文档库 最新最全的文档下载
当前位置:文档库 › 基于垂直观测的植被冠层高光谱偏振反射特性研究_吕云峰

基于垂直观测的植被冠层高光谱偏振反射特性研究_吕云峰

基于垂直观测的植被冠层高光谱偏振反射特性研究_吕云峰
基于垂直观测的植被冠层高光谱偏振反射特性研究_吕云峰

第3 3卷,第4期 光谱学与光谱分析Vol.33,No.4,pp

1028-10312 0 1 3年4月 Spectroscopy and Spectral Analysis Ap

ril,2013 基于垂直观测的植被冠层高光谱偏振反射特性研究

吕云峰

长春师范学院城市与环境科学学院,吉林长春 130032

摘 要 以玉米冠层为研究对象,首先利用偏振反射机理分析了玉米冠层的反射信息中存在偏振现象;随后在抽穗前不同生长时期垂直观测方向对其高光谱偏振信息进行了测量,证明了理论推导,而且发现偏振光在总的反射光中所占的比例可达10%。这即表明了偏振测量可以为对地遥感提供辅助信息,同时也说明利用偏振信息反演大气参数时应该考虑地表偏振对它的影响。关键词 遥感;高光谱;偏振;植被冠层

中图分类号:TP72 文献标识码:A DOI:10.3964/j

.issn.1000-0593(2013)04-1028-04 收稿日期:

2012-08-24,修订日期:2012-10-25 基金项目:国家自然科学基金项目(

41201343),吉林省科技厅青年科研基金项目(201101105),吉林省教育厅“十二五”项目(2012220)和长春师范学院自然科学基金项目(2010024

)资助 作者简介:吕云峰,1977年生,长春师范学院城市与环境科学学院博士研究生 e-mail:qingsong

web@163.com引 言

对地遥感技术中偏振测量已经可以反演地表参数提供额

外且有效的辅助信息,同时也会对探测器获得的大气偏振特

性有所影响[

1]

。早期的研究已经表明,可见光波段范围内的偏振测量可

以用来估计植被冠层的粗糙度[

2]

。植被冠层的粗糙度可以从冠层延伸到叶片,因为冠层的粗糙度可以确定植物的生长方向,叶片粗糙度决定了植被冠层对光的偏振能力,同时,叶片越多产生偏振光机会就越大。所以,植被量的多少就可以通过偏振来反映出来

[3]

。镜面反射是在植被冠层较常见的一

种现象,也是产生偏振的主要原因。Vanderbilt[4]

等推导出可以反映植被冠层镜面反射与偏振反射光的模型,该模型基于冠层的形态、物候特征与菲涅尔公式。可以将生长阶段、叶片含水量、某些植被疾病与偏振测量之间建立起关系。

像玉米、高粱和小麦这样的植被冠层,通常会产生大量的镜面反射光,从而在朝向太阳方向倾斜观测时这些植物会出现白光而不是绿光。植物闪光叶片的镜面反射主要是源于

叶片表皮的蜡质层,而这部分光是偏振光[5]

。Vanderbilt[5]等

对作物冠层的偏振特性做了研究,这对植被冠层对光的散射与偏振作用的理解提供了基本的解释。与此同时,利用偏振测量可以将小麦冠层的反射信息分成镜面反射部分和漫反射

部分,这将有助于发展更完善的植被冠层辐射传输模型[

6]

。为了更好的理解植被散射光中偏振特性,Woessner与Hap

ke[7]

研究了三叶草的偏振特性,在与前面研究结果相同的基础上,他们发现投射光会产生负偏振显现,而这会影响

呈聚集状态叶片对光的偏振能力。在对小麦冠层进行偏振测

量时,Ghosh等[8]

在相对太阳入射方位180°

,探测天顶角度为60°,70°和80°前向散射方向对小麦冠层进行了偏振测量,并以偏振度为指标说明了偏振测量可以更好的描述小麦抽穗期的开始时间。

在植被偏振测量过程中,研究者们都将注意力集中在了冠层对光的偏振能力及单个叶片的偏振反射特性,Grant

等[9]

在布儒斯特角处对大量不同种类的植物叶片进行了偏振

测量,发现所有叶片对光都具有偏振作用,镜面反射与表面颗粒的散射都会引起偏振光,而且偏振光只在叶片表面产生,叶片内部结构对偏振没有任何影响。

随着对地偏振测量的发展,也由实验测量转变到模型的

建立,Breon等[1

0]

建立了基于物理理论的分析模型,其中包括植被的偏振反射模型,他们的结果表明,在星载遥感背景下,利用偏振反射监测植被的信息将会非常的弱,但是却对气溶胶遥感有很大帮助。虽然如此,如果气溶胶的偏振反射小于地表的偏振反射,则相对误差就会变的非差大。Breon

等[10]

的模型同时也指出最适合气溶胶遥感的情况是地表偏

振反射非常小的探测角度方向。也就是在垂直向下方向进行大气偏振信息的获取,因为这个角度可以认为相对大气偏振

而言地物偏振可以忽略[

11]

。但是,实际当中由于地面粗糙不平的表面会引起很多的镜面反射,使垂直探测时地表的偏振

作用会很大[

12]

,出现地面偏振大于大气偏振的机会就会增加。

所以针对以上在对植被冠层的偏振测量过程中大部分研

究都集中在了前向散射方向以及垂直地面对大气偏振观测时将地表偏振忽略的情况下。在冠层可以产生偏振光理论的基础上,以垂直方向在玉米不同生长时期对其冠层的高光谱偏振反射特性进行测量,分析垂直探测方向植物冠层的偏振特性。这对研究利用偏振信息反演地表与气溶胶参数以及太阳

辐射与地表的相互作用过程具有较重要的意义[

13-16]。1 地表偏振反射理论

通常光可以以光强于偏振态的形式被表示出来。在大多

数光学遥感应用当中,只测量了不同波段的反射光强,同时根据光强变化来反映地表信息。

当自然光倾斜地入射到物体表面上时,假设地表的偏振反射是由镜面反射产生的,同时在镜面方向会发生反射和折射。设θs与θt分别为入射角与折射角,则依据菲涅耳反射公式

rV=tan(θs-θt)tan(θs+θt)

(1)rH=sin(θs-θt)sin(θs+θt)

(2)式中,rV和rH分别为V分量与H分量的振幅反射率。不考虑方向时,对两个分量的振幅反射率比较可以得出,当入射光垂直入射时,θs=0°,rV=rH,所以反射光不存在偏振特

