文档库 最新最全的文档下载
当前位置:文档库 › 化工原理概念汇总

化工原理概念汇总

化工原理概念汇总
化工原理概念汇总

化工原理知识

绪论

1、单元操作:(Unit Operations):

用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。

单元操作特点:

①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12)

质量守恒定律:输入=输出+积存

能量守恒定律:对于稳定的过,程输入=输出

动量守恒定律:动量的输入=动量的输出+动量的积存

2、研究方法:

实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。

数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04)

3、因次分析法与数学模型法的区别:(08B)

数学模型法(半经验半理论)因次论指导下的实验研究法

实验:寻找函数形式,决定参数

第二章:流体输送机械

一、概念题

1、离心泵的压头(或扬程):

离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头:

理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止:

气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率

有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率:

轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。

二、简述题

1、离心泵的工作点的确定及流量调节

工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节:

1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。

开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向

g

QH N e

ρ=η/e N N =η

ρ/g QH N =

叶轮外周,压力增高,并以很高的速度(15-25 m/s)流入泵壳。在蜗形泵壳中由于流道的不断扩大,液体的流速减慢,使大部分动能转化为压力能。最后液体以较高的静压强从排出口流入排出管道。

泵内的液体被抛出后,叶轮的中心形成了真空,在液面压强(大气压)与泵内压力(负压)的压差作用下,液体便经吸入管路进入泵内,填补了被排除液体的位置。

3、离心泵的汽蚀现象、以及安装高度的确定方法、及其防止办法:

汽蚀现象:提高泵的安装高度,将导致泵内压力降低,其最低值为叶片间通道入口附近,当这个最低值降至被输送液体的饱和蒸汽压时,将发生沸腾,所产生的蒸汽泡在随液体从入口向外周流动中,又因压力迅速加大而积聚冷凝。使液体以很大速度从周围冲向汽泡中心,产生频率很高,瞬时压力很大的冲击,这种现象称为“汽蚀”;

安装高度的确定方法:泵的允许安装高度受最小汽蚀余量或允许吸上真空度的限制,以免发生汽蚀现象(例如:管路压头减去汽蚀余量等于允许安装高度)。

防止方法(预防措施):离心泵的安装高度只要低于允许安装高度,就不会发生汽蚀。离心泵入口处压力不能过低,而应有一最低允许值——允许汽蚀余量。

第三章:机械分离与固体流态化

一、概念题

1、均相混合物与非均相混合物

均相混合物:物系内部各处物料性质均匀而且不存在相界面的混合物。例如:互溶溶液及混合气体。

非均相混合物:物系内部有隔开两相的界面存在且界面两侧的物料性质截然不同混合物。

2、表征颗粒的基本概念

球形度:

目的涵义:

3、自由沉降和干扰沉降

自由沉降:单个颗粒在无限大流体中的降落过程,颗粒彼此相距很远,不产生干扰的沉降称为自由沉降;

干扰沉降:若颗粒之间的距离很小,即使没有互相接触,一个颗粒沉降时也会受到其它颗粒的影响,这种沉降称为干扰沉降

4、过滤、过滤介质、助滤剂:

过滤:利用多孔介质使液体通过而截留固体颗粒,使悬浮液中固液分离的过程。

过滤介质:多孔性介质、耐腐蚀、耐热并具有足够的机械强度。 过滤介质特点:

助滤剂:是颗粒细小、粒度分布范围较窄、坚硬而悬浮性好的颗粒状或纤维固体,如硅藻土、纤维粉末、活性炭、石棉。、 5、深层过滤与滤饼过滤

深层过滤:颗粒尺寸比介质的孔道的直径小得多,但孔道弯曲细长,颗粒进入之后,很容易被截留,更由于流体流过时所引起的挤压与冲撞作用,颗粒紧附在孔道的壁面上。这种过滤时在介质内部进行的,介质表面无滤饼形成。

滤饼过滤:颗粒的尺寸大多数都比过滤介质的孔道大,固体物积聚于介质表面,形成滤饼。过滤开始时,很小的颗粒也会进入介质的孔道内,部分特别小的颗粒还会通过介质的孔道而不被截留,使滤液仍是混浊的。在滤饼形成之后,他便成为对其后的颗粒其主要截留作用的介质,滤液因此变清。过滤阻力将随滤饼的加厚而渐增,滤液滤出的速率也渐减,故滤饼积聚到一定厚度后,要将其从介质表面上移去。这种方法适用于处理固体物含量比较大的悬浮液。

5、过滤常数、比阻:

压缩性指数s :压缩指数0

过滤常数K :与滤饼性质(s 、ε、a )、滤浆性质(c 、μ)、推动力(?p )有关; 比阻ε:表征滤饼过滤阻力大小的数值, 6、可压缩滤饼与不可压缩滤饼

不可压缩滤饼:某些悬浮液所形成的滤饼,其空隙结构因颗粒坚硬不会因受压而变形,这种滤饼成为不可压缩的。

可压缩滤饼:若滤饼受压后变形,致使滤饼的空隙率减小,使过滤阻力增大,这种滤饼称为可压缩的。 7、重力收尘与旋风收尘

重力收尘:气体进入降尘室后,因流通截面扩大而速度减慢。尘粒一方面随气流沿水平方向运动,其速度与气流速度u 相同。另一方面在重力作用下以沉降速度u 0垂直向下运动。只要气体通过降尘室经历的时间大于或等于其中的尘粒沉降到室底所需的时间,尘粒便可分离出来。

旋风收尘:(旋风除尘器)从气流中分离颗粒。含尘气体从圆筒上侧的进气管以切线方向进入,按螺旋形路线相器底旋转,接近底部后转而向上,气流中所夹带的尘粒在随气流

s

p K -?∝1

旋转的过程中逐渐趋向器壁,碰到而落下。颗粒到达器壁所需要的沉降时间只要不大于停留时间,它便可以从气流中分离出来。 8、沉降终速及其计算公式

初始时,颗粒的降落速度和所受阻力都为零,颗粒因受力加速下降。随降落速度的增加,阻力也相应增大,直到与沉降作用力相等,颗粒受力达到平衡,加速度也减小到零。此后,颗粒以等速下降,这一最终达到的速度称为沉降速度。 直径为d 的球形颗粒,(重力-浮力)=阻力

推导得:

9、横穿洗涤与置换洗涤:

横穿洗法:洗涤液所穿过的滤饼厚度2倍于最终过滤时滤饼通过的厚度; 置换洗法:洗涤液所走的路线与最终过滤是滤液的路线一样。 10、流态化、固体流态化、聚式流态化、散式流态化

流态化:一种使固体颗粒层通过与运动的流体接触而具有流体某些表观特性的过程。 固体流态化:将固体颗粒对在容器内的多孔板上,形成一个床层。若令流体自下而上通过床层,流速低时,颗粒不动;流速加大到一定程度后颗粒便活动,而床层膨胀;流速进一步加大则颗粒彼此离开而在流体中浮动,流速愈大,浮动愈剧,床层愈高,称这种情况为固体流态化;

聚式流态化:发生在气固系统。床层内的颗粒很少分散开来各自运动,而多是聚结成团的运动,成团地被气泡推起或挤开。这种形式的流态化称为聚式;

散式流态化:发生在液固系统。若固体颗粒层用液体来进行流态化,流速增大时,床层从开始膨胀直到水力输送的过程中,床层颗粒的扰动程度是平缓地加大的。颗粒持续地增大其分散状态,这种形式的流态化称为散式。 11、起始(最小、临界)流态化速度、颗粒带出速度

起始流化速度:固体颗粒刚刚能流化起来,床层开始流态化时的流体表观速度称为起始流化速度,是固定床与流化床的转折点;

带出速度(夹带速度):当某指定颗粒开始被带出时的流体表观速度称为带出速度; 流化床的操作流速应大于起始流化速度,又要小于带出速度。

二、简述题

1、简述离心分离与旋风分离的差别

2

u

4d g )6(-g )6(2

23

3

ρπ?ρπ

ρπ

?=颗粒颗粒d d ρ?

