合适的存储结构完成大数的乘法运算;

(5) 其中某一算法采用两种存储结构实现。三、工作计划: 第一阶段(12月17日,12月18日): 查阅各种数据结构相关资料书籍,整理出课程设计初步模型,并形成 课程设计的整体理论框架,理论模型 ; 第二阶段(12月19日,12月21日): 在DEV-C++5或TURBOC2相关开发语言上,进行编码、上机调试, 逐步形成完善的设计程序,使其达到上机完善演示出系统性的课程设计。 四、课程设计提交的文件: (1) 课程设计报告 (2) 课程设计可运行程序(刻录成光盘) 指导教师: 张绍兵 2012 年 12 月 1日 2 线性表有两种不同的存储结构,分别是顺序存储结构和链式存储结构,在实际中应用十分广泛。本设计要求分别利用线性表的两种存储结构,设计算法完成对大数的阶乘、加法、乘法的求解。 数据结构是一门研究非数值计算的程序设计问题中的操作对象以及它们之间的关系的操作的学科,在本次课程设计中,定义存储结构均采用了数据结构中的抽象数据类型,而抽象数据类型是指一个数据模型以及定义在改模型上的一组操作,抽象数据类型的定义仅仅取决于它的一组逻辑特性,而与计算机内部如何表示和实现无关,即不论其内部结构如何变化,只要它的数学特性不变,都不影响其外部的使用。选择合适存储结构实现大数运算。首先需要先解释的是这里大数计算的因数和结果精度一般是少则数十位,多则几万位。在C语言中定义的类型中精度最多只有二十多位,因而在此我们采取用线性表的顺序和链表存储结构的方式来存放大数,

相关文档
相关文档 最新文档