性。当入射光为0°<θs<90°时,rV<rH

(3) 表明反射光电矢量的平行分量的值总是小于垂直分量。所以当入射光为自然光时,倾斜入射表面反射后,经过单次反射后是偏振光。根据式(4)可以将式(1)和式(2)中的折射角消去。

n1sinθs=n2sinθt(4)式中,n1为空气的折射率1,n2为反射介质的折射率,则由

于镜面反射引起的相互垂直的两个偏振分量(V,H)是与介质折射率与入射角度有关的

[10]

反射光中偏振部分可以通过Stokes参量计算得到。而在实际测量当中,V可以忽略不计

[12]

,其他各个分量表示为

I=I0°+I90°=I+45°+I-

45°Q=I0°-I90°U=I+45°-I-烅

45°(5

)式中,I0°,I90°,I+45°,I-45°,Il和Ir分别表示在镜面反射情况下,探测器的偏振片透光轴方向在相对入射方向0°,90°

,+45°,-45°方向获得的线偏光。偏振度P可以由下式计算出来

P=Q2+U

(6

) 偏振度在本研究中作为一种对比的指标。同时结合双向反射系数来分析不同冰的反射信息。

对于地表反射的光强,可以通过双向反射系数来描述,同时也可以表示出地物的反射特征,它的定义是在相同入射条件下,目标物的反射光与一个理想的浪波反射体之间比值。

R=

L′(θs,φ;θ′,φ

′)Lθsφθ′φ

′(7

)式中,θs与φ表示入射辐射的天顶角与方位角,在反射辐射方向θ′与φ′获得反射辐射L′。L表示的是在相同条件下标

准白板的反射辐射值。

2 垂直观测植被冠层偏振反射过程

2.1 测量地点与测量环境

实验分别于2012年7月6日与7月17日进行,天空晴朗无云,微风,测量时间为11:50—12:45。测量地点为长春师范学院内玉米试验田。坐标位置为:43°54′37.13″N,125°23′48.77″E,海拔高度约为200m。测量日期均在抽穗前期,因为在研究小麦冠层偏振时发现麦穗的出现之后会减小冠层对光的偏振能力,从而很难建立偏振信息与小麦长势之间的

关系[

5]

。同样,抽穗期玉米顶端的雄蕾对玉米冠层的影响与小麦穗对小麦冠层的影响相似。

2.2 角度测量装置与光谱测量仪器

在野外测量过程中,利用中科院长春光机所北方液晶公司制造的测量系统,其中有手动角度调节器,同时结合ASD地物光谱仪与偏振片对玉米冠层的高光谱偏振反射信息进行测量。

其中,角度调节器在测量过程中主要是用来变换探测角度,该仪器主要由三部分组成:测量支架、底座、手机械装置。测量支架前端为一圆筒,固定探测器光纤部分,同时可以将偏振片安装进行偏振测量,也具有改变探测视场角的能力(视场角范围最小可以确定在8°);支架可以在相对天顶方向±90°范围旋转,可控制精度为1.5°;而且可以在0.2~1.5m范围自由上升与下降,从而在探测方向视场角不变的情况下,可以对不同面积地物进行测量。

角度测量仪器在所有探测角度都是对同一点进行测量的,测量点变换范围在2cm范围内。由于测量中心点的变化在对测量玉米冠层的影响中可以忽略。为了保证对玉米冠层进行测量,在玉米的不同生长时期通过调整底座高度来实现这一目标,同时利用水平仪为参照,调整探测器底座使其水平。且每次测量保证探测器探头与玉米冠层之间的距离一致(1m),视场角一致(10°)。实验中的偏振片为线偏振片,可以透过的波长范围是300~1 000nm;ASD的光谱范围为350~1 

000nm,可以结合起来对玉米冠层进行测量,在测量反射信息与偏振信息之后,又利用SPAD-502叶绿素仪进行了现场测量,得到的是SPAD值,值越高表明叶绿素含量越高。

2.3 反射系数与偏振度计算

在对玉米冠层偏振反射信息进行测量之前,参照式(7)所描述的定义,在垂直获取了其反射辐射,并对双向反射系数进行了计算。随后安装偏振片,利用在太阳入射面为参考面偏振片在0°,90°,+45°,-45°方向获得的线偏光,通过式(6

)计算植被冠层反射光中的偏振度。9

201第4期 光谱学与光谱分析

3 结果与讨论

图1是在垂直方向2012年7月6日玉米冠层的反射系数与线偏振度曲线。图2为2012年7月17日玉米冠层的发射系数与线偏振度曲线。这里为了方便,将2012年7月6日的玉米表示为玉米冠层(1),7月17日的玉米表示为玉米冠层(2

)。偏振度同时也表示了偏振光在反射光中所占的比例

。Fig.1 The curve of hyperspectral reflectance factor and deg

reeof linear polarization from corn canopy(

)Fig.2 The curve of hyperspectral reflectance factor and deg

reeof linear polarization from corn canopy(2)3.1 玉米冠层反射信息随波段变化分析

两图中深黑色曲线表示在350~1 000nm波段范围内玉米冠层的反射系数。浅灰色曲线表示线偏振度。通过对比两图可以发现,玉米冠层(1)的反射系数大于玉米冠层(2)的反射系数,这是因为玉米(1)期叶片SPAD值为:8.8~11.2。

玉米(2)时期为9.6~15.3。即,玉米(1)期叶片叶绿素含量相对玉米(2)期含量低,一些叶片呈现出嫩黄色,所以反射率相对较高,且叶片倾角较大,呈现叶片上举状态。但是由于玉米植株高度已经达到0.8m左右,玉米垂直方向叶片层数的增加对其在近红外波段的反射影响不大,所以玉米(1)与玉米(2)在近红外波段的反射系数差异不是很明显,只是在可见光波段范围内由于叶绿素含量的变化使反射系数有差异。

3.2 垂直观测玉米冠层反射光中偏振部分分析

通过对图1和图2中线偏振度大小分析来看,在垂直方向观测玉米冠层时,其反射光中包含一定量的偏振光,而且偏振曲线与反射系数呈现反比例关系,这与文献[15]

