文档库 最新最全的文档下载
当前位置:文档库 › 焦炉气制甲醇

焦炉气制甲醇

焦炉气制甲醇
焦炉气制甲醇

焦炉气制甲醇

焦炉煤气制甲醇的工艺技术研究2008-06-05 14:49 吴创明(新奥集团股份有限公司,河北廊坊065001) 近年来,随着钢铁工业对焦炭的巨大需求而高速发展起来的炼焦产业,在焦炭产能无序扩张、产量大幅度增长的同时,大量副产的焦炉煤气导致了焦炭产区的环境急剧恶化,不少单一炼焦的**焦化企业“只焦不化”,将大量的焦炉煤气采取点天灯的方式燃烧放散,既严重污染环境,又造成资源浪费。作为贫油、缺气的能源需求大国,如何充分、合理地利用大量点天灯的焦炉煤气,对建设资源节源型社会,实现经济可持续发展具有重要意义。1 焦炉煤气的利用途径1.1 焦炉煤气的组成与杂质含量焦炉煤气的主要组分为H2、CO、CH4、CO2等,随着炼焦配比和操作工艺参数的不同,焦炉煤气的组成略有变化。一般焦炉煤气的组成见表1,杂质含量见表2。表1 焦炉煤气的组成

组分 H2 CO CO2 CH4 CmHn N2 O2

,(V) 54.0,59.0 5.0,8.0 2.0,4.0 23.0,27.0 2.0,3.0 3.0,6.0 0.2,0.4 表2 焦炉煤气中的杂质含量(mg/m3)名称焦油苯萘硫化氢 COS 二硫化碳

氨噻吩类

杂质含量微量 2000,5000 300 100 100 80,100 300 20,50

1.2 焦炉煤气的综合利用途径焦炉煤气是很好的气体燃料和宝贵的化工原料气,净化后的焦炉煤气除用作城市燃气外,还可用于制造甲醇、合成氨、提取氢气和发电,其中以制造甲醇的附加值最高,经济效益最好。若将全国每年放散的

350×108 m3焦炉煤气全用于制造甲醇,可产甲醇1 600万吨,可大大缓解我国石油供应的紧张局面,从而带动经济高速发展。2 焦炉煤气制甲醇的工艺技术2.1 焦炉煤气制甲醇的工艺流程 2004年底,世界上第一套8万t/ a焦炉煤气制甲醇项目在云南曲靖建成投产以来,目前国内已有近10套焦炉煤气制甲醇装置已投入

商业运行,单套装置设计规模多为10,20万t/a,其工艺流程见图1。首先,将来自焦化厂经过预处理的焦炉煤气送进储气罐缓冲稳压、压缩增压,接着进行加氢转化精脱硫,使其总硫体积分数?0. 1×10,6,此即焦炉煤气的净化;然后通过催化或非催化方法将焦炉煤气中的CH4、CmHn转化为合成甲醇的有效气体组分(H2 + CO),再通过补碳(即用煤炭制气、压缩、脱硫、脱碳,制成碳多氢少的水煤气加进原料气中)调整原料气的氢碳比,就制成了氢碳比符合甲醇合成所需的合成气;将合成气压缩增压后送入甲醇合成塔进行合成反应,生成粗甲醇,然后对粗甲醇进行精馏,就制成了煤基清洁能源和用途广泛的有机化工原料精甲醇。在上述工艺流程中,净化与转化是整个焦炉煤气制甲醇的关键技术。2.2 焦炉煤气的净化工艺 (1)焦炉煤气的净化要求。焦炉煤气中的杂质含量高,净化难度大,净化成本高,制约了其作为化工原料气的用途和经济性。通常经过焦化厂净化处理的焦炉煤气,仍然含有微量焦油、苯、萘、氨、氰化氢、Cl,、不饱和烯烃、硫化氢、噻吩、硫醚、硫醇、COS和二硫化碳等杂质。其中,焦油、苯、萘、不饱和烯烃会在后续的焦炉煤气转化和甲醇合成中分解析碳而影响催化剂的活性;由无机硫与有机硫组成的混合硫化物和C1,及羰基金属等杂质是焦炉煤气转化和甲醇合成催化剂的毒物,会导致转化与合成催化剂永久性中毒而失活。因此,彻底脱除杂质,深度净化焦炉煤气,是焦炉煤气资源化利用的关键。

图1 焦炉煤气制甲醇的工艺流程焦炉煤气中含有的噻吩、硫醚、硫醇等有机硫,形态复杂,化学稳定性高,现有的湿法脱硫对其几乎不起作用,必须采取干法脱硫将有机硫脱除。若来自焦化厂的煤气是未脱硫的粗煤气,则必须先进行化产湿法脱硫,

使原料气中的硫含量尽可能减少,以减轻干法脱硫的负担,延长加氢转化脱硫剂的使用寿命。然后再进行干法加氢转化精脱硫,即采取湿法与干法脱硫相结合的方式进行净化精制。首先,粗煤气先经冷凝、电捕焦油、湿法脱硫、脱氰、脱氨、

洗苯等操作,脱除焦炉煤气中的焦油、萘、硫化氢、氰化氢、氨、苯等物质,并加以回收。经上述处理后,可将焦炉煤气中的硫化氢脱至20 mg/m3以下,同时可脱去少量有机硫,但有机硫含量仍然较高。然后再进行干法精脱硫,使焦炉煤气满足净化后总硫体积分数?0. 1×10-6的要求。 (2)精脱硫的技术方案。焦炉煤气中含有的绝大部分无机硫和极少部分有机硫可在焦化厂的湿法脱硫时脱掉,而绝大部分有机硫只能采用干法脱除。干法脱除有机硫有4种方法,即吸收法、热解法、水解法、加氢转化法,目前国内外主要采用水解法和加氢转化法脱除有机硫。水解法脱除有机硫时,由于操作温度为中低温,可避免强放热的甲烷化副反应发生,是目前国内外脱除煤气中有机硫十分活跃的研究领域。但水解催化剂的活性随温度的升高和煤气中氧含量的增大而急剧下降,且对COS和二硫化碳的水解效果较好,对煤气中的噻吩、硫醚、硫醇基本不起作用,这是水解法脱除有机硫的致命缺陷。焦炉煤气经湿法脱硫后可脱去绝大部分硫化氢和少量的有机硫。脱硫的技术瓶颈是如何深度脱除形态复杂、难以用常规方法分解的有机硫,尤其是化学稳定性高、难以分解的噻吩、硫醚、硫醇类有机硫,一般需采用加氢转化法将其转化为无机硫后再脱除。常用的有机硫加氢转化催化剂有钴钼、铁钼、镍钼等类型,加氢转化的氢气来自于焦炉煤气。由于焦炉煤气含有较高浓度的CO和CO2,选择加氢脱硫方案时应注意几点: ? 对噻吩类有机硫加氢分解性能好的加氢催化剂会诱导碳氧化物发生对加氢工艺不利的强放热的甲烷化反应,应尽可能避免或减轻CO和CO2在加氢催化剂上发生甲烷化反应。 ? 应尽可能提高噻吩、硫醚、硫醇等有机硫的加氢转化率。 ? 应避免CO和不饱和烯烃在加氢转化时分解析碳而降低催化剂的活性。传统的钴钼加氢催化剂的价格昂贵,主要用于以天然气为原料的加氢转化精脱硫。在CO、CO2含量较高的气体中,易发生析碳和甲烷化副反应。通常焦炉煤气中含有体积分数为5,,8,的CO,不宜采用钴钼加氢催化剂的脱硫方案。根据焦炉煤气中有机硫的含量和形态,总结近几年国内建设的几套焦炉煤气制甲醇加氢脱硫装置的经

验教训,对焦炉煤气有机硫净化可采取铁钼十镍钼两级加氢、铁锰,氧化锌两级吸收的方式。操作条件为:温度约350?、压力约2. 3 MPa。工艺流程为:铁钼加氢转化?铁锰粗脱硫?镍钼加氢转化?氧化锌精脱硫。先采用活性较低、反应平缓的铁钼加氢催化剂(JT,8)打头阵,避免反应激烈使催化剂床层温升太快,原料气经过一级加氢转化后,用便宜但硫容较低的铁锰脱硫剂脱除转化的硫化氢; 再用活性高、有机硫转化率高的镍钼催化剂(JT,1)进行二级加氢转化;最后用价格贵但硫容较高的

氧化锌精脱硫剂把关,保证经精脱硫后原料气的总硫体积分数?0. 1×10 -6,同时可将不饱和烃加氢转化为饱和烃,将微量的氧气与氢气反应生成水,使原料气中的杂质满足后续转化与合成的要求。其主要化学反应为: C4H4S+4H2 ? C4H10,H2S (1) R-SH+H2 ? RH+H2S (2) R1-S-R2+