ρρ3)(4g

d u -=

颗粒

2、重力收尘与旋风收尘的工作条件

重力收尘:只要气体通过降尘室经历的时间大于或等于其中的尘粒沉降到室底所需的时间,尘粒便可分离出来。

旋风收尘:颗粒到达器壁所需要的沉降时间只要不大于停留时间,它便可以从气流中分离出来。

3、简述重力沉降速度与离心沉降速度区别和联系(设颗粒与流体介质相对运动属于层流) 初始时,颗粒的降落速度和所受阻力都为零,颗粒因受力加速下降。随降落速度的增加,阻力也相应增大,直到与沉降作用力相等,颗粒受力达到平衡,加速度也减小到零。此后,颗粒以等速下降,这一最终达到的速度称为沉降速度。

重力沉降速度: 离心力沉降速度: 4、聚式流态化的特点、腾涌、沟流

5、画图并说明流化床的压力损失与气速的关系

在流态化阶段,流体通过床层的压力损失等于流化床中全部颗粒的净重力。

r

u 18)(2

2t

μ

ρρ-=

颗粒d u μ

ρρ18)(2g

d u -=

颗粒

固定床 流化床 带出开始 C

A D

A ' 起始流化速度

带出速度

log u

流化床压力损失与气速关系

l o g ?p f

B

AB 段为固定床阶段,由于流体在此阶段流速较低,颗粒较细时常处于层流状态,压力损失逾表观速度的一次放成正比,因此该段为斜率为1的直线。

A ’

B ’段表示从流化床恢复到固定床时的压力损失变化关系;由于颗粒从逐渐减慢的上升气流中落下所形成的床层比随机装填的要疏松一些,导致压力损失也小一些, B

C 段略向上倾斜是由于流体流过器壁及分布板时的阻力损失随气速增大而造成的。 C

D 段向下倾斜,表示此时由于某些颗粒开始为上升气流所带走,床内颗粒量减少,平衡颗粒重力所需的压力自然不断下降,直至颗粒全部被带走。

P

u

流化床压降与流速的关系图

1

2

3

4

5

①、固定床;②-流化床;③-夹带开始 ④- 沟

流现象;⑤-节涌(腾涌)现象

6、举例说明数学模型法简化与等效的原理

过滤时,滤液在滤饼与过滤介质的微小通道中流动,由于通道形状很不规则且相互交联,难以对流体流动规律进行理论分析,故常将真实流动简化成长度均为Le 的一组平行细管中的流动,并规定:

(1)细管的内表面积之和等于滤饼内颗粒的全部表面积; (2)细管的全部流动空间等于滤饼内的全部空隙体积。

7、用因次分析法导出沉降速度中的阻力系数是雷诺数的函数相关各物理量的因次

[]L d =;[]1-=NM g ;[]1-=θL u ;[]2-=L N θμ;[]3-=ML ρ

分别对阻力系数和雷诺数进行因次分析:

[]112--=L M N θ?;[]21--=θLMN R e 。由此证明了)(e

R f =?用滤饼过滤过程说明数学

模型法的原理。 8、流态化的形成过程

(a)固定床 (b)流化床 (c)气力输送

固定床阶段:此时流体的真正速度 u ' < 颗粒的沉降速度u 0

流化床阶段:此时u '=u 0颗粒悬浮于流体中,床层有一个明显的上界面,与沸腾水的表面相似。

颗粒输送阶段(气力输送):u ' > u 0

9、试将STOCK`S 区的沉降终速公式,用雷诺数和阿基米德数表征

μρρ18/)(20g d u s -=

10、悬浮液的沉聚过程

沉降槽内悬浮液的沉聚过程可以通过间歇沉降实验来考查,将新配备的悬浮液倒进玻璃圆筒内,若其中颗粒大小比较均匀,颗粒开始沉降后桶内边出现四个区域:A.清液区B.等浓度区C.变浓度区D 沉聚区,沉聚过程继续进行A 区,D 区逐渐扩大,B 区则逐渐缩小至消失。AC 界面下降的速度变慢。然后,AC 间界面也消失,全部颗粒集中于D 区,为了达到临界沉降点,自此后的沉降结果是沉渣被压紧。

第四章 搅拌

概念

1、搅拌中的打漩现象

2、搅拌单元操作、及其作用的目标

以液体为主体的搅拌操作,常常将被搅拌物料分为液-液、气-液、固-液、气-液-固等情况。

搅拌既可以是一种独立的流体力学范畴的单元操作,促进混合为主要目的:如进行液-液混合、固-液悬浮、气-液分散、液-液分散和液-液乳化等;

又往往是完成其他单元操作的必要手段;以促进传热、传质、化学反应为主要目的:如在搅拌设备内进行流体的加热与冷却、萃取、吸收、溶解、结晶、聚合等操作。

搅拌的作用目标:

3、搅拌器功率及其影响因素

4、搅拌槽

5、叶轮的主要形式

第七章蒸发

一、概念题

1、加热蒸汽和二次蒸汽:

加热蒸汽:蒸发需要不断的供给热能。工业上采用的热源所用的水蒸汽

二次蒸汽:蒸发的物料大多是水溶液,蒸发时产生的水蒸汽

2、单效蒸发与多效蒸发

二次蒸汽利用的情况可分为单效和多效蒸发。

单效蒸发:将所产生的二次蒸汽不再利用,而直接送给冷凝器冷凝以除去的操作。

多效蒸发:将多个蒸发器串联,使加热蒸汽在蒸发过程中得到多次利用的蒸发过程。

3、溶液的沸点升高与杜林规则:

溶液中含有溶质,故其沸点必须高于纯溶剂在同一压力下的沸点,亦即高于蒸发室压力下的饱和蒸汽温度。此高出的温度称为溶液的沸点升高,溶液的沸点升高与溶液的种类、溶液中溶质的浓度以及蒸发压力有关。

杜林规则:某液体(或溶液)在两种不同压力下两沸点之差,与另一标准体在相应压力下两沸点之差,其比值为一常数。

4、浓缩热与自蒸发(闪蒸)