得到的结果一致。但是在短波蓝波段附近噪声较大,这主要是由于

晴朗天空中依然有一些小分子颗粒散射入射光,使其产生偏振显现,而且在短波段范围最明显。

玉米冠层中偏振度最大值可以达到10%左右,这是由于玉米冠层的叶片倾斜角度不同使其产生了不同的小的反射面,而玉米叶片正面表面上覆盖了一层蜡质层,可以在镜面方向对入射光进行反射,从而引起光的偏振。这些小的反射面所分布的角度有所不同,也就会出现垂直方向的探测器能接收到单次反射引起的偏振信息,如图3所示。图中θv为探测角度,α为冠层垂直方向与冠层小反射面法线之间的夹角。当探测器在冠层垂直方向时,与太阳入射方向相对且有一定角度的小平面就会产生镜面反射直接进入到传感器中

Fig.3 The single reflection from vegetation canopy3.3 玉米冠层形态结构对偏振的影响

玉米冠层(1)的偏振度小于玉米冠层(2)的偏振度,这表示玉米冠层(2)对入射光的偏振能力要强,也就是说明有更多的镜面反射光直接被探测器接收。这种现象出现是由于玉

米(1)时期的玉米叶片上举,整体倾斜角度小,产生相对入射方向的反射角的度范围小,不易形成直接反射太阳光的小平面,同时叶片被太阳直接照射的面积较小,产生偏振光的机会就小。

而玉米(2)时期的叶片的长度已经有所增加,呈现弯曲形状,会使叶片整体倾斜角度变大,相对入射方向的反射角度角度范围变大,也会产生更多的单次反射入射光的小平面,而被太阳直射的面积也变大,对光的偏振也就越明显。

4 结 论

本研究基于高光谱偏振测量技术,结合角度测量仪器,

在晴朗天空条件下,垂直方向对玉米冠层的反射信息与反射中偏振信息进行了测量,并以Stokes参量计算得到偏振度为指标描述了抽穗前期不同时间段玉米冠层的偏振特性。从中得到以下结论:

(1

)在可见光近红外波段范围内垂直方向对玉米冠层进行观测时,玉米冠层具有对入射光的偏振能力,偏振度最大值可以达到10%。

(2

)垂直方向植被冠层的高光谱偏振度曲线与反射系数呈反比例关系,即反射值越高偏振度越小,反射值越底偏振

301光谱学与光谱分析 第33卷

度越大。

(3

)不同生长时期由于玉米叶片倾斜角度的变化会改变冠层对光的偏振能力。叶片倾斜角度范围较小时,产生的偏振光少;叶片倾斜角度范围较大时,产生的偏振光相对较多。因此不同生长时期的玉米冠层表现出来的偏振特性是与叶片倾斜角度有关的。

作为辅助现有对地遥感技术的地表偏振测量也该在对地

与大气偏振研究中被重视,这是由于在垂直方向玉米冠层的偏振度就达到了10%,而随着探测角度的增加,冠层的偏振反射特性会变得更明显,也为实现利用偏振信息反演地表参数提供了更多的信息来源。

综上所述,即使在垂直方向探测情况下,植被冠层的偏振作用依然很大,是偏振测量研究中不可忽视的一部分,而且偏振信息对冠层形态变化较为敏感。

References

[1] Waquet F,Léon J F,Cairns B,et al.Applied Optics,2009,48(6):1228.[2] Curran P J.Remote Sensing of Environment,1978,7:305.[3] Curran P J.Remote Sensing 

of Environment,1981,11:87.[4] Vanderbilt V C,Grant L.IEEE Transactions on Geoscience and Remote Sensing,1985,5(GE-23):722.[5] Vanderbilt V C,Grant L,Daughtry C T.Proceedings of The IEEE,1985,73(6):1012.[6] Vanderbilt V C,Grant L,Biehl L L,et al.Applied Optics,1985,24(15):2408.[7] Woessner P,Hapke B.Remote Sensing 

of Environment,1987,21:243.[8] Ghosh R,Sridhar V N,Venkatesh H,et al.International Journal of Remote Sensing,1993,14(13):2501.[9] Grant L,Daughtry 

C S T,Vanderbilt V C.Physiologia Plantarum,1993,88:1.[10] Breon F-M,Tanre D,Lecomte P,et al.IEEE Transactions on Geoscience and Remote Sensing

,1995,33(2):487.[11] YE Song,FANG Yong-hua,SUN Xiao-bing,et al(叶 松,方勇华,孙晓兵,等).Acta Optica Sinica(光学学报),2007,27(3):999.[12] WU Tai-xia,YAN Lei,XIANG Yun,et al(吴太夏,晏 磊,相 云,等).Journal of Infrared and Millimeter 

Waves(红外与毫米波学报),2009,28(2):151.

[13] Maignan F,Bréon F-M,Fédèle E,et al.Remote Sensing 

of Environment,2009,113:2642.[14] Litvinov P,Hasekamp O,Cairns B,et al.Journal of Quantitative Spectroscopy and Radiative Transfer,2010,111:529.[15] Suomalainen J,Hakala T,Puttonen E,et al.Journal of Quantitative Spectroscopy 

and Radiative Transfer,2009,110:1044.[16] SUN Zhong-qiu,ZHAO Yun-sheng(孙仲秋,赵云升).Journal of Quantitative Spectroscopy 

and Radiative Transfer,2011,112:2372.Study of Hyperspectral Polarized Reflectance of Vegetation Canopy 

atNadir Viewing 

DirectionL Yun-feng

College of Urban and Environmental Sciences,Changchun Normal University,Chang

chun 130032,ChinaAbstract In the present study,corn canopy is the objective.Firstly the polarization of corn canopy 

was analyzed based on polar-ization reflection mechanism;then,the polarization of canopy was measured in different growth period at nadir before heading.The result proved the theoretical derivation that the light reflected from corn canopy is polarized,and found that in the total re-flection the polarization light accounts for up to 10%.This shows that polarization measurement provides auxiliary 

informationfor remote sensing,but also illustrates that the use of the polarization information retrieval of atmospheric parameters should beconsidered when the surface p

olarization affects on it.Key

words Remote sensing;Hyperspectral;Polarization;Vegetation canopy(Received Aug.24,2012;accep

ted Oct.25,2012) 1

301第4期 光谱学与光谱分析

CPL圆偏振荧光光谱仪测量原理

主要用途: 圆偏振荧光在发光材料、生物蛋白、信息显示存储、电子学、非线性光学等领域有广泛的用途和应用前景,引起科学家极大的关注和兴趣。采用圆偏振荧光光谱仪可提供分子激发态的结构信息,表征聚合物结构,成为研究有机化合物的立体构型的一个重要方法。工作原理: 光是一种电磁波,可用振动的电场和与之垂直的磁场来描述,若光波在其传播途径中具体某一点上只有一个振动方向,但振动方向随光波的传播而有规律的偏转一定角度但振幅不变,其电场矢量末端的运动轨迹为螺旋状,该螺旋的横截面为圆形,这种偏振光为圆偏振光。人们在圆二色的基础上,发现圆偏振荧光的左、右圆偏振光的强度不同。通常以左、右圆偏振荧光的强度差CPL=△F= FL-FR,作为圆偏振荧光的量度。