2H2 ? R1H,R2H,H2S (3) COS,H2 ? CO,H2S (4) COS,H2O ? CO2,H2S (5) CS2,4H2 ? CH4,2H2S (6) C2H4,H2 ? C2H6 (7) C2H2

,2H2 ? C2H6 (8) O2,2H2 ? 2H2O (9) MnO,H2S ? MnS,H2O (10) Fe3O4,

3H2S,H2 ? 3 FeS,4H2O (11) ZnO,H2S ? ZnS,H2O (12) 该方案在河北、山

东、陕西等省焦炉煤气制甲醇的净化工段使用,脱除有机硫效果良好。 (3)焦炉煤气加氢转化的技术难点。采用加氢转化效果良好的铁钼、镍钼催化剂,虽然可将焦炉煤气

中的化学性质稳定的噻吩类有机硫加氢分解为易于脱除的无机硫,使不饱和烃

在加氢条件下转化为饱和烃,减少了杂质含量,但由于原料气中同时含有高浓度的CO和CO2,在加氢催化剂作用下,会发生如下副反应: CO,3H2 ? CH4,H2O (13) CO2,4H2 ? CH4,2H2O (14) 2CO ? C,CO2 (15) 反应式(13)、(14)是强放热的甲烷化反应,对原料气净化精制极其有害;反应式(15)为强放热的CO歧化析碳反应。这些副反应放出的反应热会引起催化剂床层温度迅速升高,促使烃类分解,析碳增多,会堵塞催化剂孔道和活性点,导致催化剂活性位减少,使催化剂床温失控,引

起催化剂过热失活。这是使用对噻吩类加氢分解性能好的加氢转化催化剂的技术难点,应采取相应的工艺措施,抑制上述副反应的发生,将催化剂床层温度严格控制在350?以下“,防止催化剂过热老化。 (4)焦炉煤气的深度净化。焦炉煤气的深度净化,就是精脱硫后再脱除Cl,和羰基金属。焦炉煤气中含有的Cl,将会导致催化剂活性大幅度下降,其对转化与合成催化剂的危害更甚于硫。此外,Cl,具有很高的迁移性,其造成催化剂中毒往往是全床性的。Cl,还会严重腐蚀生产设备与管道。另外,焦炉煤气中微量的羰基金属(羰基铁、羰基镍)等杂质也会导致甲醇合成催化剂中毒失活。因此焦炉煤气精脱硫后必须深度净化脱除氯和羰基金属,防止其对甲醇合成催化剂的毒害。2.3 焦炉煤气的烷烃转化技术通常,焦炉煤气中CH4的体积分数约23%,27%, CmHn的体积分数约2,,3%,在甲醇合成中,CH4和CmHn都不参与甲醇的合成反应,其作为惰性气体存在于合成气中并往复循环。如何将占焦炉煤气体积分数约30,的烷烃(CH4和CmHn )全部转化为合成气的有效组分(H2,CO),提高合成效率,最大限度地降低了不参加甲醇合成反应的气体组分(CH4、CmHn、N2、Ar),减少甲醇合成回路的循环气量,降低单位甲醇产量的功耗,是焦炉煤气制甲醇的关键技术和难点之一。焦炉煤气烷烃转化重整工艺目前主要有蒸汽转化工艺、纯氧非催化部分氧化转化工艺、纯氧催化部分氧化转化工艺。 (1)蒸汽转化工艺。焦炉煤气的蒸汽转化工艺类似于天然气制甲醇两段转化中的一段炉转化机理,其主要反应为: CH4,H2O ? CO,3H2 (16) 反应式(16)为吸热反应,提高温度,有利于甲烷的转化。反应中需在反应管外燃烧燃料气间接外供热量,反应管需用耐高温的镍铬不锈钢制造,转化炉喷嘴多,结构复杂,制造要求高,造价高。常用于天然气的一段转化,焦炉煤气的甲烷含量仅为天然气的1/4,一般不采用蒸汽转化工艺。 (2)纯氧非催化部分氧化转化工艺。在纯氧非催化部分氧化转化工艺中,主要的转化反应分两个阶段,第一阶段为CH4、H2和CO的燃烧放热反应;第二阶段为甲烷转化为H2和CO阶段,是吸热的二次反应,为整个转化工艺的控制步

骤,其反应式为: CH4,H2O ? CO,3H2 (17) 合成甲醇时,要求新鲜合成气中CH4的体积分数低于0.4%。由于CH4转化是吸热反应,受热力学平衡的限制,纯氧非催化部分氧化转化工艺的转化温度必须在1200?以上。纯氧非催化部分氧化转化工艺生成的合成气中氢碳比较为理想;合成甲醇时循环气中惰性气含量较低,有利于节能减排;尤其是转化过程不需要催化剂,无催化剂中毒问题,因此对原料气要求宽松,转化前焦炉煤气不需要深度脱硫净化,精脱硫过程可从转化前移到转化后;对于原料气中形态复杂、化学稳定性高、湿法脱硫无法脱除的噻吩、硫醚和硫醇类有机硫,在高达1200?以上的高温转化场所全部被裂解为H2S和COS,可在转化后方便地将其脱除。相对于消耗大、造价高的干法加氢转化脱硫,非催化部分氧化转化工艺使焦炉煤气脱硫净化过程大大简化,脱硫精度高,原料气净化成本低,减少了排放硫化物对环境的二次污染,是焦炉煤气净化与转化的发展方向。非催化部分氧化转化工艺不足之处在于:在转化气的净化工艺中选择湿法脱硫工艺必然要同时脱碳,这样作为甲醇合成气中的碳会严重不够,单位甲醇消耗原料气比纯氧催化转化工艺要多30%,且

纯氧耗量高;转化温度比催化氧化转化温度约高200?,转化炉顶的焦炉煤气烧嘴寿命短;到目前为止,还没有非催化部分氧化转化工艺的商业化应用先例,因此不采用纯氧非催化部分氧化转化工艺。 (3)纯氧催化部分氧化转化工艺。由于非催化部分氧化转化工艺需在1300,1400?的高温下进行烷烃的转化反应,原料气消耗和纯氧消耗高。降低转化温度,加入蒸汽参与烷烃转化,加入催化剂加快转化反应速度,这就是纯氧催化部分氧化转化技术。来白精脱硫的原料气与部分蒸汽混合后进入催化部分氧化转化炉烧嘴,氧气经蒸汽预热后与部分蒸汽混合进入转化炉烧嘴,焦炉煤气和氧气在烧嘴中混合并喷出,在转化炉上部进行部分燃烧反应,然后进人转化炉下部的镍催化剂床层进行转化反应,反应后的气体经热量回收后去合成工段。其主要化学反应式如下: 2H2,O2 ? 2H2O (18) CH4,H2O ? CO,3H2 (19)

CH4,CO2 ? 2CO,2H2 (20) 上述反应中,反应式(19)是控制步骤,其控制指标是转化后合成气中甲烷体积分数?0. 4,。对于总硫体积分数超标的原料气,可在催化部分氧化转化后再串接氧化锌脱硫槽,让原料气从氧化锌脱硫槽中通过,以确保合成气中总硫体积分数达标。相对于非催化部分氧化法,纯氧催化部分氧化法的燃料气和氧气消耗低,转化炉结构较简单,造价相对较低,有良好的规模化商业应用业绩,是目前广泛采用的焦炉煤气烷烃转化方案。无论是催化还是非催化转化,焦炉煤气与纯氧都要在烧嘴中混合,烧嘴既要促进焦炉煤气与氧气混合,又要与炉体匹配形成适宜流场,进而形成适宜的温度分布。烧嘴是转化炉系统的关键设备,故烧嘴的设计是转化工艺的核心技术。2.4 合成气的氢碳比调整按照甲醇合成化学计量比要求,理论上新鲜合成气的氢碳比f为: f=

[φ(H2),φ(CO2)]/[ φ(CO),φ(CO2)] =2.05式中的φ(H2)、φ(CO2)、φ(CO)分别为H2、CO2、CO的体积分数一般新鲜的合成气中氢碳比过小时,易发生副反应,且催化剂易衰老;氢碳比过大时,单耗增加。根据化学反应动力学和物料平衡的要求,为维持反应系统的稳定生产,适当提高入塔新鲜合成气中H2的体积分数,有利于减少副反应, 有利于控制催化剂床层温度,可抑制高级醇、高级烃与还原性物质的生成和羰基铁、羰基镍在催化剂上的积聚,提高反应产物中粗甲醇的浓度和纯度。因此,理想的新鲜合成气中氢碳比应为2.05,2.15,其合成效率高,原料的利用率佳。通常,经催化部分氧化转化后的合成气,其体积分数为:H2

69.5,,71.5% ,CO 16. 1,,18.5%,CO2 2. 5,,4.5%, 氢碳比约2.91,3.60, 氢碳比太高,合成气中氢多碳少,合成反应中过量的氢气会造成甲醇合成回路循环气量增大,增加合成循环压缩机的功耗和弛放气的排放量;使经净化、转化等多个工序制取的洁净氢气作为弛放气进入燃料系统烧掉,浪费资源,增加了生产消耗。为合理利用焦炉煤气各组分,通常采用补碳的方式,即向合成气中补入CO和H2来调整合成气的氢碳比。补碳方式有CO2补碳法和煤制气补碳法,经济合理的补碳方式应视