二、简述题

1、蒸发过程的特点

常见的蒸发,实质上是在间壁两侧分别有蒸汽冷凝和液体沸腾的传热过程。

蒸发的特点:1沸点升高2 3

2、温度差损失的及其原因

蒸发器中的传热温差,当加热蒸气的饱和温度一定,若蒸发室内压力为101.3kPa,而蒸发的又是水而不是溶液,这时的传热温差最大。如果蒸发的是30%NaOH的沸点高于水的沸点,则蒸发器里的传热温差减小,称为传热温差损失,温差损失就等于溶液的沸点与同压力下水的沸点之差。除此之外,蒸发器中液柱静压头的影响及流体流过加热管时的阻力损失,都导致溶液沸点的进一步升高。

第八、九章传质

一、概念题

1、气膜控制与液膜控制

气膜控制:溶解度很大的气体,溶解度系数小,液相分阻力在总阻力中所占的比重将相对地小,传质阻力几乎全集中于气相,通常称为气膜控制;

液膜控制:溶解度很小的气体,则溶解度很小,则传质阻力几乎全集中在液相,通称为液膜控制。

2、吸收因数和脱吸因数

吸收因数:几何意义为操作线斜率L/G与平衡线斜率m之比,A=L/(mG)

脱吸因数:脱吸因数是吸收因数的倒数,S=mG/L。

3、气液相平衡与溶解度:

在溶质A与溶剂接触、进行溶解的过程中能够,随着溶液浓度的逐渐增高,传质速率将逐渐减慢,最后降到零,溶液浓度达到最大限度。这时称气液达到了相平衡,称为平衡溶解度,简称溶解度。

4、物理吸收与化学吸收

物理吸收:在吸收过程中溶质与溶剂不发生显著化学反应,称为物理吸收。

化学吸收:如果在吸收过程中,溶质与溶剂发生显著化学反应,则此吸收操作称为化学吸收。

5、吸收与解吸

吸收:利用不同的气体组分在液体溶剂中溶解度的差异,对其进行选择性溶解,从而将气体混合物各组分分离的传质过程的单元操作称为吸收。如用水作溶剂来吸收混合在空气中的氨,它是利用氨和空气在水中溶解度的差异,进行分离。

解吸:如果溶液中的某一组分的平衡蒸汽压大于混合气体中该组分的分压,这个组分便

要从溶液中释放出来,即从液相转移到气相,这种情况称为解吸(或脱吸)。 6、单组分吸收与多组分吸收

单组分吸收:在吸收过程中,若混合气体中只有一个组分被吸收,其余组分可认为不溶于吸收剂,则称之为单组分吸收;

多组分吸收:如果混合气体中有两个或多个组分进入液相,则称为多组分吸收。 7、等温吸收与非等温吸收

等温吸收:气体溶于液体中时常伴随热效应,若热效应很小,或被吸收的组分在气相中的浓度很低,而吸收剂用量很大,液相的温度变化不显著,则可认为是等温吸收; 非等温吸收:若吸收过程中发生化学反应,其反应热很大,液相的温度明显变化,则该吸收过程为非等温吸收过程。 8、低浓度吸收与高浓度吸收

高浓度吸收:通常根据生产经验,规定当混合气中溶质组分A 的摩尔分数大于0.1,且被吸收的数量多时,称为高浓度吸收;

低浓度吸收:如果溶质在气液两相中摩尔分数均小于0.1时,吸收称为低浓度吸收。 低浓度吸收的特点:(1)气液两相流经吸收塔的流率为常数;(2)低浓度的吸收可视为等温吸收。

9、液气比与最小液气比

液气比:当定态连续吸收时,若LS 、GB 一定,Y b 、Xa 恒定,则该吸收操作线在X ~Y 直角坐标图上为一直线,通过塔顶A (Xa ,Ya )及塔底B (X b , Y b ),其斜率为 ,

称为吸收操作的液气比。

最小液气比:操作线上任一点与平衡线相遇,则该点的传质推动力为零,传质速率亦为

零。达到分离程度所需塔高为无穷大时的液气比,以 表示。 10、传质单元与传质单元数

传质单元:式中, 单位为m ,故将 称为气相总传质单元高度,以H OG 表示,即:

B S G L B

S G L min

???? ??G L ??

-=-=b a b

a

Y Y Y Y Y Y Y Y Y a ΩK V

Y Y a ΩK Y Z *

*

d )(Vd a ΩK V Y a ΩK V

Y a Ω

K V H Y =OG ?-1

2 *

d Y Y Y Y Y

传质单元数:式中定积分 是一无因次的数值,工程上以N OG 表示,称为气相总传质单元数。即:

因此,填料层高度为:

11、对流传质

对流传质:流动着的流体与壁面之间或两个有限互溶的流动流体之间发生的传质,通常称为对流传质。 12、分子扩散

分子扩散:在静止或滞流流体内部,若某一组分存在浓度差,则因分子无规则的热运动使该组分由浓度较高处传递至浓度较低处,这种现象称为分子扩散。

13、等摩尔扩散与单向扩散

等分子反向扩散:如图所示,当通过连通管内任一截面处两个组分的扩散速率大小相等时,此扩散称为等分子反向扩散。

?-=1

2 *

OG

d Y Y Y Y Y N O G

O G H N Z ?= α β

T p T p

c

A1 c

A2

c

B1 c

B2

1 2

C

c

B2

c B1

c A1

c

A2

0 z

扩散距离z

图 等分子反向扩散

14、三传的类比

15、相平衡的应用

相平衡的应用:根据两相的平衡关系可以判断传质过程的方向与极限,而且,两相的浓度距离平衡愈远,则传质的推动力愈大,传质速率也愈大。

降低操作温度,E 、m ,溶质在液相中的溶解度增加,有利于吸收;压力不太高时,P , E变化忽略不计;但m 使溶质在液相中的溶解度增加,有利于吸收。

漂流因子

二、简述题

1、亨利定律的各种表达式以及相互之间的关系

亨利定律的内容:总压不高(譬如不超过5×105Pa )时,在一定温度下,稀溶液上方气相中溶质的平衡分压与溶质在液相中的摩尔分率成正比,其比例系数为亨利系数。 ——溶质在气相中的平衡分压,kPa ; E ——亨利系数,kPa ;T ↑,E ↑。 x ——溶质在液相中的摩尔分率。

c A —溶质在液相中的摩尔浓度,kmol/m 3; H —溶解度系数,kmol/(m 3

·kPa );

—溶质在气相中的平衡分压,kPa 。

x —液相中溶质的摩尔分率;

—与液相组成x 相平衡的气相中溶质的摩尔分率;

m —相平衡常数,无因次。

X —液相中溶质的摩尔比;

—与液相组成X 相平衡的气相中溶质的

摩尔比;

2、吸收过程的基本理论 吸收过程的基本理论:

Ex

p =*

A

*

A

p H c p A

*

A

=

S

1ρS

EM H =*A

p mx

y =**y p

E

m =

mX

Y =**Y

气液相平衡理论:溶解度、亨利定律:对于稀溶液,气液两相的溶度成正比。 吸收传质速率:包括双膜理论、相际传质速率 N A =K y (y-y*)N A =K x (x*-x ) 3、相平衡的影响因素及相平衡关系在吸收过程中的应用 相平衡的影响因素:

相平衡关系在吸收过程中的应用: 1]..判断过程进行的方向;

2].指明过程进行的极限,平衡关系只能回答混合气体中溶质气体能否进入液相这个问题,至于进入液相速率大小,却无法解决,后者属于传质的机理问题。 3].确定过程的推动力

4、溶质从气相向液相传递的传质过程包括以下三个步骤:

(1)溶质由气相主体向相界面传递,即在单一相(气相)内传递物质;

(2)溶质在气液相界面上的溶解,由气相转入液相,即在相界面上发生溶解过程; (3)溶质自气液相界面向液相主体传递,即在单一相(液相)内传递物质。

不论溶质在气相或液相,它在单一相里的传递有两种基本形式,一是分子扩散,二是对流传质。气液相平衡与溶解度: 5、气液传质双膜理论及其缺陷

双膜模型:吸收过程分为三个步骤:溶质由气

相主体扩散到气液两相界面;穿过相界面;有液相的界面扩散到主体。认为穿过相界面的传质,所需的传质推动力为零,或气液达到了平衡。将气液两相间传质的阻力集中在界面附近的气膜和液膜之内,且界面没有阻力的这一设想,称为双膜模型。如图所示其局限性如下: ①将气液界面当作是固定的,只在气、叶间相

对速率较小时才成立;随着相对速率增大,相界面将由静止到波动,进而产生漩涡-湍动,传质速率将显著加快。

②气、液膜厚难以得知,故通过膜的扩散速率方程难以直接应用。

③传质速率N A 与扩散速率D 的1次方成正比,但实验值表明N A 约与D 的1/2-1/3次方成正比,说明模型与实际有偏差。

6、根据双膜、溶质渗透膜和表面更新理论,指出传质系数k 与扩散系数D 之间数学关系: 双膜模型:某一项内的传质系数k 在浓度不高是按膜模型可写出k=D/δ e k 与扩散系数D

的一次方正比,这一点与实验结果 不甚相符, 溶质渗透模型:得出0

/2πθD k p =,与实验数据较好符合,但式中的0θ只是在少数情况

下才能准确求出。

表面更新理论:s D k s /=,s 是更新频,代表表面更新的快慢.

机械原理基本概念

(2)运动副是两构件通过直接接触形成的可动联接。(3)两构件通过点或线接触形成的联接称为高副。一个平面高副所引入的约束数为1。(4)两构件通过面接触形成的联接称为高副,一个平面低副所引入的约束数为2。(5)机构能实现确定相对运动的条件是原动件数等于机构的自由度,且自由度大于零。(6)虚约束是对机构运动不起实际约束作用的约束,或是对机构运动起重复约束作用的约束。(7)局部自由度是对机构其它运动构件的运动不产生影响的局部运动。(8)平面机构组成原理:任何机构均可看作是由若干基本杆组依次联接于原动件和机架上而构成。(8)基本杆组的自由度为0。(1)瞬心是两构件上瞬时速度相等的重合点-------即等速重合点。(2)两构件在绝对瞬心处的速度为0。(3)相构件在其相对瞬心处的速度必然相等。(4)两构件中若有一个构件为机架,则它们在瞬心处的速度必须为0。(5)用瞬心法只能求解机构的速度,无法求解机构的加速度。(1)驱动机械运动的力称为驱动力,驱动力对机械做正功。(2)阻止机械运动的力称为阻抗力,阻抗力对机械做负功。(1)机械的输出功与输入功之比称为机械效率。(2)机构的损失功与输入功之比称为损失率。(3)机械效率等于理想驱动力与实际驱动力的比值。(4)平面移动副发生自锁条件:作用于滑块上的驱动力作用在其摩擦角之内。(5)转动副发生自锁的条件:作用于轴颈上的驱动力为单力,且作用于轴颈的摩擦圆之内。(1)机构平衡的目的:消除或减少构件不平衡惯性力所带来的不良影响。(2)刚性转子总可通过在转子上增加或除去质量的办法来实现其平衡。(3)转子静平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零(或质径积矢量和为零)。(4)对于静不平衡转子只需在同一个平面内增加或除去平衡质量即可获得平衡,故称为单面平衡。(5)对于宽径比b/D<0.2的不平衡转子,只做静平衡处理。(6)转子动平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零,以及这些惯性力所构成的力矩矢量的和也为零。(7)实现动平衡时需在两个平衡基面增加或去除平衡质量,故动平衡又称为双面平衡。(8)动平衡的转子一定是静平衡的,反之则不然。(9)转的许用不平衡量有两种表示方法:许用质径积+许用偏心距。(1)机械运转的三阶段:启动阶段、稳定运转阶段、停车阶段。(2)建立机械系统等动力学模型的等效条件:瞬时动能等效、外力做功等效。(3)机器的速度波动分为:周期性速度波动和非周期性速度波动。(4)周期性速度波动的调节方法:安装飞轮。(5)非周期性速度波动的调节方法:安装调速器。(6)表征机械速度波动程度的参量是:速度不均匀系数δ。(8)飞轮调速利用了飞轮的储能原理。(9)飞轮宜优先安装在高速轴上。(10)机械在安装飞轮后的机械仍有速度波动,只是波动程度有所减小。(1)铰链四杆机构是平面四杆机构的基本型式。(2)铰链四杆机构的三种表现形式:曲柄摇杆机构、双曲柄机构、双摇杆机构。(3)曲柄摇杆机构的功能:将曲柄的整周转动变换为摇杆的摆动或将摇杆的摆动变换为曲柄的回转。(4)曲柄滑动机构的功能:将回转运动变换为直线运动(或反之)。(5)铰链四杆机构存在曲柄的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆或机架。(6)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆。(7)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为机架。(8)铰链四杆机构成为又摇杆机构的条件:不满足杆长条件;或者是满足杆长条件但最短杆为连杆。(9)曲柄滑块机构存在曲柄的条件是:曲柄长度r+偏距r小于等于连杆长度l(12)曲柄摇杆机构以曲柄为原动件时,具有急回性质。(13)曲柄摇杆机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(14)曲柄滑块机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(15)偏置曲柄滑块机构以曲柄为原动件时,具有急回性质。(16)对心曲柄滑块机构不具有急回特性。(17)曲柄导杆机构以曲柄为原动件时,具有具有急回性质。(18)连杆机构的传动角越大,对传动越有利。(19)连杆机构的压力角越大,对传动越不利。(20)导杆机构的传动角恒为90o。21)曲柄摇杆机构以曲柄为主动杆时,最小传动角出现在曲柄与机架共线的两位置之一。(22)曲柄摇杆机构以摇杆为主动件,当从动曲柄与连杆共线时,机构处于死点位置。(23)当连杆机构处于死点时,机构的传动角为0。(1)凸轮机构的优点是:只要适当地设计出凸轮轮廓曲线,就可使打推杆得到各种运动规律。(2)凸轮机构的缺点:凸轮轮廓曲线与推杆间为点、线接触,易磨损。(3)常用的推杆运动规律:等速运动规律、等加速等减速运动规律、余弦加速度运动规律、正弦加速度运动规律、五次多项式运动规律。(4)采用等速运动规律会给机构带来刚性冲击,只能用于低速轻载。(5)采用等加速等减速运动规律会给机构带来柔性冲击,常用于中速轻载场合。(6)采用余弦加速度运动规律也会给机构带来柔性冲击,常用于中低速重载场合。(7)余弦加速度运动规律无冲击,适于中高速轻载。(8)五次多项式运动规律无冲击,适于高速中载。(9)增大基圆半径,则凸轮机构的压力角减少。(10)对凸轮机构进行正偏置,可降低机构的推程压力角。(11)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径大于理论廓线上的最小曲率半径,将使工作廓线出现交叉,从而使机构出现运动失真现象。(12)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径等于理论廓线上的最小曲率半径,将使凸轮廓线出现变尖现象。(1)圆锥齿轮机构可实现轴线相交的两轴之间的运动和动力传递。(2)蜗