之前文献报道的圆偏振荧光检测都是在相关科研工作者自己设计和建造的仪器上进行的。直到1972年以色列魏茨曼科技学院Steinberg和Gafni (SG) 提出图一A所示的圆偏振荧光调制测量方法,基本组成部分为:激发源、单色器、样品、光学弹性调制器、偏光片、发射单色器、光电倍增管、锁相放大器及计算机。该方法将调制后的光电信号和PEM光学弹性调制器信号输入给锁相放大器,通过二者频率与相位锁相从荧光中提取圆偏振荧光。 1982年荷兰莱顿大学的Schippers,van den Beukle和Dekkers (SBD)提出了图一B所示的圆偏振荧光测量方法,该方法利用光子计数取代锁相放大器,解决了锁相放大器的输出不稳定问题。其后复杂蛋白结构测量主要采用的是该方法,但是对于弱的圆偏振荧光测量还是速度很慢。 1992-1995年期间,随着TDC时间数字转换器等电子技术的发展,美国密西根大学的Schauerte,Steel,和Gafni (SSG) 进一步提出了图一C所示的圆偏振荧光直接相减测量方法。该方法采用DGG延迟选通脉冲发生器,分别测量△F= FL-FR公式中的FL左圆偏振荧光和FR右圆偏振荧光,两者相减直接得到真正的圆偏振荧光△F,利用公式glum=2(FL-FR)/(FL+FR)求得不对称因子。该方法同时解决了以上两种方法中锁相环输出不稳定与测量速度慢的问题,使用该方法商业化生产的圆偏振荧光光谱仪主要是美国Olis公司圆偏振荧

空间目标的光学偏振特性研究

第37卷第7期 光电工程V ol.37, No.7 2010年7月Opto-Electronic Engineering July, 2010 文章编号:1003-501X(2010)07-0024-06 空间目标的光学偏振特性研究 李雅男,孙晓兵,乔延利,洪津,张荞 ( 中国科学院通用光学定标与表征技术重点实验室;安徽光学精密机械研究所,合肥 230031 ) 摘要:偏振特性是光与物质相互作用所表现的重要特性之一,与物质的性质密切相关。空间目标偏振特性可能会因为特定空间目标组成材料和空间目标轨道不同而存在差异,因此为空间目标的探测和识别提供了科学依据。本文通过空间目标材料以及典型空间目标模型的多角度偏振成像特性试验测量,分析了空间目标偏振特性及其变化机理。结果表明,空间目标表面材料的偏振特性对于目标的识别具有很重要的作用,太阳能电池板的姿态对卫星的偏振特性影响尤为明显。本文研究可以为空间目标光学偏振探测与识别提供应用基础研究支持。 关键词:物理光学;目标探测;偏振特性;空间目标 中图分类号:O436.2 文献标志码:A doi:10.3969/j.issn.1003-501X.2010.07.005 Photopolarimetric Characteristic of Space Target LI Ya-nan,SUN Xiao-bing,QIAO Yan-li,HONG Jin,ZHANG Qiao ( Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China ) Abstract:Polarization is one of the important optical characteristics of target. Certain materials used in constructing satellites possess unique polarization because of certain space target designs and different orbits. Thus polarization can be considered for target detection and recognition. Photopolarimetric characteristic of space target materials and model are measured and analyzed. Results show that the polarization properties of material are significant for target detection, and the attitude of solar panel has great effect on the polarization of satellite. This research can give support to the application for space target detection and recognition. Key words:physical optics; target detection; polarization; space target 0 引 言 地基光学探测系统对深空目标的探测有重要的作用,为了达到探测和识别目标的目的目前已经发展了若干种探测手段[1],例如,Sanchez等根据高轨碎片的光度特性来判断目标的生存状态以及特征[2],通过同时性的多色测光来判断不同卫星平台[3]。Jorgensen等人表明由于不同材料的空间目标具有不同的光谱反射率,因此采用低色散光谱观测对于目标的识别有重要的作用[4]。而目标的偏振特性由于反映了材料的本征特性也在空间目标的探测中也得到了应用,Stead在美国俄亥俄州Sulphur Grove观测站,在光电望远镜上加上偏振分析器完成空间目标的偏振观测,测量到一个卫星的偏振度最大达39%[5]。Kissel研究表明空间目标反射太阳光的偏振程度是很高的,并将偏振结果看成由漫反射和镜反射混合而产生的,按照这种假设理论计算与观测结果符合的比较好,他认为这足以证明偏振特性可以作为研究空间目标材料在太空中所受的影响[6],Beavers等人通过不同形状的卫星的光学偏振观测,表明偏振观测可以作为测试在轨目标状态、判断目标材料、探测目标在深空中暴露对其光学特性影响的一种手段,并将铝质材料和太阳能板表面的卫 收稿日期:2010-01-11;收到修改稿日期:2010-05-11 基金项目:国家863计划资助课题(2002AA731041);安徽省红外与低温等离子体重点实验室基金项目资助课题(2007C003018F) 作者简介:李雅男(1984-),女(汉族),江西九江人。博士生,主要从事遥感信息定量化的研究。E-mail:yananli@https://www.wendangku.net/doc/3017720303.html,。