甲醇厂可利用的资源而定。 CO2补碳法常用于天然气制甲醇工艺中,通过PSA装置从烟道气中回收CO2补入合成气中;对于焦炉煤气制甲醇工艺,CO2需外供,使甲醇的产量受到了制约。焦炉煤气常用的补碳方法是采用块煤制气,然后经压缩、脱硫、脱碳(脱出的CO2返回煤制气炉),制成含CO、H2、碳多氢少的水煤气,在进入合成气压缩机之前补入合成气中,以调整其氢碳比。若能以焦化厂的小块焦炭为原料用于制气,比块煤制气补碳更为经济。通常经补碳后可将合成气有效组分的体积分数调整为:H2 66.0,,72.0% ,CO 25.5,,28.5%,CO2 2. 5,,4.5%, 氢碳比f=2.05,2.27, 基本符合合成气的氢碳比要求。2.5 合成气中二氧化碳含量的确定在甲醇合成工艺中,CO、CO2 都与H2发生反应合成甲醇,因此CO2也是有效原料气。合成气中维持一定体积分数的CO2,在合成甲醇过程中可降低反应热,有利于保持铜系催化剂的高活性, 并延长催化剂的使用寿命,可抑制粗甲醇脱水生成二甲醚的副反应发生,阻止CO氧化为CO2,防止催化剂结碳,但当CO2体积分数过高时,甲醇产率又会降低。理论研究和生产实际表明,合成气中CO2的体积分数保持在3,,6,能得到较高的甲醇收

率。 CO2合成甲醇时,1m3的CO2与3 m3的H2反应,生成1 m3的甲醇, 并副产1 m3 的水,这使得用CO2合成甲醇时耗氢量比CO高50%,同时使生成物粗甲醇浓度太低,精馏难度大,能耗高。因此,应将合成气中的CO2体积分数限制在3,,6%。2.6 甲醇合成与精馏工艺技术 (1)甲醇合成工艺。甲醇的合成工艺按合成压力主要分为高压、中压和低压法。早期的高压法合成使用活性较低的锌铬催化剂,合成压力为30 MPa,合成温度为300,400?。高压法的缺点是能耗高、设备复杂、产品质量差,现已淘汰。1970年以后,各国新建与改造的甲醇装置几乎全部采用低压法。经典的低压法使用活性较高的铜锌基催化剂,合成压力为5,10MPa,合成温度为220,280?低压法相对于高压法设备简单、物料和动力消耗低、产品质量好、节省造价,具有明显的优越性,是目前合成甲醇的主要方法。低压法合成

甲醇技术主要有英国IC1技术和德国Lurgi技术,这两家占据着世界70,以上的甲醇技术市场份额。其他还有德国的林德技术、丹麦的托普索技术、日本东洋公司的MRF技术等。各种低压法甲醇合成工艺大同小异,主要区别在于甲醇反应器的结构、反应热移走及回收利用方式和催化剂性能。甲醇合成反应是强放热反应,采用合适的甲醇反应器结构来保证催化剂床层温度相对恒定,是甲醇合成过程高效、稳定进行的关键。焦炉煤气制甲醇合成技术全部为低压法,其设计规模多为10,20万t/a,甲醇合成反应器多为管壳式等温反应器。可采用合成塔双塔串联流程,其单程转化率高,循环气量小,能耗低,造价低。合成气经合成气压缩机加压至5. 3,5. 5MPa后进入合成塔,在温度220,260?及铜基催化剂的作用下,合成气中的CO、CO2与H2反应合成甲醇,其主要反应为: CO,2H2 ? CH3OH (21) CO2,3H2 ? CH3OH,H2O (22) 甲醇合成是体积缩小的强放热可逆反应,且低压甲醇合成催化剂在温度,280?时易过热失活,因此必须及时将反应热移走,使合成反应尽可能接近反应平衡曲线,同时避免因反应热的积累而烧坏催化剂。管壳式甲醇反应器利用管间沸腾水副产中压蒸汽及时移走反应热来保持催化剂床层温度的稳定,既有利于合成反应的进行,又保护了合成催化剂。副产的中压蒸汽与催化转化工段的副产蒸汽并网过热后,用于合成气压缩机驱动透平的动力。合成甲醇是一个多相催化反应过程,受催化剂选择性的限制以及合成压力、合成温度、合成气组成等合成条件的影响,反应过程中CO、CO2与H2除生成甲醇外,还发生一系列副反应,生成烃、高碳醇、醛、酸、酯、醚及单质碳等逾40种副产品,合成产物是甲醇和水及多种有机杂质的混合物,即粗甲醇。粗甲醇经冷却降温至40?,进入甲醇分离器,冷凝分离出的粗甲醇液体进入甲醇膨胀槽,减压闪蒸除去溶解在粗甲醇中的气体后送入甲醇精馏工段。分离和闪蒸出的气体大部分送合成气压缩工段与新鲜合成气混合加压后进入合成塔循环反应,小部分作为弛放气,主要用作转化加热炉的燃料。甲醇合成工艺的追求目标是:最高的反应物单程转化率和最低的副产物产率,对于生

成物体积缩小且强放热的甲醇合成反应,低压法合成甲醇的单程转化率主要取决于催化剂的活性和选择性及工艺操作水平。 (2)甲醇精馏工艺。粗甲醇的精馏采用由预精馏塔、加压精馏塔、常压精馏塔组成的三塔精馏系统,其工艺流程见图2。

焦炉气制甲醇工艺

焦炉气的精制是以炼焦剩余的焦炉气为生产原料,经化工产品回收(焦炉气的粗制);再经压缩后(2.55MPa),进入脱硫转化工段,脱硫采用NHD湿法脱硫和干法精脱硫技术,总硫脱至0.1×10-6,转化采用烃类部分氧化催化技术;制得合格的甲醇合成新鲜气(又称精制气),送去压缩工段合成气压缩机,最后进入甲醇合成塔制得甲醇。 第1章焦炉气成分分析 1.1典型焦炉气的组成 焦炉气的主要成分为甲烷26.49%、氢气58.48%、一氧化碳6.20%和二氧化碳2.20%等,还有少量的氮气、不饱和烃、氧气、焦油、萘、硫化物、氰化物、氨、苯等杂质。焦炉气基础参数:流量62967m3/h(2台焦炉生产的剩余焦炉气);温度25℃;压力0.105MPa(a)(煤气柜压力)。 1.2焦炉气的回收利用 焦炉气是良好的合成氨、合成甲醇及制氢的原料。根据焦炉气组成特点,除H 2 、CO、 CO 2 为甲醇合成所需的有效成分外,其余组分一部分为对甲醇合成有害的物质(如多种形态的硫化物,苯、萘、氨、氰化物、不饱和烃等)。如焦炉气中的硫化物不仅会与转化催化剂的主要活性成分Ni迅速反应,生成NiS使催化剂失去活性,而且还会与甲醇合成催化剂的主要活性组分Cu迅速反应,生成CuS,使催化剂失去活性,并且这两种失活是无法再生的。又如,不饱和烃会在转化催化剂表面发生析碳反应,堵塞催化剂的有效孔隙及表面活性位,使催化剂活性降低。另一部分为对甲醇合成无用的物质(对甲醇合成而言为惰 性组分),如CH 4、N 2 等。惰性气体含量过高,不仅对甲醇合成无益,而且会增加合成气体 的功耗,从而降低有效成分的利用率。 第2章焦炉气的精制 2.1硫的脱除及加氢净化 焦炉气制甲醇工艺中,焦炉气精制的首要工作是“除毒”,将对甲醇合成催化剂有害