(完整版)化工原理概念汇总

化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,程输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数

第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬程): 离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率: 轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。 二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向 g QH N e ρ=η/e N N =η ρ/g QH N =

化工原理公式和重点概念

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μτ= 静力学方程 g z p g z p 2211 +=+ρ ρ 机械能守恒式 f e h u g z p h u g z p +++=+++2222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 2 32d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η

最大允许安装高度 100][-∑--=f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体) (饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+ 恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑=V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μρρ18)(2 g d u p p t -=, 2R e

化学基本概念和基本原理知识点梳理

物质的构成和变化(一)物质的多样性1、物质的三种状态包括:固态、液态、气态 2、物质三态变化的微观实质是:分子之间的间隔(距离、空隙)改变,大小改变不了. 3、氧化物:由两种元素组成,其中一种是氧元素的化合物举例:Fe2O3、CO2、纯净物和混合物的区分:物质的种类(一种或多种)各举两例:纯净物:氧气、水、高锰酸钾混合物:空气、溶液、大理石、煤、石油 4、单质和化合物的区分:元素的种类(一种或多种元素的纯净物)各举两例:单质:铁、氧气、氦气、碳化合物水、氧化钙、碳酸钠、氢氧化钙 5、有机物和无机物的区分:看是否含碳元素,(除碳、一氧化碳、二氧化碳、碳酸根是无机物).各举两例:有机物:甲烷(CH4)乙醇(C2H5OH)乙酸 (CH3COOH)葡萄糖(C6H12O6)无机物大多数不含碳元素化合物.

物质的构成和变化(二)微粒构成物质1、构成物质的三种基本微粒是分子、原子、离子。例如:水是由水分子构成,铁是由铁原子构成,氯化钠是由钠离子和氯离子构成。 2、分子定义:分子是保持物质化学性质的最小粒子 3、原子定义:是化学变化中的最小粒子 4、离子定义:带电的原子或原子团 5、保持二氧化碳的化学性质的最小粒子是:二氧化碳分子 6、分子和原子的本质区别:在化学反应中分子可分原子不可分 7、化学反应的实质:宏观:物质生成新物质,微观:分子生成新分子 8、五个原子团的离子符号:(NH4+、NO3-、OH-、SO42-、CO32-) 9、分子的性质:不停运动、同种分子性质相同、有间隔、有质量和大小 10、原子是由居于原子中心的带正电的原子核和核外带负电的电子构成的。原子核(一般)是由质子和中子构成的。

化工原理重要概念和公式

《化工原理》重要概念 第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点 , 对其跟踪观察,描述其运动参数 ( 如位移、速度等 ) 与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。 系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。 粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。 平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直 , 在定态流动条件下该截面上的流体没有加速度 , 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度 u 、压强 p 的脉动性,即是否存在流体质点的脉动性。 第二章流体输送机械 管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加。 输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量 (J/N) 。 离心泵主要构件叶轮和蜗壳。 离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关。 叶片后弯原因使泵的效率高。 气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象。 离心泵特性曲线离心泵的特性曲线指 H e~ q V ,η~ q V , P a~ q V 。 离心泵工作点管路特性方程和泵的特性方程的交点。 离心泵的调节手段调节出口阀,改变泵的转速。 汽蚀现象液体在泵的最低压强处 ( 叶轮入口 ) 汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象。 必需汽蚀余量 (NPSH)r 泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少 离心泵的选型 ( 类型、型号 ) ①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号。 正位移特性流量由泵决定,与管路特性无关。 往复泵的调节手段旁路阀、改变泵的转速、冲程。 离心泵与往复泵的比较 ( 流量、压头 ) 前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变。前者不易达到高压头,后者可达高压头。前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门。 通风机的全压、动风压通风机给每立方米气体加入的能量为全压 (Pa=J/m 3 ) ,其中动能部分为动风压。

初三化学基本概念和原理

. . 第10讲 成绩好, 信心足 初三化学科讲义 Qichao Education 化学基本概念和原理 优质教育 成就梦想 温 故 知 新 一、物质的变化及性质 物理变化 化学变化 定义 常见现象 本质区别 实质 联系 物理性质 化学性质 定义 实例 区别 二、物质的组成 三、物质的分类 (1)混合物和纯净物 (2)单质和化合物 (3)氧化物、酸、碱和盐 基本概念 组成宏观微观 元素 分子原子离子原子核核外电子 质子 中子

四、化学用语???? ???反应类型 化学方程式化学式元素符号 (1)相对原子质量和相对分子质量、分子—原子运动论、核外电子的排布规律 (2)元素符号的意义 ① 某一种元素。 ② 这种元素的一个原子。 ③ 若物质是由原子直接构成的,则组成该物质的元素也可表示这种单质,例如:Na 、S 、P 等。 (3)化合价:元素的原子相互化合的数目决定这种元素的化合价。 化合价与原子最外层电子数密切相关;在化合物里,元素正负化合价代数和为零;单质中元素的化合价规定为零价。 (4)化学式:用元素符号来表示物质组成的式子。 (5)化学方程式:用化学式来表示化学反应的式子。注意书写原则、步骤、配平、反应条件、箭头的正确使用。 (6)化学反应类型 化学变化 (化学反应) 按反应基本类型分 按氧的得失分 按热量变化分 分解反应 化合反应置换反应复分解反应 氧化反应还原反应 吸热反应 放热反应 氧化还原反应 (7)质量守恒定律 基本概念 温 故 知 新

一、物质的变化 【规律小结】物质的变化分为物理变化和化学变化,两者的区别在于有没有新物质生成,即发生化学变化的依据是产生了新物质。 【例1】“民以食为天”。下列过程中发生了化学变化的是() A.淘米 B.洗菜 C.苹果榨汁 D.葡萄酿酒 变式训练一 1、下列变化中属于物理变化的是() A.火箭点火 B.用食醋除去暖水瓶中的水垢 C.融雪剂NaCl使冰雪融化 D.风筝会开幕式燃放烟花 2、日常生活中发生的下列变化,属于化学变化的是() A. 水结成冰 B. 纸燃烧 C 玻璃破碎 D 汽油挥发 二、物质的性质(物理性质与化学性质见P1) 【规律小结】物质的变化、用途都能反应出物质的性质,判断物质的性质时,要紧扣物理性质和化学性质的定义 【例2】氨气是一种重要的化工原料,在工农业生产中有广泛的应用。某兴趣小组的同学为了探究氨气的某些性质,进行以下实验。下图中从左到右依次是实验步骤及相应的现象。 请根据上图中所示的信息,归纳出有关氨气的性质: (1)物理性质 ①_______________________________________②_______________________________________。 (2)化学性质:氨气与水反应后所得氨水显_________性。 变式训练二 1、下列关于O2和CO2的“自述”中,属于物理性质的是() 归纳总结