光的偏振特性研究

实验7 光的偏振特性研究 光的干涉衍射现象揭示了光的波动性,但是还不能说明光波是纵波还是横波。而光的偏振现象清楚地显示其振动方向与传播方向垂直,说明光是横波。1808年法国物理学家马吕斯(Malus,1775—1812)研究双折射时发现折射的两束光在两个互相垂直的平面上偏振。此后又有布儒斯特(Brewster,1781—1868)定律和色偏振等一些新发现。 光的偏振有别于光的其它性质,人的感觉器官不能感觉偏振的存在。光的偏振使人们对光的传播规律(反射、折射、吸收和散射)有了新的认识。本实验通过对偏振光的观察、分析和测量,加深对光的偏振基本规律的认识和理解。 偏振光的应用很广泛,从立体电影、晶体性质研究到光学计量、光弹、薄膜、光通信、实验应力分析等技术领域都有巧妙的应用。 一、实验目的 1. 观察光的偏振现象,了解偏振光的产生方法和检验方法。 2. 了解波片的作用和用1/4波片产生椭圆和圆偏振光及其检验方法。 3. 通过布儒斯特角的测定,测得玻璃的折射率。 4. 验证马吕斯定律。 二、实验原理 1. 自然光和偏振光 光是一种电磁波,电磁波中的电矢量E就是光波的振动矢量,称作光矢量。通常,光源发出的光波,其电矢量的振动在垂直于光的传播方向上作无规则的取向。在与传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。光的振动方向和传播方向所组成的平面称为振动面。按照光矢量振动的不同状态,通常把光波分为自然光、部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光五种形式。 如果光矢量的方向是任意的,且在各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。自然光通过介质的反射、折射、吸收和散射后,光波的电矢量的振动在某个方向具有相对优势,而使其分布对传播方向不再对称。具有这种取向特征的光,统称为偏振光。 偏振光可分为部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光。如果光矢量可以采取任何方向,但不同方向的振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,这种光为部分偏振光。如果光矢量的振动限于某一固定方向,则这种光称为线偏振光或平面偏振光。如果光矢量的大小和方向随时间作有规律的变化,且光矢量的末端在垂直于传播方向的平面内的轨迹是椭圆,则称为椭圆偏振光;如果是圆则称为圆偏振光。 将自然光变成偏振光的过程称为起偏,用于起偏的装置称为起偏器;鉴别光的偏振状态的过程称为检偏,它所使用的装置称为检偏器。实际上,起偏器和检偏器是可以通用的。本实验所用的起偏器和检偏器均为分子型薄膜偏振片。

太阳光谱的连续偏振

太阳光谱的连续偏振(加主页资料扣扣免财富值) 摘要:我们提出一个由可见太阳光谱中的辐射散射引起的连续偏振的理论研究。比较了来自九个不同的太阳模型大气的结果。断定了中心—边缘变化(CLV)以及依赖于连续偏振的波长,并且确定了模型大气依赖的来源。关键的物理量是散射系数和偏振形成层的温度梯度。 这里发展了可见光每个波长的接近理论连续偏振CLV的一个简单解析函数。假设产生偏振的散射层光学性地稀薄,并位于连续强度的形成层,然后建立在第一近似值上。解析函数的应用范围从偏振规模有用的零电平测定到使用经验性的中心—边缘曲线来约束太阳模型大气的诊断工作。 1.简介 最近的观察显示了太阳结构丰富的偏振,被称为“第二个太阳光谱”,因为它与普通未极化的强度谱没有丝毫相似之处,因此包含至少部分互补信息。这个结构是由于来自连续介质和线条同样重要的混合影响。连续谱通过辐射散射获得线性极化,主要是来自中性氢的瑞利散射和自由电子的汤森散射在。谱线的极化是由于原子束缚跃迁的相干散射引起的,并且由普遍存在的磁场而发生改变。 为了充分理解涉及到的不同的物理过程,我们需要解决它们。在本文中我们从连续谱开始。除了更好地理解物理学,这样一个研究在限制太阳模型大气和决策观测的极化规模零水平上很有用处。 利用太阳模型大气,输入通过数值解决偏振辐射的传输方程来获得的连续介质极化。不同的模型大气给出了不同程度的极化。因此和实验数据的比较可以使我们在几个太阳大气模型中进行选择。这种从4500?到8000?对于连续介质窗口的具有10-5的偏振灵敏度的观测在计划中但尚未提供。 对于具有汉勒效应的湍流磁场的诊断,需要精确知道真正的极化规模的零水平。汉勒效应,一个发生在当前磁场中的相干散射的相干现象在,导致了谱线核心的去极化。由于谱线和连续介质的极化通常是同一个数量级的,因此不能使用连续水平作为线性极化的参考。真正的极化零水平必须作为参考。由于仪器影响,真正的极化规模的零水平不具备足够的精度。然而,从理论思考中了解连续介质的极化程度,观察中的零水平可以确定。 在第二节中我们将描述相关的物理理论,数值技术和太阳模型大气的使用。在第三节中给出了两个计算机代码的测试。在第四节中我们通过阐述吸收,散射系数和温度梯度的角色,加强了对有关数量物理性的深刻理解。这是特别重要的是要知道连续介质极化形成层,因为它通常被假定位于连续介质强度形成层的上面。我们将说明这两层实际上是重叠的。最后,在第五节中,用以描述整个可见光谱范围连续介质极化的中心—边缘变化(CLV)的一个简单解析表达式被推导出并与理论数据作了拟合,提供整套计算极化值的一个便捷的近似算法表示。 2.理论方法 2.1.相关物理过程 为了定量描述辐射传输,物理过程必须被理解。传统上的区别是由纯吸收和散射之间产生的。这里我们关注导致连续谱的流程。 辐射场能量的纯吸收部分转换成气体的动能,从而被热化。作为第一次被Wildt 提出的,氢阴离子H?主宰了太阳光球中的连续介质吸收,也就是可见的连续介质

偏振光谱

第四章振动光谱Chapter Four Vibrate Spectroscopy

4.1、基本原理Principles 4.2、红外光谱Infrared spectroscopy 4.3、红外光谱实验技术Experiment Technique of IR

4.1 基本原理Principles 4.1.1 光谱学基础Spectroscopy 4.1.1.1 光谱Spectroscopy 4.1.1.2 光的波粒二象性Wave-particle duality 4.1.1.3 光的能量组成The Compose of light 4.1.1.4 分子的能量组成The Compose of Molecular energy 4.1.2 分子振动模型 The model of Molecular Vibration 4.1.2.1 双原子分子的弹簧模型 The Spring Model of diatomic molecule 4.1.2.2 基本振动的类型 The Type of Fundamental Vibration 4.1.2.3 红外吸收产生的必要条件

4.1 基本原理principles 4.1.1 光谱学基础Spectroscopy 4.1.1.1 Spectroscopy Spectroscopy 光谱 研究光谱理论及其应用的光学学科分支 IR、UV-Vis、NMR、AAS…spectroscopy

4.1 基本原理principles 4.1.1 光谱学基础Spectroscopy 4.1.1.2 光的波粒二象性wave-particle duality 光是一种电磁波(electromagnetic wave),同时具有粒子性,具有波粒二象性(wave-particle duality) 波动性可用波长(wavelength) (λ),频率(frequency)(ν)和波数(wavenumber)(σ)来描述。