天然气制甲醇工艺总结word精品

天然气制甲醇工艺技术总结 中化二建集团有限公司王瑞军 工程名 称:内蒙古天野化工油改气联产20万吨/年甲醇项目 工程地点:内蒙古呼和浩特巾 开工日期:2004年5月 竣工日期:2005年11月 投资金 额: 约6亿元人民币 1甲醇装置简介 1.1内蒙古天野化工集团为调整产品结构,开拓碳一化工领域产品,增强企业参与市场的竞争能力,解决企业生存发展问题,以天然气取代重油为原料,采用非催化部分氧化技术对现有的30万吨/年合成氨生产装置进行技术改造,同时增建一套以天然气为原料年产20万吨的甲醇装置。 1.2 本项目由中国五环科技有限公司设计,中化二建集团有限公司承建。所采用的技术均为国产。所选用的设备除三台天然气压缩机组为进口外,其余均为国产。设计日产甲醇667吨,日耗天然气608500立方米。装置采用:变频电机驱动离心式天然气压缩、 2.5MPa 补碳一段蒸汽转化炉、蒸汽透平驱动离心式合成气压缩机、8.0MPa林达均温合成塔、三塔 精馏、普里森膜分离氢回收、MEA二氧化碳回收工艺。另外还为合成氨配套一台蒸汽透平驱动离心式天然气压缩机。 2甲醇装置工艺特点 2.1 天然气压缩工序 天然气压缩工序是将1.25MPa( A)天然气压缩至蒸汽转化要求的压力2.85MPa(A)。天然气压缩机组采用德国阿特拉斯生产的电机驱动的离心式压缩机组?离心压缩机的显著 特点是单机打气量大。运转平稳无脉冲、维修少、无需备用,与蒸汽透平驱动相比投资少,占地面积较小。 2.2 天然气转化工序 2.2.1天然气转化工序是通过天然气和蒸汽转化反应生产甲醇合成需要的合成气。天然气转化工序只设一段转化炉,转化炉采用顶烧方箱炉,对流段为水平布置,水碳比为 3.2, 转化炉出口转化气温度855E,压力2.19MPa,甲烷含量约2.5% (干基)。 2.2.2 原料天然气脱硫采用钻钼加氢串氧化锌脱硫工艺,氧化锌脱硫槽采用双塔,可并联可串联保证天然气中总硫小于O.IPPn,同时脱硫剂更换不影响生产。

《焦炉煤气制甲醇技术》试题及答案

河南平顶山工学院 2010-2011学年第二学期(C) 《焦炉煤气制甲醇技术》课程答卷(开卷) 复查人: 备注:考试过程中可使用无记忆功能的计算器。 一、是非题(每题1分,共20分正确的打√错误的打X) 1、催化剂的活点温度即为催化剂的活化温度。( X ) 2、压力量度单位1㎏/㎝2等于1MPa。(X ) 3、钝化就是将催化剂的活性控制在原始状态。( X ) 4、催化剂中毒是指催化剂暂时或永久失去活性。(√) 5、合成触媒的主要组分是Cu。( X ) 6、比水轻的易燃体着火,不宜用水扑救。(√) 7、合成主反应都是吸热反应。(√) 8、压力的国际标准单位是帕斯卡(pa)。(√) 9、合成触媒长期停车时不需要钝化。( X ) 10、短期停车后需要向合成气中充氮。(√) 11、调节入塔气体成分也可以调节合成塔温度。() 12、甲醇在空气中的含量不允许超过50mg/m3。(√) 13、合成塔是管式反应器。(√) 14、排污膨胀器的作用是排污卸压。( X ) 15、铁钼触媒的主要作用是脱除煤气中的有剂硫。( X ) 16、过滤器的作用是脱除煤气中的硫化物。( X ) 17、升温炉点火失败后必须进行蒸汽吹扫、置换合格后再进行点火。(√) 18、镍钼催化剂的主要组分是NiS。(X ) 19、工艺气体在进入转化炉前必须预热。(X ) 20、空速是指空气通过催化床层的速度。( X )。 二、选择题(每题1分,共17分) 1、转化工序停车减量的基本顺序一次分别为__ B ___ A 氧气、原料气、蒸汽 B 氧气、蒸汽、原料气 C 原料气、氧气、 蒸汽 2、铁钼触媒的热点温度为__ B ___℃ A 200—300 B 350—420 C 400—450 3、一个工程大气压约等于__ A __。 A 0.1MPa B 1MPa C 0.01MPa 4、合成工序入塔气中H/C的实际值一般控制在__ A __。 A 2.63 B 2.05—2.15 C 5—6 5、预热炉出口氧气的温度为__ B __℃。 A 350 B 300 C 420 6、合成触媒200℃以上的升温速率一般控制在__ C _℃/h。。 A 40 B 20 C 30 7、当管道直径一定时,流量由小变大,则阻力__ A __。 A 增大 B 减小 C 不变 8、甲醇合成工序气气换热器的类型__ A __。 A 固定管板式 B 浮头式 C U型管板式 9、转化炉出口残余甲烷含量为__ A __%。 A <0.6 B <0.8 C <0.5 10、废热锅炉的锅炉给水来自__ A __。

天然气造气工艺流程说明

天然气造气工艺流程说明 一、合成氨工序造气流程: 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体和甲醇工段送来的驰放气进入二段炉。压缩送来的空气,经过空气预热器预热达到一定温度后进入二段炉,空气中的氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化(当有甲醇弛放气时,配适量的纯氧)。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后进入中温变换炉进行一氧化碳的变换,中温变换炉出来的气体进入甲烷化第二换热器,预热甲烷化入口气,换热后的中温变换气进入中变废锅,气体降至一定温度后进入低温变换炉,进一步将一氧化碳变换为二氧化碳,出低温变换炉一氧化碳达到≤. 0.3%,经低变废锅回收部份热量产蒸汽,回收热量后的低变气进入脱碳系统低变气再沸器预热再生塔底部溶液,最后进入低变冷却系统降温至35℃以下进入压缩工段或碳化工段。脱碳来的净化气或压缩来的碳化气进入甲烷化第一换热器

预热后进入甲烷化第二换热器进一步预热,气体达到一定温度后进入甲烷化炉,残余的一氧化碳和二氧化碳在镍触媒作用下生成甲烷,使CO+CO的含量<10PPm,甲烷化出来的气2体进入甲一换回收部份热量后进入甲烷化第一、第二冷却器,气体温度降至35℃以下送压缩加压,最后送往合成氨工序。 二、甲醇造气流程 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体进入二段炉。空分来的氧气经预热后达到一定温度进入二段炉,氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然.气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后根据甲醇合成气体成分情况通过中变近路阀调 整入中温变换炉的气量进行一氧化碳的变换,以便调整气体成分。中温变换炉出来的气体和中变近路转化气进入甲化第二换热器,预热甲醇合成来的弛放气,换热后的中温变换气或转化气进入中变废锅,气体降至一定温度后根据中变气体的成分通过低变近路阀调整入低温变换炉的气量,进一步调整气体成分,低变炉或低变近路来的气体经低变废锅回收部

焦炉工艺流程

炼焦工艺 现代焦炭生产过程分为洗煤、配煤、炼焦和产品处理等工序。 1.洗煤 原煤在炼焦之前,先进行洗选。目的是降低煤中所含的灰分和去除其他杂质。 2.配煤 将各种结焦性能不同的煤按一定比例配合炼焦。 目的是在保证焦炭质量的前提下,扩大炼焦用煤的使用范围,合理地利用国家资源,并尽可能地多得到一些化工产品。 3.炼焦 将配合好的煤装入炼焦炉的炭化室,在隔绝空气的条件下通过两侧燃烧室加热干馏,经过一定时间,最后形成焦炭。 4.炼焦的产品处理 将炉内推出的红热焦炭送去熄焦塔熄火,然后进行破碎、筛分、分级、获得不同粒度的焦炭产品,分别送往高炉及烧结等用户。 熄焦方法有干法和湿法两种。

湿法熄焦是把红热焦炭运至熄焦塔,用高压水喷淋60~90s。 干法熄焦是将红热的焦炭放入熄焦室内,用惰性气体循环回收焦炭的物理热,时间为2~4h。 在炼焦过程中还会产生炼焦煤气及多种化学产品。焦炉煤气是烧结、炼焦、炼铁、炼钢和轧钢生产的主要燃料。 炼焦工艺主要设备 1、焦炉简介: 现代焦炉炉体由炭化室、燃烧室和蓄热室三个主要部分构成。一般,炭化室宽0.4~0.5m、长10~17m、高4~7.5m,顶部设有加煤孔和煤气上升管(在机侧或焦侧),两端用炉门封闭。燃烧室在炭化室两侧,由许多立火道构成。蓄热室位于炉体下部,分空气蓄热室和贫煤气蓄热室。 焦炉系统中常用的控制设备:PLC、变频器、组态软件、电动机、断路器、接触器、按钮、温度仪表等等。 2、捣固焦炉简介: 捣固焦泛指采用捣固炼焦技术在捣固焦专用炉型内生产出的焦炭,这种专用炉型即捣固焦炉。捣固炼焦技术是一种可根据焦炭的不同用途,配入较多的高挥发分煤及弱粘结性煤,在装煤推焦车的煤箱内用捣固机将已配合好的煤捣实后,从焦炉机侧推入炭化室内进行高温干馏的炼焦技术。

合成气制甲醇(精品)