基本概念与原理:溶液

基本概念与原理:溶液 主要考点: 1.常识:温度、压强对物质溶解度的影响;混合物分离的常用方法 ① 一般固体物质.... 受压强影响不大,可以忽略不计。而绝大部分固体随着温度的升高,其溶解度也逐渐升高(如:硝酸钾等);少数固体随着温度的升高,其溶解度变化不大(如:氯化钠等);极少数固体随着温度的升高,其溶解度反而降低的(如:氢氧化钙等)。 气体物质.... 的溶解度随着温度的升高而降低,随着压强的升高而升高。 ② 混合物分离的常用方法主要包括:过滤、蒸发、结晶 过滤法用于分离可溶物与不溶物组成的混合物,可溶物形成滤液,不溶物形成滤渣而遗留在滤纸上; 结晶法用于分离其溶解度受温度影响有差异的可溶物混合物,主要包括降温结晶法及蒸发结晶法 降温结晶法用于提取受温度影响比较大的物质(即陡升型物质),如硝酸钾中含有少量的氯化钠; 蒸发结晶法用于提取受温度影响不大的物质(即缓升型物质),如氯化钠中含有少量的硝酸钾; 2.了解:溶液的概念;溶质,溶剂的判断;饱和溶液与不饱和溶液的概念、判断、转换的方法;溶解度的概念;固体 溶解度曲线的应用 ① 溶液的概念就是9个字:均一的、稳定的、混合物。溶液不一定是液体的,只要同时满足以上三个条件的物质, 都可以认为是溶液。 ② 一般简单的判断方法:当固体、气体溶于液体时,固体、气体是溶质,液体是溶剂。两种液体相互溶解时,通常把量多的一种叫做溶剂,量少的一种叫做溶质。当溶液中有水存在的时候,无论水的量有多少,习惯上把水看作溶剂。通常不指明溶剂的溶液,一般指的是水溶液。 在同一个溶液中,溶质可以有多种。特别容易判断错误的是,经过化学反应之后,溶液中溶质的判断。 ③ 概念:饱和溶液是指在一定温度下,在一定量的溶剂里,不能再溶解某种物质的溶液。还能继续溶解某种溶质的溶液,叫做这种溶质的不饱和溶液。 在一定温度下,某溶质的饱和溶液只是说明在该温度下,不能够继续溶解该物质,但还可以溶解其他物质,比如说,在20℃的饱和氯化钠溶液中,不能再继续溶解氯化钠晶体,但还可以溶解硝酸钾固体。 判断:判断是否是饱和溶液的唯一方法:在一定温度下,继续投入该物质,如果不能继续溶解,则说明原溶液是饱和溶液,如果物质的质量减少,则说明原溶液是不饱和溶液。 当溶液中出现有固体时,则该溶液一定是该温度下,该固体的饱和溶液。 转换:饱和溶液与不饱和溶液的相互转换: 改变溶解度,实际一般就是指改变温度,但具体是升高温度还是降低温度,与具体物质溶解度曲线有 ④ 溶解度曲线的意义: 饱和溶液 不饱和溶液 增加溶剂,增加溶解度 减少溶剂,增加溶质,减少溶解度

最新化工原理复习整理教学提纲

第1周绪论 1化工原理中的“三传”是指( D )。 A.动能传递、势能传递、化学能传递 B.动能传递、内能传递、物质传递 C.动量传递、能量传递、热量传递 D.动量传递、热量传递、质量传递2因次分析法的目的在于( A )。 A.用无因次数群代替变量,使实验与关联工作简化 B.得到各无因次数群间的确切定量关系 C.用无因次数群代替变量,使实验结果更可靠 D.得到各变量间的确切定量关系 3下列选项中,不是化工原理研究的内容是( C )。 A.单元操作 B.传递过程 C.化学反应 D.物理过程 第2周流体流动(一) 2.1 1在静止流体内部各点的静压强相等的必要条件是( D )。 A.同一种流体内部 B.连通着的两种流体 C.同一种连续流体 D.同一水平面上,同一种连续的流体 2被测流体的( C )小于外界大气压强时,所用测压仪表称为真空表。 A.大气压 B.表压强 C.绝对压强 D.相对压强 3压力表测量的是( B )。 A.大气压 B.表压 C.真空度 D.绝对压强 2.2

1在定稳流动系统中,单位时间通过任一截面的( B )流量都相等 A.体积 B.质量 C.体积和质量 D.体积和摩尔 2在列伯努利方程时,方程两边的压强项必须( C )。 A.均为表压强 B.均为绝对压强 C.同为表压强或同为绝对压强 D.一边为表压强一边为绝对压强 3伯努利方程式中的H项表示单位重量流体通过泵(或其他输送设备)所获得的能量,称为( D )。 A.位能 B.动能 C.静压能 D.有效功 2.3 1( A )可用来判断流体的流动型态。 A.Re B.Nu C.Pr D.Gr 2流体的流动型态有( B )种。 A.1 B.2 C.3 D.4 3滞流与湍流的本质区别是( D )。 A.流速不同 B.流通截面不同 C.雷诺准数不同 D.滞流无径向运动,湍流有径向运动 第2周测验 1装在某设备进口处的真空表读数为50kPa,出口压力表的读数为100kPa,此设备进出口之间的绝对压强差为( A )kPa。 A.150 B.50 C.75 D.100 2 U型压差计不可能测出的值为( D )。

化工原理基本概念

基本定义 理想溶液 ideal solution(s):溶液中的任一组分在全部浓度范围内都符合拉乌尔定律[1]的溶液称为理想溶液。 这是从宏观上对理想溶液的定义。从分子模型上讲,各组分分子的大小及作用力,彼此相似,当一种组分的分子被另一种组分的分子取代时,没有能量的变化或空间结构的变化。换言之,即当各组分混合成溶液时,没有热效应和体积的变化。即这也可以作为理想溶液的定义。除了光学异构体的混合物、同位素化合物的混合物、立体异构体的混合物以及紧邻同系物的混合物等可以(或近似地)算作理想溶液外,一般溶液大都不具有理想溶液的性质。但是因为理想溶液所服从的规律较简单,并且实际上,许多溶液在一定的浓度区间的某些性质常表现得很像理想溶液,所以引入理想溶液的概念,不仅在理论上有价值,而且也有实际意义。以后可以看到,只要对从理想溶液所得到的公式作一些修正,就能用之于实际溶液。 各组成物质在全部浓度范围内都服从拉乌尔定律的溶液。[2]对于理想溶液,拉乌尔定律与亨利定律反映的就是同一客观规律。其微观模型是溶液中各物质分子的大小及各种分子间力(如由A、B二物质组成的溶液,即为A-A、B-B及A-B 间的作用力)的大小与性质相同。由此可推断:几种物质经等温等压混合为理想溶液,将无热效应,且混合前后总体积不变。这一结论也可由热力学推导出来。理想溶液在理论上占有重要位臵,有关它的平衡性质与规律是多组分体系热力学的基础。在实际工作中,对稀溶液可用理想溶液的性质与规律作各种近似计算。 泡点: 液体混合物处于某压力下开始沸腾的温度,称为在这压力下的泡点。 若不特别注明压力的大小,则常常表示在0.101325MPa下的泡点。泡点随液体组成而改变。对于纯化合物,泡点也就是在某压力下的沸点。 一定组成的液体,在恒压下加热的过程中,出现第一个气泡时的温度,也就是一定组成的液体在一定压力下与蒸气达到汽液平衡时的温度。泡点随液相组成和压力而变。当泡点与液相组成的关系中,出现极小值或极大值时,这极值温度相应称为最低恒沸点或最高恒沸点,这时,汽相与液相组成相同,相应的混合物称为恒沸混合物。汽液平衡时,液相的泡点即为汽相的露点。