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算 在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation i ndices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁 迫性相关的色素、植被冠层中水分含量等。 包括以下内容: ? ?●植被光谱特征 ? ?●植被指数 ? ?●HJ-1-HSI植被指数计算 1.植被光谱特征 植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。 研究植被的波长范围一般为400 nm t o 2500 nm,这也是传感器设计选择的波长范围。这个波长范围可范围以下四个部分: ??●可见光(Visible):400 nm to 700 nm ??●近红外(Near-infrared——NIR):700 nm to 1300 nm ??●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm ??●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm 其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。 SWIR-1 和SWIR-2的过渡区(1900nm附近)也是大气水的强吸收范围。 植被可分为三个部分组成: ??●植物叶片(Plant Foliage) ??●植被冠层(Plant Canopies) ??●非光合作用植被(Non-Photosynthetic Vegetation) 这三个部分是植被分析的基础,下面对他们详细介绍。 1.1植物叶片(Plant Foliage) 植物叶片包括叶、叶柄以及其他绿色物质,不同种类的叶片具有不同的形状和化学成份。对波谱特征产生重要影响

(最新整理)反射光的偏振特性

(完整)反射光的偏振特性 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)反射光的偏振特性)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)反射光的偏振特性的全部内容。

反射光的偏振特性—布儒斯特角的测量 1808年马吕斯(1775-1812)发现了光的偏振现象。通过深入研究,证明了光波是横波,使 人们进一步认识了光的本质。随着科学技术的发展,偏振光技术在各个领域都得到了广泛应用, 特别是在光学计量、实验应力分析、晶体性质研究和激光等方面更为突出.在我们日常生活和工 作中,太阳光、照明用光一般多为自然光。而自然光经过一些材料的反射和透射后可能变成部分 偏振光.自然光经过一些特殊材料,如偏振片或双折射晶体材料制作的棱镜后,就会变成线偏振光. 线偏振光经过波片后就可能成为椭圆偏振光。 【目的与要求】 1.用最小偏向角法测量棱镜材料的折射率。 2.测量通过起偏器、1/4波片后的光的偏振特性,了解线偏振光、圆偏振光和椭圆偏振光的特点. 3。通过观察从棱镜材料表面反射回来的光的偏振特性,了解反射光的偏振特性,测量出布儒斯特角。 4.用测量值验证布儒斯特角公式的正确性。 【实验原理】 一、棱镜材料的折射率的测量 当一束光斜入射于棱镜表面时,其光路如图1所示。

n 为材料的折射率. 同理出射角γ/ 为sinγ/= sini//n (–1) 根据几何关系可以证明入射光与出射光之间的夹角为:δ=i+γ/-A,而且δ有一个极小值δmin ,可以证明:当光束偏转角为δmin时,有i=γ/γ= i/, 此时δ=2i-A 即i=(δ+A)/2 而A=γ+i/=2γγ=A/2 由(–1)式可得: n=sin[(A+δmin)/2]/sin(A/2)(–2)因此,只要我们测量出δmin,用(–2)就可得到材料相对于该测量光的折射率n。 二、偏振光 光是一种横波,它的振动方向是与传播方向相互垂直的。偏振是指光波的振动方向在空间上的一种相对取向的现象。当这个振动方向在垂直于传播方向的平面内可取所有可能的方向,并且没有一个方向占优势时,我们称之为自然光或非偏振光。而如果有某一个方向上的振动占优势时,则称之为部分偏振光。只有一个单一的振动方向的光叫线偏振光,而在一个振动周期内其振动矢量的端点的轨迹为一个圆或椭圆时,我们称之为圆偏振光或椭圆偏振光。 在我们日常生活和工作中,太阳光、照明用光一般多为自然光。而自然光经过一些材料的反射和透射后可能变成部分偏振光.自然光经过一些特殊材料,如偏振片或双折射晶体材料制作的棱镜后,就会变成线偏振光,一些激光器也可产生很好的线偏振光。线偏振光经过波片后就可能成为椭圆偏振光。 在本实验中,我们将通过多种实验手段来产生线偏振光和椭圆偏振光(圆偏振光被看成是一个特例)。 偏振光的数学描述: 对于线偏振光和椭圆偏振光,在数学上我们常用两个垂直振动的合成来描述。在与光传播方向相垂直的平面内取一个直角坐标系,将代表振动特性的电矢量E分解成Ex和Ey,它们是同频ω,假设相位相差δ,振幅分别为Ax和Ay,即

偏振-成像-光谱整理

一、偏振探测原理 在介质中传输的光,与介质发生相互作用后,其偏振状态的斯托克斯参数或琼斯矩阵会发生变化,改变的程度与介质的物理特性(如其介质特性、结构特征、粗糙度、水分含量、观察角、辐照度等条件)密切相关。 利用光(主要为偏振光)来照射被测物质,经被测物与偏振光的相互作用后偏振光的偏振信息将按规律产生相应的变化,通过检测这种偏振信息的变化来实现测量该被测物的属性,是偏振探测的物理基础。 偏振光的检测是偏振光的应用和偏振探测的一个重要问题,偏振光的检测主要包括偏振光的强度、相位、和取向三个参量的定性分析和定量测量,其基本方法是把上述三个参量的测量转化为光强的测量。 二、偏振探测与雷达探测的对比 在目标识别应用上,与主动雷达扫描方式不同,偏振成像设备体积小、功耗低,探测对象是物体主动发射或反射的电磁波中的偏振部分,便于自身隐蔽。 三、偏振探测与传统成像的对比 在传统的图像处理、分析过程中所使用的技术都是基于光的强度特征和波长特征所提供的信息,这使现有的图像处理、分析以及理解算法很复杂,并且只能对图像中目标的轮廓、类别等做一些初步的分析和理解[5];而偏振图像有其自己统一简单的算法[6],其结果在图像

目视效果方面明显。偏振探测的特点(相对于普通成像技术): ①偏振探测有助于辨别具有不同质地的目标; ②偏振图像与光强度图像相比,对比度提高; ③偏振图像对置于在背景之上物体的边缘增强效果明显; ④偏振图像与波段有依赖关系; ⑤偏振度与物体表面粗糙度、观测角等依赖关系较 四、多光谱技术 物质的化学组成或结构的不同,导致它们的能带结构以及转动、振动能级不同,其结果使它们的发射光谱、反射光谱、荧光光谱或拉曼光谱也会不同。因此,可通过探测空间光谱分布来探测物质及其在空间上的分布特性。这种技术称为多光谱技术,它建立在能带理论基础之上,其技术基础是光谱分辨和光谱探测技术。 目前多光谱技术有两种不同的含义[1]:一是利用物体的发光或反射光特性,通过光谱分辨技术获取物体的特征光谱信息,来识别物体;二是利用光与物质的相互作用使光发生某种变化,并探测光的变化来获取物质的有关特征信息。后一种多光谱技术所探测的光的变化可能是光谱的变化,或是光强度、偏振等参量的变化。