合成气制甲醇(精品) 合成气制甲醇( 合成气可以由煤、焦炉煤气、天然气等生产) 一、甲醇合成工艺技术 合成甲醇工艺技术概况: 自从1923年德国BASF公司首次用一氧化碳在高温下用锌铬催化剂实现了甲醇 合成工业化之后,甲醇的工业化合成便得以迅速发展。当前,合成法甲醇生产几乎 成为目前世界上生产甲醇的唯一方法。半个多世纪以来,随着甲醇工业的迅速发 展,合成甲醇的技术也得以迅速改进。目前世界上合成甲醇的方法主要有以下几种: 1、高压法(19.6~29.4 MPa) 这是最初生产甲醇的方法,采用锌铬催化剂,反应温度为360~400?,压力 19.6~29.4Mpa。随着脱硫技术的发展,高压法也在逐步采用活性高的铜系催化剂, 以改善合成条件,达到提高效率和增产甲醇的效果。高压法虽然有70多年的历 史,但是,由于原料及动力消耗大,反应温度高,投资大,成本高等问题,其发展 长期以来处于停滞状态。 2、低压法(5.0~8.0 MPa) 这是20世纪60年代后期发展起来的甲醇合成技术。低压法基于高活性的铜 系催化剂。铜系催化剂活性明显高于锌铬催化剂,反应温度低(240~270?),在较低 的压力下获得较高的甲醇收率,而且选择性好,减少了副作用,改善了甲醇质量, 降低了原材料的消耗。此外,由于压力低,不仅动力消耗比高压法降低很多,而且 工艺设备的制造也比高压法容易,投资得以降低,总之低压法比高压法有显著的优 越性。 3、中压法(9.8~12.0 MPa)

随着甲醇单系列规模的大型化(目前已有日产2000吨的装置甚至更大单系列的装置),如采用低压法,势必导致工艺管道和设备非常庞大,因此在低压法的基础上,适当提高合成压力,即成为中压法。中压法仍采用与低压法相同的铜系催化剂,反应温度也与低压法相同,因此它具有与低压法相似的优点,但由于提高了合成压力,相应的动力消耗略有增加。目前,世界上新建或扩建的甲醇装置几乎都采用低压法或中压法,其中尤以低压法为最多。英国I.C.I公司和德国Lurgi公司是低压甲醇合成技术的代表,这两种低压法的差别主要在甲醇合成反应器及反应热回收的形式有所不同。目前世界上合成甲醇主要采用低压法工艺技术,它是大型甲醇装置的发展主流。甲醇合成系统包括合成气压缩(等压合成除外)、甲醇合成热量回收、甲醇精馏等工序,其核心设备是甲醇合成塔。有多种形式的合成塔在工业化装置中应用,经实际验证都是成熟可靠的。但在选择中要精心比较。二、甲醇精制 甲醇精制目前工业上采用的有两塔流程和三塔流程,两塔流程已能生产优质的工业品甲醇,但从节能降耗角度出发,选择三塔流程是较好的。三塔流程将以往的主精馏塔分为加压精馏塔和常压精馏塔,将加压精馏塔塔顶出来的甲醇蒸汽作为常压精馏塔的热源,降低了蒸汽消耗。通常情况下可降低能耗30%,但投资略有增加试析甲醇行业未来发展方向 甲醇是一种重要的有机化工原料,应用广泛,可以用来生产甲醛、合成橡胶、甲胺、对苯二甲酸二甲脂、甲基丙烯酸甲脂、氯甲烷、醋酸、甲基叔丁基醚等一系列有机化工产品,而且还可以加入汽油掺烧或代替汽油作为动力燃料以及用来合成甲醇蛋白。随着当今世界石油资源的日益减少和甲醇单位成本的降低,用甲醇作为新的石化原料来源已经成为一种趋势。尽管目前全球甲醇生产能力相对过剩,并且不排除由于某种原因而引起甲醇市场的波动,但是对于有着丰富的煤、石油、天然

探讨焦炉煤气制作甲醇的工艺技术

探讨焦炉煤气制作甲醇的工艺技术 摘要:随着钢铁工业的快速发展,尤其是在焦煤燃料等的需求逐渐增大,出现了一系列的环境与经济社会发展的问题。如果一味的追求焦炭产能的无序扩张,在追求产量的增长,这样,就会导致环境的进一步恶化,特别是在以牺牲自然环境为前提的焦炭发展,给人们的生活健康带来了一定的影响。因此,在全面思考如何解决大量的焦炉煤气燃烧放散的存在问题基础上,通过对技术层面的研究,将这些焦炉煤气化为一种有效的物质,既环保又能促进经济的循环进步,将是有着重要的现实意义。本文从焦炉煤气的利用途径来分析,对其中的组成和杂质含量进一步分析,从而提出焦炉煤气制甲醇的工艺技术,实现甲醇合成与精馏工艺技术,更好的促进经济社会的快速发展。 关键词:焦炉煤气制作甲醇合成工艺技术 合成甲醇是一个多相催化反应的过程,通过各种选择性的限制还有合成压力、温度、气组等因素的影响,在合成甲醇之外,还会伴随有烃、高碳醇、醛等一些产物,因此,全面形成合成甲醇的技术参数,分离和闪蒸出的气体大部分送合成气压缩工段与新鲜合成气混合加压后进入合成塔循环反应,提升催化剂的活性和选择性工艺的操作水平。 1、简述焦炉煤气的利用途径 1.1 分析焦炉煤气的组成与杂质含量 从当前焦炉煤气的构成成分来看,主要集中组成部分就是如H2、CO、CH4、CO2等,在具体的应用中,由于炼焦过程中,配比和工艺参数的不同,在焦炉煤气的组成上也会有一定的变化,可以通过下面的表格进行分析探讨。一般焦炉煤气的组成见(表1),杂质含量见(表2)。 1.2 概述焦炉煤气的综合利用途径 焦炉煤气作为一种很好的气体燃料,同时也是一种最有效的化工原料气,在通过采取进化的措施之后,可以作为一种最佳的燃气,应用到制作甲醇、合成甲醇类等各种需要,还能作用于工业生产,譬如合成氨、提取氢气等,并能用在发电行业中,尤其是在合成甲醇的价值上,能体现出更高的效果和附加值,能收取很好的经济效益。有研究显示,如果能将放散的350×108m3焦炉煤气全用于制造甲醇,可产出1600万吨的甲醇,从而有效缓解石油供应不足的现状,实现经济效益的全面发展和带动作用。 2、探讨焦炉煤气制甲醇的工艺技术 2.1 焦炉煤气制甲醇的工艺流程 在焦炉煤气制作甲醇的工艺技术掌握上,可以采取有效地流程,通过将焦化厂经过各种预处理的焦炉煤气送进储气罐缓冲稳压、压缩增压,接着进行加氢转化精脱硫,使其总硫体积分数≤0.1×10-6,此即焦炉煤气的净化;在此基础上,采取补炭的方式,具体的操作就是,就是应用煤炭制气,采取压缩、脱硫、脱碳等措施,形成碳多氢少的水煤气,并注入到原材料的配比中,实现调整原材料中碳与氢的比例,制成比例符合甲醇需求的合成气,这是合成甲醇的工艺第一步[1];通过将合成气压缩后增压送入甲醇合成塔参与化学合成反应,制作出粗甲醇,这样,就可以通过采取进一步的技术应用,在对粗甲醇进行精馏之后,制成与煤基清洁能源和用途广泛的有机化工原料精甲醇,在这个全过程中,充分把握焦炉煤气技术应用中的关键点,就是净化和转化,这是最关键的技术应用,直接影响着甲醇合成的成功率。

合成气制备甲醇原理与工艺

合成气制备甲醇原理与工艺 简要概述 班级:xxxxxxxxxxxxxxxxxxxxx 专业:化学工程与工艺 姓名:xxxxx 学号:201473020108 指导教师:xxxxx

一、甲醇的认识 1.物理性质 无色透明液体,易挥发,略带醇香气味;易吸收水分、CO2和H2S,与水无限互溶;溶解性能优于乙醇;不能与脂肪烃互溶,能溶解多种无机盐磺化钠、氯化钙、最简单的饱和脂肪醇。 2.化学性质 3.甲醇的用途 (1)有机化工原料 甲醇是仅次于三烯和三苯的重要基础有机化工原料 (2)有机燃料 (1)、甲醇汽油混合燃料;(2)、合成醇燃料;(3)、与异丁烯合成甲基叔丁基醚(MTBE)、高辛烷值无铅汽油添加剂;(4)、与甲基叔戊基醚(TAME)合成汽油含氧添加剂