化工原理概念汇总

化工原理概念汇总

化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,程输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数

第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬程): 离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率:轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。 g QH N e ρ=η /e N N =η ρ/g QH N =

化工原理基本概念和原理

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A =p A 0x A p B =p B 0x B =p B 0(1—x A ) 根据道尔顿分压定律:p A =Py A 而P=p A +p B 则两组分理想物系的气液相平衡关系: x A =(P—p B 0)/(p A 0—p B 0)———泡点方程 y A =p A 0x A /P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。

2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有: α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图

初三化学基本概念和原理(完整资料).doc

此文档下载后即可编辑 初三化学复习资料(基本概念与原理) 一、物质的组成与结构 主要考点: 1. 常识:核外电子排布,原子结构示意图,原子团的概念 ①核外电子的分层排布,能量低的靠近原子核;第一层(K层)最多排2个电子,第二层(L层)最多排8个电子,最外层最多排8个电子;先排满内层,在排外层;原子团在化学变化中,有可能改变 ②硝酸根离子NO3-;氯酸根离子ClO3-;氢氧根离子OH-;碳酸氢根离子HCO3-;碳酸根离子CO32-;硫酸根离子SO42-;锰酸根离子MnO42-;高锰酸根离子MnO4-;磷酸根离子PO43-;铵根离子NH4+ ③注意原子结构示意图与离子结构示意图之间的区别:判断元素种类,根据核内质子数;判断是离子还是原子,根据核外电子总数与核内质子数 ④地壳中含量前四位:氧(O)硅(Si)铝(Al)铁(Fe);空气中含量最多的元素:氮(N);海洋中含量最多的元素:氧(O) ⑤原子的最外层的电子数决定了:元素的化学性质,元素的分类,元素的化合价 2. 了解:分子、原子、离子、元素的概念、区别、联系;原子的构成;相对原子(分子)质量 ①分子、原子、离子都是构成物质的粒子。 分子构成的物质:共价化合物(如:水、酒精、二氧化碳等);大部分非金属单 质(如:氢气、氧气、氮气、硫等) 原子构成的物质:金刚石、石墨、单晶硅;稀有气体;金属单质 离子构成的物质:离子化合物(如氯化钠、氢氧化钙等) 注:(1)单一的离子是不能够形成物质的。例如:氯化钠是由氯离子与钠离子形成的,千万不能说是由氯化钠离子形成的 (2)离子化合物是通过阴阳离子相互吸引而形成的,共价化合物是通过共用电子对形成的

初中化学基本概念和原理:物质的组成

2019年初中化学基本概念和原理:物质的组 成 一)分子 定义保持物质化学性质的一种微粒性质①体积、质量都非常小 ②不停的运动 ③分子间有间隔 ④同种分子性质相同,不同种分子性质不同构成的物质非金属单质(例:氢气、氧气、硫、磷等)共价化合物(例:二氧化碳、氯化氢、甲烷等) 二)原子 定义化学变化中的最小微粒性质 ①原子的质量非常小 ②不停的运动 ③原子间有间隔 ④同种原子性质相同,不同种原子性质不相同 构成的物质金属单质(铁、铜等) 少数非金属单质(例:金刚石、石墨) 三)离子 定义带电的原子或原子团叫离子 带正电的离子叫阳离子 带负电的离子叫阴离子电性一个原子得失

电子的数目就是离子所带正负电荷数目。得电子带负电荷,失电子带正电荷。构成的物质离子化合物(由阴、阳离子相互作用构成的化合物) 例:金属氧化物(氧化镁) 盐(食盐) 碱(氢氧化钠) 四)元素 定义具有相同核电荷数(即核内质子数)的同一类原子的总称种类100多种 质子数决定了元素的种类(例:氧的原子核中有8个质子;氢的原子核内有一个质子)存在游离态(在单质中例:氢气中的氢元素就是游离态) 化合态(在化合物中例:水中的氢元素就是以化合态存在)要点①核电荷数相同的原子、离子属于同一种元素(Na和Na+是钠元素,Cl和Cl-是氯元素)。 ②元素是宏观概念,只能论种,不能数数目。 ③核电荷数(即质子数)决定元素的种类。 ④最外层电子数决定元素的性质。最外层电子数等于8(氦最外层电子数是2)是稀有气体元素,最外层电子数少于4是金属元素,最外层电子数大于4是非金属元素。 ⑤元素组成物质。例:水是由氢元素和氧元素组成五)原子和元素的区别与联系

建筑力学基本概念和基本原理

建筑力学基本概念和基本原理 一、判断 1、材料的横向变形系数(泊松比)和弹性模量E、剪切模量G都是材料固有的力学性质。 2、一对等大反向的平行力(即力偶)既可使物体发生转动,也可使物体发生移动。 3、铸铁试件压缩破坏是沿45度斜截面被剪断。 4、矩形梁危险截面的最大拉、压应力发生在截面的上下边缘处。 5、梁的合理截面是使大部分材料分布于靠近中性轴(梁的横截面与线应变=0的纵向面的交线)。 6、梁在集中力偶作用处,剪力图有突变。 7、忽略杆件自重,杆件上无荷载,荷载作用于结点上的杆件都是二力杆。 8、作用于弹性体一小块区域上的载荷所引起的应力,在离载荷作用区较远处,基本上只同载荷的主矢和主矩有关;载荷的分布情况只影响作用区域附近的应力分布,这就是圣维南原理。 9、轴向拉(压)直杆的斜截面只有正应力,没有剪应力。 10、铸铁和砖石、混凝土等材料的抗拉能力远小于抗压能力。 11、某T形铸铁梁最大弯矩为正(截面下侧受拉、上侧受压),该T形梁应该正放而不是倒放。 12、某矩形钢筋混凝土梁最大弯矩为负(截面上侧受拉、下侧受压),钢筋应该配置在截面的下侧。 13、杆件某截面内力反映的是该截面处两部分杆件因为外力作用发生小变形而产生的相互作用,内力成对出现、等大反向,因此求内力要用截面法。 14、构件的内力与横截面的尺寸大小和材料的力学性质都有关。 15、应力是内力的分布集度。 16、平面一般力系向平面内某点平移的简化结果可能有三种情形:平衡状态、合力不为零、合力矩不为零。 17、各种材料对应力集中的敏感程度相同。 18、当某力的作用线通过某点时,该力对该点存在力矩。 19、因为杆件受到外力作用发生的变形是小变形,所以求支座约束力和杆件内力时,杆件都使用原始尺寸。 20、杆件的稳定性是针对细长压杆的承载能力,此时稳定性要求超过强度要求。 二、填空 1. 理想弹性体模型包括四个基本简化假设:假设、假设、假设、线弹性假设;在变形体静力学分析中,对所研究的问题中的变形关系也作了一个基本假设,它是假设。