植物反射波谱特征

健康的绿色植被的光谱反射特征 地面植物具有明显的光谱反射特征,不同于土壤、水体与其她的典型地物,植被对电磁波的响应就是由其化学特征与形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素就是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总就是呈现“峰与谷”的图形,可见光谱内的谷就是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0、45um与0、67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区与红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素与叶黄素在0、45um(蓝色)附近有一个吸收带,但就是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区与红区吸收带减弱,常使红波段反射率增强,以至于我们可以瞧到植物变黄(绿色与红色合成)。 从可见光区到大约0、7um的近红外光谱区,可瞧到健康植被的反射率急剧上升。在0、7-1、3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0、7-1、3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的 40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0、76um附近,反射率急剧上升,形成“红边”现象,这就是植物曲线的最为明显的特征,就是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这就是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

不同施氮条件下小麦冠层的高光谱和多光谱反射特征

麦类作物学报 2006,26(2):103~108 Jou rnal of T riticeae C rop s   不同施氮条件下小麦冠层的高光谱和多光谱反射特征Ξ 李映雪,朱艳,曹卫星 (南京农业大学 江苏省信息农业高技术研究重点实验室,农业部作物生长调控重点开放实验室,南京210095) 摘 要:为了更好地利用冠层反射光谱特征监测小麦生长及氮素营养状况,以宁麦9号、淮麦20、徐麦26和扬麦10号四个小麦品种为材料,通过田间小区试验,研究了不同小麦品种在不同生育时期和不同氮素水平下冠层反射光谱的变化规律。结果表明,相同氮素水平下不同小麦品种冠层反射光谱的反射率有差异,且近红外部分差异较明显。小麦从拔节开始,随生育期的推进,冠层反射光谱在可见光波段的反射率先降低然后升高,以孕穗期反射率最低,随着叶片的逐渐变黄,反射率又增大,并且绿光波段的反射峰也逐渐消失。而近红外区反射率则表现出相反的趋势,以开花期为分界,先上升然后下降,直到成熟前降为最低。随着施氮水平的提高,冠层反射光谱在近红外反射平台(750~1300nm)的反射率呈上升趋势,而可见光部分反射率则下降,并且反射光谱的绿峰和红边位置也随着施氮水平的提高分别向蓝光方向(波长变短)和红光方向(波长变长)移动。 关键词:小麦;施氮;高光谱;多光谱;冠层反射特征 中图分类号:S512.1;S311 文献标识码:A 文章编号:100921041(2006)022******* Character iz i ng Canopy Hyperspectra l and M ultispectra l Ref lectance under D ifferen t N-appl ica tion Cond ition s i n W hea t L IY i ng-xue,ZHU Yan,CAO W e i-x i ng (H i2T ech Key L abo rato ry of Info rm ati on A griculture of J iangsu P rovince Key L abo rato ry of C rop Grow th R egulati on, M inistry of A griculture,N anjing A gricultural U niversity,N anjing,J iangsu210095,Ch ina) Abstract:T he change of canop y sp ectral reflectance under differen t cu ltivars,differen t grow th stages and varied n itrogen rates w ere investigated by characterizing canop y m u ltisp ectral and hyp ersp ectral reflectance in w heat.T he resu lts show ed that the canop y reflectance differed w ith cu ltivars,w ith sign ifican t change at near infrared bands.R eflectance at visib le ligh t in itially decreased and then increased w ith grow th p rogress after j o in ting,w ith the low est value app eared at boo ting.R eflectance increased and reflectance p eak also disapp eared gradually in cou rse of leaf yellow ing.How ever, reflectance in near infrared had oppo site trend,w h ich in itially increased and then decreased to the low est from an thesis to m atu rity.R eflectance at near infrared reflected flat(750~1300nm)increased w ith increasing n itrogen supp ly,w hereas reflectance at visib le band decreased,and green p eak and red edge po siti on of canop y reflectance sp ectra also m oved to directi on of b lue ligh t(sho rt w avelength) and red ligh t(long w avelength),resp ectively.T hese resu lts p rovide background info rm ati on fo r m on ito ring of grow th characters and n itrogen statu s w ith canop y reflectance sp ectra in w heat. Key words:W heat;N itrogen app licati on;M u ltisp ectra;H yp ersp ectra;Canop y reflectance 随着高分辨率遥感技术研究的深入,利用弱光谱差异对地物特征进行定量分析的研究得以广泛开展[1]。许多学者试图通过冠层反射光谱的差异分析来判别作物种类和栽培条件。杨长明[2]等研究表明,不同株型水稻品种群体冠层对太阳光谱辐射的反射率存在明显差异,尤其以蓝光区 Ξ收稿日期:2005208201 修回日期:2005210220 基金项目:国家自然科学基金项目(30400278);江苏省自然科学基金项目(BK2003079,BK2005212);江苏省高校博士点基金项目(20030307017)。 作者简介:李映雪(1975-),女,讲师,主要从事信息生态学和作物遥感监测研究。 通讯作者:朱艳(1976-),女,副教授,主要从事作物模拟与信息技术研究。

绿色植物的反射波谱曲线作用

绿色植物的反射波谱曲线作用 2014015587—贺康康—环科 地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0.45um和0.67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素和叶黄素在0.45um(蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0.76um附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。(Philip et al. ,1978) 植物波谱反射特征的规律[1] 经过的对植物进行300多个目标点的波谱反射特性的测定。从结果来看,尽管它们种类、所在位置的自然条件不同,但在绿色状态下,其特征都具有共同的规律,这些规律是: 1、特征的相似性。 2、特征的可分性。 3、特征的周期性 4、特征随季节而变化的显著性。 作物旱情监测[2] 济南市小麦种植区TVDI 统计结果表明,对于TVDI 等级非常湿润和湿润,在六个统计时段内,面积最大都出现在六月份,面积最小都出现在一月和十二月,其次非常湿润等级还在三月的面积较大,湿润等级在十月份的面积较大;冬小麦种植区的正常TVDI等级,面积最大出现在十月,最小为一月,其他各月相差不大;出现干旱现象面积最大的月份为一月,与前文分析结果一致,统计结果同样符合。 利用多类别MODIS 植被指数和陆地表面温度产品数据,根据陆地表面温度与植被指数关系特点,建立多种干旱评价指标。结合气温、降水、土壤墒情数据,验证各干旱反演模型在济南市的适用性,研究2010年10月至2011年5月济南市干旱发生的时空演变格局。