4.甲醇的生产原料 甲醇合成的原料气成分主要是CO 、 CO2、 H2 及少量的N2 和CH4。主要有煤炭、焦炭、天然气、重油、石脑油、焦炉煤气、乙炔尾气等。 天然气是生产甲醇、合成氨的清洁原料,具有投资少、能耗低、污染小等优势,世界甲醇生产有90%以上是以天然气为原料,煤仅占 2%。 二、合成气制甲醇的原理 1.合成气的制备 a.煤与空气中的氧气在煤气化炉内制得高 CO 含量的粗煤气; b.经高温变换将 CO 变换为 H2 来实现甲醇合成时所需的氢碳比; c.经净化工序将多余的 CO2 和硫化物脱除后即是甲醇合成气。 说明: 由于煤制甲醇碳多氢少,必需从合成池的放气中回收氢来降低煤耗和能耗,回收的氢气与净化后的合成气配得生产甲醇所需的合成气, 即( H2-CO2) /( CO+CO2)=2.00~2.05。 2.反应机理 主反应 OH CH H CO 322→+ △H 298=-90.8kJ/mol CO 2 存在时 O H OH CH H CO 23222+→+ △H 298=-49.5kJ/mol 副反应 O H OCH CH H CO 233242+→+ O H CH H CO 2423+→+ O H OH H C H CO 2942384+→+ O H CO H CO 222+→+ 增大压力、低温有利于反应进行,但同时也有利于副反应进行,故通过加入催化剂,提高反应的选择性,抑制副反应的发生。 3. 影响合成气制甲醇的主要因素 (1)合成甲醇的工业催化剂

赛鼎工程有限公司焦炉气制甲醇设计项目

赛鼎工程有限公司焦炉气制甲醇设计项目 我个人认为:焦炉煤气制甲醇的工艺还没达到成熟的程度,特别是转化工序采用纯氧转化炉的尤甚。 1、烧嘴 纯氧转化炉烧嘴若采用传统合成氨的刚玉分布器的方式,那么很难保证长周期安全运行,转化炉烧穿的事故很可能发生,这是因为纯氧燃烧的温度比空气燃烧的温度高,焦炉煤气与氧气的混合若出现不均匀,超温会导致转化炉烧穿;而刚玉分布器又很难保证焦炉煤气与氧气的混合均匀。 若采用金属烧嘴,个人认为:国内的技术还不能完全让人放心。虽然国内航天十一所、华东理工大学在这方面进行了很大的努力,但与国外的先进技术相比,还有一定差距。国外的金属烧嘴,卡萨利的技术在国内运用很多,但也出现过问题;如果采用JM的技术,就必须一直使用其转化催化剂,因为JM是按其转化催化剂产品进行设计的,而其转化催化剂的用量很少,同样装填量的国内催化剂很难满足工艺要求;如果采用TOPSOE的金属烧嘴,那么必须全套引进转化炉,因为TOPSOE不单独提供金属烧嘴。 2、转化炉的设计 对于纯氧转化炉的设计一定要重视,一定要考虑流体力学方面的问题,一般要进行CFD模拟,另外工程设计经验也非常重要。如果不做此项工作,投产可能没问题,但长周期、安全运行就不一定能保

证了。 3、操作人员的技能、经验 纯氧转化炉的操作危险性高,对于操作人员的水平要求非常高,但这一点对目前国内很多焦炉煤气制甲醇的厂家来说恰恰是一个软肋。 化二院设计焦炉气制甲醇项目 1 山西孝义天浩股份有限公司 甲醇10万吨/年 本院技术 E 山西孝义 2001 2 云南曲靖焦化制供气有限责任公司 甲醇8万吨/年 本院技术 EPC 云南曲靖花山镇 2002

焦炉气制甲醇

焦炉气制甲醇 焦炉煤气制甲醇的工艺技术研究2008-06-05 14:49 吴创明(新奥集团股份有限公司,河北廊坊065001) 近年来,随着钢铁工业对焦炭的巨大需求而高速发展起来的炼焦产业,在焦炭产能无序扩张、产量大幅度增长的同时,大量副产的焦炉煤气导致了焦炭产区的环境急剧恶化,不少单一炼焦的**焦化企业“只焦不化”,将大量的焦炉煤气采取点天灯的方式燃烧放散,既严重污染环境,又造成资源浪费。作为贫油、缺气的能源需求大国,如何充分、合理地利用大量点天灯的焦炉煤气,对建设资源节源型社会,实现经济可持续发展具有重要意义。1 焦炉煤气的利用途径1.1 焦炉煤气的组成与杂质含量焦炉煤气的主要组分为H2、CO、CH4、CO2等,随着炼焦配比和操作工艺参数的不同,焦炉煤气的组成略有变化。一般焦炉煤气的组成见表1,杂质含量见表2。表1 焦炉煤气的组成 组分 H2 CO CO2 CH4 CmHn N2 O2 ,(V) 54.0,59.0 5.0,8.0 2.0,4.0 23.0,27.0 2.0,3.0 3.0,6.0 0.2,0.4 表2 焦炉煤气中的杂质含量(mg/m3)名称焦油苯萘硫化氢 COS 二硫化碳 氨噻吩类 杂质含量微量 2000,5000 300 100 100 80,100 300 20,50 1.2 焦炉煤气的综合利用途径焦炉煤气是很好的气体燃料和宝贵的化工原料气,净化后的焦炉煤气除用作城市燃气外,还可用于制造甲醇、合成氨、提取氢气和发电,其中以制造甲醇的附加值最高,经济效益最好。若将全国每年放散的 350×108 m3焦炉煤气全用于制造甲醇,可产甲醇1 600万吨,可大大缓解我国石油供应的紧张局面,从而带动经济高速发展。2 焦炉煤气制甲醇的工艺技术2.1 焦炉煤气制甲醇的工艺流程 2004年底,世界上第一套8万t/ a焦炉煤气制甲醇项目在云南曲靖建成投产以来,目前国内已有近10套焦炉煤气制甲醇装置已投入

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

焦炉气制甲醇转化

第二节:转化工艺技术操作规程 一、转化工艺流程 (一)、焦炉气预热 来自压缩岗位的焦炉气经焦炉气预热器加热至320℃左右,送往精脱硫岗位脱除有机硫和无机硫后,硫含量≤0.1ppm,压力约2.3Mpa,温 度约360℃去转化工序。在焦炉气中加入3.0Mpa的过热饱和蒸汽(蒸汽 流量根据焦炉气的流量来调节),经焦炉气预热器(C60602)加热至530℃ 后,再经预热炉(B60601)预热至660℃左右进入转化炉(D60601)顶 部。同时配入了3.0Mpa过热饱和蒸汽(蒸汽流量根据氧气的流量来调 节)的氧气也进入转化炉(D60601)顶部与焦炉气混合后发生转化反应, 反应后的转化气由转化炉(D60601)底部引出,温度≤930℃,压力约 2.2Mpa,甲烷含量≤1.0%,进入废锅(C60601)回收热量副产蒸汽。转 化气温度降为≤540℃,然后经焦炉气预热器(C60602),温度降至420℃ 左右,再进入焦炉气初预热器(C60603),温度降至300℃后,经锅炉给 水预热器(C60604)进一步回收反应热后,转化气温度降至160℃,再 经蒸发式空冷器(C60606)冷却到100℃左右,经分离器(F60605)分 离后进入脱盐水预热器(C60607)为脱盐水预热,从脱盐水预热器出来 的转化气约40℃,再经气液分离器(F60602)分离后,进入常温氧化锌 脱硫槽,常温氧化锌(D60602)出口温度≤40℃,压力2.0Mpa送往合成 气压缩机入口。 (二)、燃料气 来自甲醇合成的燃料气与来自气柜的高硫煤气一起进入燃料气混合器混合后,一部分进入预热炉底部,与空气鼓风机(J60601A/B)送来 的空气混合后燃烧,为预热炉提供热量,另一部分送精脱硫升温炉作燃 料。 (三)、氧气 来自气体厂的氧气,温度为80℃,压力2.5Mpa,与经预热炉加热后的蒸汽混合后进入转化炉(D60601)上部,氧气流量根据转化炉 (D60601)出口温度来调节。 4、锅炉给水 来自脱盐水站的脱盐水,温度约40℃,经除氧槽除去氧后用锅炉给水泵加压到4.2Mpa,在锅炉给水预热器(C60604)加热至200℃后,一 部分送往甲醇合成,另一部分经汽包(F60601)进入废锅生产 3.0Mpa 中压蒸汽。废热锅炉所产蒸汽除给本工序用外,富裕蒸汽送至蒸汽管网。

天然气转化合成甲醇的工艺

天然气转化合成甲醇的工艺综述 2015-6-24 专业:化工12-3班 学号: 学生姓名:劳慧 指导教师:刘峥

一.前言 (1) 二.主体部分 (2) 1. 天然气合成甲醇的原理 (2) 2. 高压法合成甲醇的原理及工艺流程 (2) 3. 低压法合成甲醇的原理及工艺流程 (3) 4. 中压法合成甲醇的原理及流程 (4) 5. 三者的比较 (4) 6. 以天然气合成甲醇的优势和现状 (6) 7. 其他原料合成甲醇与天然气合成甲醇的比较 (6) 三.结论部分 (8) 1. 对天然气合成甲醇的认识和了解 (8) 2. 对天然气转化合成甲醇提出我的观点和见解 (8) 四.参考文献 (8)