《化工原理》基本概念、主要公式

《化工原理》基本概念、主要公式 第一章 基本概念: 连续性假定质点拉格朗日法欧拉法定态流动轨线与流线系统与 控制体粘性的物理本质 质量守恒方程静力学方程总势能理想流体与实际流体的区别可压 缩流体与不可压缩流体的区别 牛顿流体与非牛顿流体的区别伯努利方程的物理意义动量守恒方程 平均流速动能校正因子 均匀分布均匀流段层流与湍流的本质区别稳定性与定态性边界层 边界层分离现象因次 雷诺数的物理意义泊谡叶方程因次分析实验研究方法的主要步骤摩 擦系数完全湍流粗糙管 局部阻力当量长度毕托管驻点压强孔板流量计转子流量计的特点 非牛顿流体的特性(塑性、假塑性与涨塑性、触变性与震凝性、粘弹性) 重要公式: 牛顿粘性定律dyduμτ= 静力学方程gzpgzp2211+=+ρρ 机械能守恒式fehugzphugzp+++=+++2222222111ρρ 动量守恒)(12XXmXuuqF?=Σ 雷诺数μμρdGdu==Re 阻力损失22udlfλ=h ????dqduhVf∞∞ 层流Re64=λ或232dulhfρμ= 局部阻力22ufζ=h 当量直径Π=Ae4d 孔板流量计ρPΔ=200ACqV ,gRi)(ρρ?=ΔP 第二章 基本概念: 管路特性方程输送机械的压头或扬程离心泵主要构件离心泵理论压 头的影响因素叶片后弯原因 气缚现象离心泵特性曲线离心泵工作点离心泵的调节手段汽蚀现 象必需汽蚀余量(NPSH)r 离心泵的选型(类型、型号) 正位移特性往复泵的调节手段离心泵与 往复泵的比较(流量、压头) 通风机的全压、动风压真空泵的主要性能参数

重要公式: 管路特性242)(8VeqgddlzgpHπζλρ+Σ+Δ+Δ= 泵的有效功率eVeHgqPρ=

初三化学专题复习-基本概念和理论

/初三化学(下)总复习测试卷(一) 化学基本概念和原理 可能用到的相对原子质量:H:1 O:16 S:32 C:12 一、选择题:以下各题,只有一个符合要求的答案(每小题2分,共30分) 1、市场上销售的食盐种类有加钙盐、加锌盐、加碘盐等,这里的“钙”、“锌”、“碘”是指( ) A 、分子 B 、元素 C 、单质 D 、阴离子 2、下列现象,不一定发生了化学变化的是( ) ①有水滴产生的过程 ②浓硫酸放在空气中质量增加了 ③碳酸氢铵露置空气中质量减轻了 ④爆炸 A 、①④ B 、②③ C 、①③ D 、③④ 3、下列变化中,可以用来证明分子在化学变化中是可分的是( ) A 、分离液态空气得到氮气和氧气 B 、分解液态水得到氢气和氧气 C 、分离KNO 3和NaCl ,得到KNO 3晶体 D 、对天然水加热时有气泡冒出 4、已知用碳还原烘干的铬酸钠可制得氧化铬4Na 2CrO 4+4C+O 2==4Na 2CO 3+2Cr 2O 3,在这反应前后的两种含铬的化合物中,铬的化合价依次是( ) A 、7、3 B 、6、3 C 、6、5 D 、5、6 5、下列各组物质中,在物质分类里前者从属于后者的是( ) A 、纯净物、混合物 B 、氧化物、化合物 C 、单质、化合物 D 、金属、非金属 6、过氧化氢(H 2O 2)是隐形眼镜的洗液成分,下列说法正确的是( ) A 、它由氢气和氧气组成 B 、它由一个氢分子和一个氧分子构成 C 、它由两个氢元素和两个氧元素构成 D 、它由氢元素和氧元素组成 7、一个CO 分子的质量为a 千克,其中氧原子的质量为b 千克,若以一个碳原子质量的1/12作为标准,则CO 的相对分子质量是( ) A 、b a a -8 B 、b a a -12 C 、b a a -16 D 、b a a -32 8、将下列物质分别加入或通入到水中,所得溶液pH 小于7的是( ) A 、CuO B 、CaO C 、CO 2 D 、NaCl 9、使25克甲与5克乙充分反应,所得混合物中含10克甲和11克丙,还有另一种新物质丁,若甲、乙、丙、丁的相对分子质量分别为30、20、44、18,其化学式分别用A 、 B 、 C 、 D 表示,则下列化学方程式正确的是( ) A 、A+B==C+D B 、A+2B==2C+D C 、2A+B==2C+ D D 、2A+B==C+2D 10、现代医学证明,人类牙齿由一层称为碱式磷酸钙的坚硬物质保护着。碱式磷酸钙 的化学式中除钙离子外还含有一个氢氧根离子和三个磷酸根离子(PO 43-),则其化学式正 确的是( ) A 、Ca 2(OH)(PO 4)3 B 、Ca 3(OH)(PO 4)3 C 、Ca 4(OH)(PO 4)3 D 、Ca 5(OH)(PO 4)3

化工原理知识点总结

一、流体力学及其输送 1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。 4.两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。 5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。 6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同) 7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。 转子流量计的特点——恒压差、变截面。 8.离心泵主要参数:流量、压头、效率(容积效率?v :考虑流量泄漏所造成的能量损失;水力效率?H :考虑流动阻力所造成的能量损失;机械效率?m :考虑轴承、密封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m3 1atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg (1)被测流体的压力 > 大气压 表压 = 绝压-大气压 (2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置 离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。 气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体 12. 往复泵的流量调节 (1)正位移泵 流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵。 往复泵是正位移泵之一。正位移泵不能采用出口阀门来调节流量,否则流量急剧上升,导致示损坏。 (2)往复泵的流量调节 第一,旁路调节,如图2-28所示,采用旁路阀调节主管流量,但泵的流量是不变的。 第二,改变曲柄转速和活塞行程。使用变速电机或变速装置改变曲柄转速,达到调 节流量,使用蒸汽机则更为方便。改变活塞行程则不方便。 13.流体输送机械分类 14.离心泵特性曲线: 222'2e 2e 2u d l l u d l l u d l h h h f f f ??? ? ??++=???? ??+=??? ??+=+=∑∑∑∑∑∑ζλλζλ

相关文档
相关文档 最新文档