作物冠层光谱的获取和应用研究进展

作物冠层光谱特征反映作物的色素、组织结构和冠层结构的综合信息,是遥感方法探测冠层信息的重要依据。通过遥感技术对冠层光谱进行获取和分析,具有简单、快速、精度高和无损测定等优越性,成为获取农田生物环境信息的重要手段,在作物长势监测、营养诊断、精准施肥管理、产量估测、以及病害监测等方面都有探索性研究、初步应用和总结[1]。本文综述了国内近十年来作物冠层光谱的获取方法、光谱分析方法和应用领域,分析了存在的问题并展望了未来发展方向。 1作物冠层光谱数据的获取 收稿日期:2011-10-15 基金项目:国家玉米产业技术体系(CARS-02-17);“十二五”粮丰工程项目(2011BAD16B10);国家自然科学基金项 目(31071370) 作者简介:杨粉团(1979-),女,博士,主要从事作物遥感研究。 通讯作者:姜晓莉,女,副研究员,E-mail:jxl1990@https://www.wendangku.net/doc/3017720303.html, 1.1获取手段 目前国内获取近地冠层高光谱多用美国ASD 公司生产的Filedspec FR2500型便携式高光谱仪和Fieldspec HH光谱辐射仪,成像高光谱仪多用中科院上海技术物理研究所研制的实用型模块化成像光谱仪OMIS(Operative Moudular Imag-ing Spedtrometer)。冠层多光谱测定多用美国Cropscan公司生产的MSR-16型便携式多光谱辐射仪。此外还有提供红外和近红外特定波长反射率的GreenSeeker505植物冠层光谱测定仪。 光谱采集时根据仪器的要求一般探头距植株冠层顶部上方40~100cm处垂直测定,通常采用15°~31°视场角,时间最好选择晴朗无云或少云的天气10∶00~14∶00进行,根据试验安排,每小区最好多测几个重复。 1.2分析方法 数据采用相关分析软件进行处理,分析方法 文章编号:1003-8701(2011)06-0009-04 作物冠层光谱的获取和应用研究进展 杨粉团,李刚,姜晓莉*,曹庆军 (吉林省农业科学院/农业部东北作物生理生态与耕作重点实验室,长春130033) 摘要:作物冠层光谱受作物的色素、组织结构和冠层结构影响。通过获取冠层光谱,适当数学运算后和农学参数建立相关监测模型,可以监测作物的长势、营养状况、病害危害情况、产量及品质。本文综述了国内近十年来作物冠层光谱的获取方法、光谱分析方法和应用领域,并展望了未来发展方向。 关键词:作物;冠层;光谱 中图分类号:S127文献标识码:A Progress of Researches on Acquisition and Application of Crop Canopy Spectrum YANG Fen-tuan,LI Gang,JIANG Xiao-li*,CAO Qing-jun (Academy of Agricultural Sciences of Jilin Province/Key Laboratory of Crop Physiology and Ecology&Tillage of Northeast China,Ministry of Agriculture,Changchun130033,China) Abstract:Crop canopy spectrum is influenced by crop pigments,vegetation and canopy structure.By acquisition of crop canopy spectrum and building model with agronomy parameter,we can monitor the crop growth,plant deficiency,plant diseases,crop yield and seed quality.Studies on crop canopy spectrum of ten years were summarized in the paper,which included collecting method,analysis measures,application field and directions of development in the future. Keywords:Crop;Canopy;Spectrum 吉林农业科学2011,36(6):9-12Journal of Jilin Agricultural Sciences

国内空间目标散射建模总结

国内空间目标散射建模总结 2011年,南京理工大学的徐实学在其博士论文《材质表面散射光偏振特性分析用于空间目标探测的研究》中,研究了典型空间目标材料散射光的偏振度等偏振特性,对不同飞行姿态和探测环境的空间目标偏振特性分析方法进行了讨论。文中的讨论是基于实验测量的数据进行的,没有应用具体形式的BRDF模型。 2004年,63916部队和中科院光电技术研究所的李淑军等人在《带太阳能帆板的卫星光度特性分析》中,研究了卫星主体和帆板两种基本结构在一定漫反射率情况下的地面照度计算公式,理论计算表明,虽然太阳能帆板的漫反射率要比卫星主体低30倍,但在卫星地面照度的计算和实际观测中仍不应忽略。 2010年,咸阳师范学院的王明军等人在《复杂环境下具有轨道特征目标模型光散射特性研究》中,将BRDF应用于卫星散射特性研究,但是都是测量获得而没有理论模型,文章给出了空间目标模型表面不同反射率材料对可见光散射光谱特性,以及在相同反射率条件下光散射强度随轨道高度分布特性。 2009年,长春光机所的张景旭在《国外地基光电系统空间目标探测的进展》中,介绍了国外先进地基空间监视系统的发展现状,从地基光电系统观测空间目标的角度介绍了美国星火靶场和毛伊岛光学站的情况和设备,提供了国外地基空间目标光学探测的重要参考资料。 2010年,电子工程学院的杨明等人在《基于BRDF条件下卫星可见光散射特性分析》中,将单一波长BRDF测量方法扩展到可见光波段的加权平均测量,利用实验测量的BRDF数值求解出卫星表面材料的BRDF的三维特性。 2008年,西安电子科技大学和安徽光机所的吴振森、曹运华、魏庆农等人在《基于粗糙样片光BRDF的空间目标可见光散射研究》中,利用遗传算法,结合实验测量的五参量BRDF模型参数,获得了目标样片平均BRDF的参量化统计模型。结果显示因为卫星包覆材料和太阳能电池板都比较光滑,所以整个卫星的可见光散射强度仅在卫星某些面的镜反射方向有较大值,而在其它方向的值都很小。 2009年,哈尔滨工业大学的汪洪源等人在《基于双向反射分布函数的空间卫星紫外动态特性研究》中,面向天基探测对卫星紫外特性进行建模,BRDF模型选用Davies模型,由于地球大气层吸收紫外光,文章考虑太阳光和月球漫反射光对卫星反射紫外光进行计算,给出了比较完整的目标特性计算流程。空间目标

大学物理实验光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 1I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。θ 是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强 I 有变化,且转动到某位置时I =0,则表明入射 光为线偏振光,此时 θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 2 2212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?( k =0, ±1, ±2, …)时,(27-4)式变为

相关文档