天然气转化合成甲醇的工艺 一.前言 20世纪60年代,石油和天然气作为一次能源与煤炭一起成为主要能源。与此同时,以石油和天然气为原料的化学工业也迅猛发展起来。与石油不同的是,天然气的成分主要是低分子量的烷烃。因此,天然气化工在发展中逐步成为一个体系。天然气是储量十分丰富的资源和能源,同时也是主要的温室气体之一,合理地利用天然气不仅关系到未来的资源配置和能源利用,而且也是可持续发展的重要战略发展方向之一。 天然气可以合成多种化工原料产品,比如生产合成氨还有甲醇,其中甲醇是最重要的。甲醇是一种重要的基础化工产品和化工原料,主要用于生产甲醛。醋酸、甲苯胺、氯甲烷、乙二醇及各种酸的酯类和维尼纶等,并在很多工业部门中广泛用作溶剂。甲醇在气田开发中用作防冻剂,添在汽油中可提高汽油的辛烷值,甲醇还可直接用作燃料用于发动机。 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料。天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行。由天然气制合成气进而合成甲醇是制甲醇产品一条重要的工艺路线。

焦炉气制甲醇工艺

焦炉气制甲醇工艺(总8页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第1章焦炉气成分分析 1.1典型焦炉气的组成 焦炉气的主要成分为甲烷26.49%、氢气58.48%、一氧化碳6.20%和二氧化碳2.20%等,还有少量的氮气、不饱和烃、氧气、焦油、萘、硫化物、氰化物、氨、苯等杂质。焦炉气基础参数:流量62967m3/h(2台焦炉生产的剩余焦炉气);温度25℃;压力0.105MPa(a)(煤气柜压力)。 1.2焦炉气的回收利用 焦炉气是良好的合成氨、合成甲醇及制氢的原料。根据焦炉气组成特点,除H2、CO、CO2为甲醇合成所需的有效成分外,其余组分一部分为对甲醇合成有害的物质(如多种形态的硫化物,苯、萘、氨、氰化物、不饱和烃等)。如焦炉气中的硫化物不仅会与转化催化剂的主要活性成分Ni迅速反应,生成NiS使催化剂失去活性,而且还会与甲醇合成催化剂的主要活性组分Cu迅速反应,生成CuS,使催化剂失去活性,并且这两种失活是无法再生的。又如,不饱和烃会在转化催化剂表面发生析碳反应,堵塞催化剂的有效孔隙及表面活性位,使催化剂活性降低。另一部分为对甲醇合成无用的物质(对甲醇合成而言为惰性组分),如CH4、N2等。惰性气体含量过高,不仅对甲醇合成无益,而且会增加合成气体的功耗,从而降低有效成分的利用率。 第2章焦炉气的精制 2.1硫的脱除及加氢净化 焦炉气制甲醇工艺中,焦炉气精制的首要工作是“除毒”,将对甲醇合成催化剂有害 的物质脱除到甲醇合成催化剂所要求的精度。这是因为甲醇合成催化剂对硫化物的要求要高于转化催化剂。甲醇合成催化剂要求总硫<0.1×10-6,转化催化剂要求总硫<0.×10-6。第二就是要减少惰性组分的含量。脱除“毒物”的方法,根据系统选择工艺方案的不同而有所差别。而降低惰性气体的组分含量主要是采用将烃类部分氧化催化转化的方法,使其转化为甲醇合成有用的CO和H2,同时达到降低合成气中惰性组分的目的。 2.1.1无机硫的脱除 焦炉气中硫质量浓度高达6g/m3,氰化物质量浓度约为1.5g/m3。在焦炉气净化工艺中设有脱硫、脱氰、蒸苯、焦油电捕捉等一系列净化装置,除为了减轻硫化氢和氰化物对后续装置的腐

煤制甲醇工艺原理

第一章:甲醇生产工艺原理 第一节:甲醇的物理化学性质、用途 甲醇是一种有机化学产品。1661年英国化学家波义耳最早从干馏木材中发现了甲醇。所以也叫木醇。1922年,德国BASF公司用化学方法合成了甲醇。1923年建成年产300吨的甲醇生产装置。采用锌铬催化剂,在高压条件下生产甲醇,所以也叫高压法甲醇。到1966年,英国帝国化学工业(I.C.I)研究出了铜基催化剂,开发出了低压合成工艺,1971年,德国鲁奇公司(Lurgi)也开发出了低压合成甲醇工艺,以后,世界上甲醇生产工艺基本上采用低压合成工艺。 从1975年以后,世界上甲醇生产规模越来越大,甲醇装置单套生产能力达到20万吨/年,到90年代,单套生产能力达到60-80万吨/年,目前已达到100万吨/年的水平。 1.甲醇的物理化学性质 在常态下,甲醇是无色透明的液体,有轻微的酒香;有良好的溶解性,与水、乙醇互溶,在汽油中有较大的溶解度;易燃易爆;有毒性,人摄入20-30ml,会导致失明;摄入50-60ml,会致死。 甲醇分子式:CH3OH,分子量:32 结构式: H H-C-OH H 沸点:64.4-64.8℃; 冰点:-97.68℃;比重0.791;

爆炸极限:6.0%-36.5%;闪点:16℃; 2.甲醇的主要用途。 甲醇的化学性质很活泼。可进行氧化、脂化、羰基化、胺化、脱水反应。甲醇是一种重要的基本有机化工原料。是碳一化学的基础。用甲醇可以生产上百种化工产品。典型的有:甲醛、聚甲醛、醋酸、甲胺、甲基叔丁基醚(MTBE)、甲基丙烯酸甲脂(MMA)、聚乙烯醇、碳酸二甲脂、硫酸二甲脂、对苯二甲酸二甲脂(DMT)、二甲脂甲酰胺(DMF)、二甲醚、乙烯、丙烯及苯,等等。还是一种重要的能源,可直接做燃料、做甲醇燃料电池、甲醇汽油、还可以分解制氢和一氧化碳。2008年,全球甲醇产量达到4500万吨。我国甲醇产量1000多万吨。 第二节:甲醇生产工艺原理 1.合成气的制造与生产甲醇的主要原料 合成气(含有CO、CO2、H2的气体)在一定压力(5—10MPa)、温度230-280℃)和催化剂的条件下反应生成甲醇,合成反应如下:CO+2H2=CH3OH+Q CO2+3H2=CH3OH+H2O+Q 1.1生产甲醇的主要原料 含有CO、CO2、H2的气体叫合成气。能生产合成气的原料就是生产甲醇的原料。主要有:

用焦炉煤气制甲醇的方法与相关技术

图片简介: 一种用焦炉煤气制甲醇的生产方法,该方法使用的装置包括一套焦炉气精制装置、一套变压吸附提氢装置、一套变压吸附提甲烷装置、一套湿法脱碳装置、一套氢气和二氧化碳混合气压缩装置、一套甲醇合成和精馏装置。其方法步骤:提取氢气、提取甲烷、提取甲烷后的尾气去焦炉和化产作燃料、尾气在焦炉燃烧后的燃烧气,经过湿法脱碳装置提取CO2,CO2与H2混和,经压缩机加压去甲醇合成与精馏装置生产甲醇。该方法充分利用焦炉煤气中不同组分的特点,组建了焦炉气生产甲醇的新的生产流程,该流程科学、简捷、合理,不但满足焦炉和化产的热量需要,而且尾气的单位热值比原来用的焦炉煤气作燃料要高出30%,使焦炉的操作条件比现有技术更好。 技术要求 1.一种用焦炉煤气制甲醇的方法,其特征在于,所述方法的生产过程使用的装置包括一套焦炉气精制装置、一套变压吸附提氢装置、一套变压吸附提甲烷装置、一套湿法脱碳装置、一套氢气和二氧化碳混合气压缩装置、一套甲醇合成和精馏装置;其方法步骤包 括: a.焦炉所产的焦炉气,送入焦炉气精制装置经过精制后全部送入变压吸附提氢装置提取氢气;

b.提氢后的尾气,经过变压吸附提甲烷装置,提取出10800Nm3/h的甲烷作为天然气销售; c.提取甲烷后的尾气去焦炉和化产作燃料; d.尾气在焦炉燃烧后的燃烧气,经过湿法脱碳装置提取CO2,CO2与H2按氢碳比大于3:1的比例混和,混合后经压缩机加压到5-8 MPa(g)后去甲醇合成与精馏装置生产甲醇。 2.根据权利要求1所述的用焦炉煤气制甲醇的方法,其特征在于,将焦化及化产所产的全部焦炉气经加压至0.8-2.5Mpa(g)后全部送去精制装置进行精制。 3.根据权利要求1所述的用焦炉煤气制甲醇的生产方法,其特征在于,所述的焦炉煤气的组分为:H2 58%;CO 6.2%;CO2 2.2%;CH4 26%;CnHm2.5%;N2 4.5%;H2S 50mg/Nm3;有机硫400 mg/Nm3。 4.根据权利要求1所述的用焦炉煤气制甲醇的方法,其特征在于,所述的焦炉及化产所需燃料由后工序的尾气提供。 5.根据权利要求1所述的用焦炉煤气制甲醇的方法,其特征在于,甲醇合成用的是铜系催化剂。 说明书 用焦炉煤气制甲醇的方法 技术领域 本技术涉及煤化工产品的生产领域,具体涉及一种以焦炉气为原料,对焦炉气中不同组分进行分离,合理配置用焦炉煤气制甲醇的方法。 背景技术

天然气制甲醇与煤制甲醇的区别

浅谈天然气制甲醇与煤制甲醇的区别 摘要:天然气制甲醇和煤制甲醇是我国目前主要产甲醇工艺,但是随着经济的发展,各种资源的短缺,煤和天然气的产量存在了差异,这就直接导致甲醇的产量和主要生产工艺的选择。本文将从天然气和煤产甲醇各自的利弊进行分析,探究甲醇未来生产道路。关键词:天然气煤甲醇利弊分析 一、天然气制甲醇与煤制甲醇各自的利弊 经济飞速发展的当下,甲醇以及其下游、上游产品的需求量在不断的增加,制甲醇的方法工艺也日渐增多,然而煤制甲醇和天然气制甲醇这两种工艺依旧是最主要的制造生产甲醇的重要工艺手段。这两种生产工艺可以说是各有千秋。本文就从生产工艺、建设成本、生产成本、产品质量以及发展前景对这两个主要制甲醇工艺予以比较。 在生产工艺方面,煤制甲醇总体是一个气化、变换、低温甲醇洗、甲醇合成及精馏、空分装置地过程。煤制甲醇,是以煤和水蒸气为原料生产甲醇,在这个过程中得先把煤制成煤浆,通过加入碱液调整煤浆的酸碱度,使用棒磨机或者球磨机对原煤进行煤浆气化,相比之下球磨机磨出的煤浆粒度均匀,筛下物少,在这个过程中排出的废水中含有一定量的甲醇和甲醇精馏废水,这些废水可以充分利用在磨浆水;气化就是煤浆与氧气部分氧化制的粗合成气,在这个过程中会产生co、co2等有害气体;接下来是灰水处理;变换的

过程就是把co转化成h2;在这个过程会产生大量的杂质;低温甲醇洗,这一过程是把制的甲醇的硫化物和杂质等脱除;甲醇合成及精馏的过程其实就是把制的甲醇进行再次净化和优化。煤制甲醇工艺整个过程相对于复杂,在生产过程中产生的杂质比较多,操作难度比较大,杂质多就导致甲醇纯度相对比较低,合成的粗甲醇中杂质种类和量都比天然气甲醇多,因此精馏难度也较大。天然气制甲醇的主要原料是天然气,甲烷是天然气的主要部分,此外还存在少量的烷烃、氮气与烯烃。以非催化部分氧化、蒸汽氧化等方法进行生产甲醇,蒸汽转化法作为应用最广的生产方法,它的生产环境是管式炉中在常压或者加压下进行的,在催化剂的催化下,甲烷与水蒸气进行反应,生成甲醇以及二氧化碳等混合气体。目前我国主要采取的是一段炉采用蒸汽转化、两段炉串联工艺,可以更高效直接的生产出甲醇。这些工艺手段简单高效,生产过程中不会产生大量的有害物质,清洁燃料莫过于这种生产工艺。 煤制甲醇工艺的建设成本,从以上的制造工艺中不难看出,该种制造工艺复杂,每一道工序需要的设备比较多,成本自然而然会比较高;天然气制甲醇工艺流程相对比较简单,所需设备一般都是高效的质量保证的设备,经过工序少,建设成本不高。 在生产成本上,煤碳的消耗是固定的,它的消耗量也受设备装置和生产工艺的影响,此外煤制甲醇还需要电力的支持。煤炭、电力费用在经济日益发展的当前费用也在日益增加,根据相关部门的数

浅谈天然气制甲醛的工艺流程

浅谈天然气制甲醛的工艺流程 【摘要】天然气制甲醛是比较成熟的工艺,本文就天然气制甲醛的工艺流程进行了探讨。 【关键词】天然气;甲醛;工艺流程 1.引言 天然气制甲醇技术从最初从国外引进以来,工艺日趋完善成熟。相对流程较为简单,主要分为天然气的转化、新鲜气的压缩、合成、以及精馏提浓四大块。工业化生产甲醇基本采用CO、CO2、H2三种新鲜气在特定的温度、压力和催化剂的条件下合成而成。合成甲醇的新鲜气如何制取。天然气工艺则采用天然气与水蒸气在特定的温度压力和催化剂下得出。同时CO、CO2、H2合成出的甲醇含有一定成分的水,根据要求行业标准精馏提浓。故简言之天然气生产甲醇工艺的大步骤即为转化、压缩、合成、精馏。 2.天然气低压合成甲醇工艺流程 (1)天然气脱硫 来自气田的天然气经粗脱硫后由一压力阀控制压力,天然气进入天然气总管,再由另一段管线引出进入本装置。天然气分两路,一路送往对流段作为工艺原料气,另一路作为燃料气送往燃料系统。 原料天然气送往箱式炉对流段,经4组和6组加热至

350~400℃进入铁锰脱硫罐和ZnO脱硫罐脱硫。原料天然气自上而下通过脱硫剂床层,从脱硫罐底部出来,天然气中的的硫化物被铁锰脱硫剂和ZnO脱硫剂转化吸收,硫含量降至0.14mg/m3以下,使符合转化炉进气要求。 设有两个铁锰脱硫罐,内装铁锰脱硫剂,根据生产需要并联或串联,也可以单独使用。设有ZnO脱硫罐一个,串在铁锰脱硫罐后面,起到精脱硫把关的作用。每个脱硫罐进口和出口都设有压力指示,上部床层和下部床层设有温度指示,出口设有取样、现场导淋和去火炬放空。脱硫罐总进出口设有一DN100的主线和两个副线阀,开停车需要甩出脱硫罐时用。两副线阀中间设有一DN20的小排放阀,正常运行中将其打开,监视副线阀的内漏情况。在脱硫罐进口设有一引自2.5MPa的中压蒸汽管线,在铁锰脱硫剂还原时床层温度“飞升”时可以用其来降温。进口还设有一条N2置换管线。在脱硫出口工艺天然气总管上设有去火炬放空管线。 (2)一段转化。脱硫后的天然气分为两路与汽提塔来的蒸汽混合,混合比例H2O/∑C=3.5控制,分别进入箱式炉对流段二组A和B,预热至510℃。出二组A的混合气进入箱式炉B201进行天然气蒸汽一段转化,出二组B的混合气再分两路对称进入换热炉进行天然气蒸汽一段转化。 箱式炉内设有转化管,转化管共分四排,每排若干根。工艺气由上集气总管通过上猪尾管分别进入转化管,至上而

焦炉气制甲醇工艺

焦炉气制甲醇工艺-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

焦炉气的精制是以炼焦剩余的焦炉气为生产原料,经化工产品回收(焦炉气的粗制);再经压缩后(2.55MPa),进入脱硫转化工段,脱硫采用NHD湿法脱硫和干法精脱硫技术,总硫脱至0.1×10-6,转化采用烃类部分氧化催化技术;制得合格的甲醇合成新鲜气(又称精制气),送去压缩工段合成气压缩机,最后进入甲醇合成塔制得甲醇。 第1章焦炉气成分分析 1.1典型焦炉气的组成 焦炉气的主要成分为甲烷26.49%、氢气58.48%、一氧化碳6.20%和二氧化碳 2.20%等,还有少量的氮气、不饱和烃、氧气、焦油、萘、硫化物、氰化物、氨、苯等杂质。焦炉气基础参数:流量62967m3/h(2台焦炉生产的剩余焦炉气);温度25℃;压力 0.105MPa(a)(煤气柜压力)。 1.2焦炉气的回收利用 焦炉气是良好的合成氨、合成甲醇及制氢的原料。根据焦炉气组成特点,除H2、CO、CO2为甲醇合成所需的有效成分外,其余组分一部分为对甲醇合成有害的物质(如多种形态的硫化物,苯、萘、氨、氰化物、不饱和烃等)。如焦炉气中的硫化物不仅会与转化催化剂的主要活性成分Ni迅速反应,生成NiS使催化剂失去活性,而且还会与甲醇合成催化剂的主要活性组分Cu迅速反应,生成CuS,使催化剂失去活性,并且这两种失活是无法再生的。又如,不饱和烃会在转化催化剂表面发生析碳反应,堵塞催化剂的有效孔隙及表面活性位,使催化剂活性降低。另一部分为对甲醇合成无用的物质(对甲醇合成而言为惰性组分),如CH4、N2等。惰性气体含量过高,不仅对甲醇合成无益,而且会增加合成气体的功耗,从而降低有效成分的利用率。 第2章焦炉气的精制 2.1硫的脱除及加氢净化 焦炉气制甲醇工艺中,焦炉气精制的首要工作是“除毒”,将对甲醇合成催化剂有害

相关文档